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Abstract

We have shown in a previous paper [1] that the statistics of the radio-frequency (RF) signals may be

faithfully modelled through the so-calledKRF distribution, in situations ranging from fully to partially-

developed speckle. We demonstrate in this paper that the Generalized Gaussian provides a reliable and

computationally convenient approximation of theKRF . The performance of the parameters estimators

for the two distributions is evaluated and compared in termsof their bias and variance through numerical

simulations. This framework is applied to the modeling of echocardiographic data. The ability of the

Generalized Gaussian to model RF signals from cardiac tissues (myocardium) and blood regions is

demonstrated on data acquired in vivo.

I. I NTRODUCTION

Characterizing the statistics of the backscattered signalthrough reliable models is an important issue

in medical ultrasound image analysis. In the field of echocardiographic imaging alone, this statistical

modeling is a major component for classification [2], denoising [3] or segmentation [4], [5], [6], [7]

tasks.
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In imaging situations ranging from fully to partially-developed speckle, the statistics of the backscat-

tered envelope signal may be described through the now well-known K distribution model [8], [9]. We

have recently shown [1] that the statistics of the RF signal is then given by the so-calledKRF distribution

and that this distribution can be applied to the modeling of echocardiographic data corresponding to blood

(fully developed speckle) or myocardial regions (partially-developed speckle). While theKRF has a clear

physical basis (i.e. assumption of a uniform distribution of scatterers having K-distributed amplitudes),

its practical use for characterization or segmentation tasks is however limited: as detailed in Section

II, numerical simulations indeed show that the estimation bias and variance grow rapidly as the shape

parameter increases, yielding unstable estimates in bloodregions1.

We propose in this work to model the statistics of the RF signal by using the Generalized Gaussian

distribution, which has a simple expression and whose parameters can be estimated through closed-form

Maximum Likelihood estimators. In this framework, we show that the Generalized Gaussian provides

a reasonable approximation of theKRF and demonstrate its ability to reliably model RF signals from

echocardiographic data acquