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signal for partially and fully developed speckle
based on a Generalized Gaussian model with

application to echocardiography
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Abstract

We have shown in a previous paper [1] that the statistics ef#ldio-frequency (RF) signals may be
faithfully modelled through the so-calleli z~ distribution, in situations ranging from fully to partigdl
developed speckle. We demonstrate in this paper that ther@8leed Gaussian provides a reliable and
computationally convenient approximation of thg;r . The performance of the parameters estimators
for the two distributions is evaluated and compared in tesfrtbeir bias and variance through numerical
simulations. This framework is applied to the modeling oh@wardiographic data. The ability of the
Generalized Gaussian to model RF signals from cardiacetssgmyocardium) and blood regions is

demonstrated on data acquired in vivo.

. INTRODUCTION

Characterizing the statistics of the backscattered sitimaligh reliable models is an important issue
in medical ultrasound image analysis. In the field of echdogrdphic imaging alone, this statistical
modeling is a major component for classification [2], demgs|3] or segmentation [4], [5], [6], [7]

tasks.
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In imaging situations ranging from fully to partially-ddeped speckle, the statistics of the backscat-
tered envelope signal may be described through the nowkmeilrn K distribution model [8], [9]. We
have recently shown [1] that the statistics of the RF siga#hén given by the so-calledr - distribution
and that this distribution can be applied to the modelingabifoeardiographic data corresponding to blood
(fully developed speckle) or myocardial regions (pania@keveloped speckle). While thH€r» has a clear
physical basisi(e. assumption of a uniform distribution of scatterers havingligtributed amplitudes),
its practical use for characterization or segmentatioistas however limited: as detailed in Section
II, numerical simulations indeed show that the estimatitas and variance grow rapidly as the shape
parameter increases, yielding unstable estimates in blegions?.

We propose in this work to model the statistics of the RF dignyausing the Generalized Gaussian
distribution, which has a simple expression and whose petensican be estimated through closed-form
Maximum Likelihood estimators. In this framework, we shovatthhe Generalized Gaussian provides
a reasonable approximation of tliézr and demonstrate its ability to reliably model RF signalsrfro
echocardiographic data acquired in vivo. Early versionshisf approach appeared in [11], [12].

This paper is structured as follows. We give in Section Il thepprties of the Generalized Gaussian
model which motivate its use as a model for RF signal in the cdpartially and fully developed speckle.
The consistency of parameter estimation for iigr and the Generalized Gaussian distributions are then
compared from numerical simulations. In Section Ill, thelipbbf the Generalized Gaussian to model
RF signals from cardiac tissues and blood pools is evalumted echocardiographic data acquired in

vivo. The main conclusions are given in Section IV.

I[I. GENERALIZED GAUSSIAN MODEL FOR THE RADIO-FREQUENCY SIGNAL
A. The Krr model

The Krr model is based on the assumption that the scatterers priesalg the system resolution
cell are uniformly distributed and that their amplitudeldal a K distribution. The statistics of a random
variable distributed according to Ay distribution is described by the following probability dsty

function (see [1] for details):

b bl
I[x(x) = m <2> Ky, o5 (bl|z|) 1)

It is to be noted that this behavior is shared by the K-distribution when estimitiperformed from the envelope signal
(10]
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whereI' is the Gamma function anfi,_q 5 is the modified Bessel function of the second kind of order
v — 0.5. This expression is completely specified by its two parameteand b, such thats controls the
shape and the scale of the pdf. Two particular cases foare to be noted (see Appendix A):

o the Krp tends to a Gaussian as— oo

o the Kip is equal to a Laplacian distribution when= 1

More generally, thekrr yields a heavy tail distribution with a sharp peak whetakes small values,
whereas it approaches a Gaussian distribution tekes large values. As a consequence, large values of
v are well adapted to the modelling of fully developed specekidle small values o, are associated to
partially developed speckle. A few sample plots of the pdfdifferent parameters are shown in Fig.
1.

Several estimators may be devised to compute the shape paramigom data samples. We have
shown in [1] that the so-called implicit estimator was thesinconsistent and it is therefore used in this

study.

B. The Generalized Gaussian model

From the observation that fully speckle situations corragpim a Gaussian pdf and non-fully speckle
situations yields heavy tail, Laplacian-like distributi(gee Fig.1), we propose to approximate #kigr

distribution by the Generalized Gaussian (G.G.) distidoutvhose expression is:

ki )
9x(z) = W“P (‘ (a) ) 2)

6 and « are the two parameters of the distribution whéreontrols the shape and the scale of the
pdf.

The Generalized Gaussian distribution has already beernogetpbfor noise modeling in optical image
analysis [13], [14], wavelet coefficient statistical modgli[15] and recently in radar domain [16]. This
noise model is commonly used in statistical studies sinamjitures the heavy tailed behavior that is
often exhibited by real noise distributions. In ultrasoum@ging, the Generalized Gaussian distribution
appears as a good candidate to characterize the statisttbe &®&F signal for both fully and partially

developed speckle situations for the following reasons:

o The Kgrp distribution with parameter = 1 is identical to a Generalized Gaussian distribution with
shape parametes = 1. For this particular situation, the two distributions areleed equal to a

Laplacian distribution;
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o The K g distribution with parameter — oo is identical to a Generalized Gaussian distribution with
shape paramete? = 2. For this particular situation, the two distributions apal to a Gaussian
distribution.

The estimation of the Generalized Gaussian parameters cagadilyy done using the Maximum

Likelihood method, in which the set of parameters that maz@sithe likelihood function is determined.
Givenn independent realizations), o, - - - ,y,} from a Generalized Gaussian density (with parameters

8 anda), the ML estimates of the parameters gnd &, respectively) satisfy the following relation [17]:

(1/B) Xty log () - lwl® 19 (% i /") 0
5 Sy il 8

o= (f ) ryz-rﬁ> @
=1

where ¥(.) is the digamma function. From equation (3) the parameteimatgs are obtained using a

L4
1+

3)

bisection method.

C. Parameters estimation consistency

As mentioned in the introduction, one practical limitatiohthe K g is that the associated parameter
estimators yield large bias and variance, particularlyhim ¢ase of fully developed speckle situation. The
consistency of parameter estimation for thg;» and the Generalized Gaussian distributions has thus
been investigated. Data distributed according toAhg- distribution and the Generalized Gaussian have

been generated and parameter estimation has been perfasifetiows:

« Krp : Data were generated for values of the shape parameter the range[0.2,10], which
encompass the range observed from in vivo echocardiograjdta, wherer was found to vary
between0.2 and1.3 for myocardial regions (partially-developed speckle aiton) and to be higher
than 2 in blood regions (fully developed speckle situation). Thepligit estimator mentioned in
section II-A was used to evaluate

« Generalized Gaussian : Data were generated for values ahéyge parameter in the ranfe6, 2],
which encompass the range observed from in vivo echocamabbic data, wherg was found to
vary betweer0.6 and 1.2 for myocardial regions and to be in the rangeb, 1.9] for blood regions.

The ML estimator given in (3) was used.

The number of data samples (N) was chosen toltt and the procedure was repeat2@b00

times. The corresponding bias and variance are presentedyir2Firhe results clearly show that the
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Generalized Gaussian estimator has a better consisteacythb Kz estimator for the range of values
corresponding to myocardium and blood regions. In padicut may be observed that the estimator
variance grows rapidly for thé&rr when the shape parameter increases. Moreover, it is ititege®
note that forv = 1 (i.e. when the Krp distribution is equal to the Generalized Gaussian didtiobu
with parameters = 1), the bias of the Generalized Gaussian estimator is 4 tiowsrlthan the bias
corresponding to thé(r estimator (the bias values abed12 and 0.049 for the Generalized Gaussian
and theKrp respectively). In this case, the variance of the Geneml@aussian estimator is 5 times
lower than the variance corresponding to thig estimator (the variance values &#034 and 0.02

for the Generalized Gaussian and tRgr respectively). These results illustrates the interest ofgus

the Generalized Gaussian distribution as an approximatidghe K distribution.

IIl. EXPERIMENTAL RESULTS

We tested the ability of the two distributions to model RFada a variety of ultrasound cardiac images
of clinical interest using the same protocol as in [1]. Datravacquired using a Toshiba Powervision
6000 (Toshiba Medical Systems Europe, Zoetermeer, The Natlks)laquipped with an RF interface for
research purposes and a 3.75-MHz probe. The RF signal wasextguthout any attenuation correction.
The RF sample frequency varied betwetnand 32 MHz according to the acquisition mode. Table |
summarizes the various image orientations and the comesp left ventricular segments used in the
experiments. For each view, five independent RF data setn (five different, healthy volunteers) were
acquired, from which a single image was selected visuallprtivide easy discrimination between the
myocardium region and the blood pool. Subsequently, a wagadiologist manually drew a contour
delimiting a region inside the myocardium and a region iasidood pool (Fig. 3 give examples of
myocardial regions obtained for each view). In each regtbs, fit of the Kzr and the Generalized
Gaussian distributions was done from the correspondingd®#. @he fits were obtained using the implicit
and the ML methods for estimating the parameters ofkhg- and Generalized Gaussian distributions,
respectively. The sample size was chosen to be equBl2é in each region.

The ability of the distributions to model the RF data was espee through the root mean square
error (RMSE) and a goodness-of-fit measure. The latter was neshfiurough a Chi-square{)-type
test. As the conventionals test, based on the Pearson’s measure, is heavily affectechdl, xpected
frequencies that commonly appear when dealing with hedlglitaributions such as(rr or Generalized
Gaussian , we used the Freeman-Tukey measure (FT) instead [1]. The number of bins odadlt the

histograms from the data was selected according to the apiproroposed by D’Agostino and Stephens
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[1] by settingM = 2n?/5, where M is the number of bins and is the sample size. The test associated
to FT also enables us to accept or reject the hypothesis thattar distribution could model the
empirical data for a chosen level of significance.

Table ll(a) and lI(b) show the average RMSE and FT goodness ofdésnres for each of the two
distributions for each image view, respectively for blood anyocardial regions. Table ll(a) shows that
for blood regions, thé{rr and Generalized Gaussian distributions provide almossémee fit for each
image orientation. The value of the shape parameter is inahgeql1.9,89.4] for the Krr and in the
range[1.5,1.9] for the Generalized Gaussian model. This shows that the taioilaitions are close to
a Gaussian. This observation is consistent with the facthlwatd areas corresponds to fully developed
speckle. Table li(b) shows that for myocardial regions, Generalized Gaussian distribution provides
slightly better fits than thé{z» model for each image orientation. The value of the shape pears
in the rangel0.2, 1.3] for the Krp and in the rang€0.6, 1.2] for the Generalized Gaussian model.

Finally the FT test was undertaken with a significance level.01 to accept or reject thé&(rr or
Generalized Gaussian hypothesis on #ilestudied cases. Results show that the acceptation rate was
24 for the Krr and 29 for the Generalized Gaussian . Here again, the Generalizegsan performs
slightly better than theé<{rr . In order to illustrate more qualitatively the above reswlie give in Fig.

4 fits of the distributions to the empirical RF data for two opip® situations. Fig. 4(a) shows a result
obtained for a case where the goodness of fit measure was lowhanBT test succeeded. Fig. 4(b)
shows a result for a case where the goodness of fit measure gfaard the FT test failed. Fig. 4(a)-(b)

illustrates again that the Generalized Gaussian providebaile approximation of thé& i distribution.

IV. CONCLUSION

In this work, we have proposed to model the statistics of #ukorfrequency signal in the case of both
fully and partially developed speckle using the Generdli@aussian distribution. We demonstrated that
the statistical distribution derived from the modeling bétscattering configurationk(zz distribution)
can be reasonably approximated by the Generalized Gaudsgaibution. This distribution has the
advantage to have a simple expression with consistent gaeasnestimation. The experimental results
clearly show the reliability and versatility of this digitition in representing RF data corresponding to

partially developed speckle (myocardial regions) andyfdiveloped speckle (blood regions).
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APPENDIX A

RELATION BETWEEN K pr AND GENERALIZED GAUSSIAN DISTRIBUTIONS

From equation (2), it is easily seen that the Gaussian and th&dian distributions can be viewed
as particular cases of the Generalized Gaussian model &pegbaramete value2 and1, respectively.

In this appendix, we show that these two distributions ase apecial cases of th€zr model.

A. Gaussian case

The fact that theKrp pdf fx(x) tends to a Gaussian distribution is easily demonstratetgusie
basic properties of the K distribution. Let us c&lld 5’b(u) a K distribution with shape parameterand

scale parametdr. Kd 57b(u) tends to a Rayleigh distribution astends to infinity [8], that is

2
. v,b N u u
VILH;O Kd ;" (u) = P <_%c2> (5)
Let Pxy(z,y) be the pdf of the analytic form of the RF signal- iy. Px y(x,y) may be expressed

as a function of a K distribution pdf as [1]:

1
Pxy(z,y) = TKd g’b(z) where 2z = \/afy2 (6)

mZ
From (5) and (6) it follows immediately thaty y (x,y) tends to a circular Gaussian distribution:as
tends to infinity.
The RF signal corresponds to the real part of the analyticasiggo the Krr corresponds to the
marginal distribution obtained by integrating &% y (z,y) with respect to y. Whemw tends to infinity,

the Krr thus tends to a Gaussian distribution.

B. Laplacian case

For the special case of = 1, the Krr expression given in (1) is equal to:

e = 2 ) ™)
Noting that
Kyjp(u) = 72rexp(\/;tu) (8)
We obtain
Fx(w) = 3 exp (-blal) ©)

which corresponds to a Laplacian density with mean value léquzero and shape parameter equal to
1/b
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TABLE |

Orientation Processed tissue area

Apical four chambers (APACH) Interventricular septum
Apical two chambers (AP2CH) Left ventricle anterior wall
Parasternal long axis (PALA) Left ventricle inferolateral wall

Parasternal short axis (PASA) Left ventricle inferolateral wall

TABLE 1l
Blood
Orientation RMSE measure Freeman-Tukey measure
Krr G.G. Kgr G.G.
AP4ACH 54 55 24.2 24.8
AP2CH 4.4 4.5 22.3 224
PALA 5.0 51 25.3 26.2
PASA 5.7 5.8 23.8 245
@
Tissue
Orientation RMSE measure Freeman-Tukey measure
Krr G.G. Kgr G.G.
AP4CH 13.3 5.8 51.2 23.5
AP2CH 10.8 6.7 44.4 32.6
PALA 15.1 8.4 63.1 26.2
PASA 17.7 6.3 69.9 28.3
(b)
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Figure 1: Krpr pdf for several values of parameter: {0.75,1.5,4,20}. The smaller the parameter
value, the sharper the curve. The curves were normalizedatahith mean square value of the pdfs is

unity.

Figure 2: Comparison of the estimated Bias and Sample Variance ahd 5 using the implicit and
Maximum Likelihood estimator usingy = 1024 for the Kz and the Generalized Gaussian distributions
respectively. Note that the bias and variance are given ayarithmic scale. (a) : Bias of (Kgrp ).

(b) : Bias of 3 (Generalized Gaussian ). (c) : Varianceiof Kzr ). (d) : Variance ofs (Generalized

Gaussian ).

Figure 3: Examples of myocardial regions used for the tests (a): Adimad chambers (AP4CH). (b):
Apical two chambers (AP2CH). (c): Parasternal long axis (PAL@): Parasternal short axis (PASA).

Figure 4: Fitting probability density function to empirical data fond opposite situations. (a): A case
where the goodness of fit measure was low and the FT test succédue FT measures weid.4 and
16.9 for the Krr and Generalized Gaussian distributions, respectively tiaa threshold for the test was
27.7. (b): A case where the goodness of fit measure was high and thedtTatled. The FT measure
were 76.7 and 52.1 for the Krr and Generalized Gaussian distributions, respectively,tha threshold

for the test was33.4.
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Fig. 3.

Fig. 4.
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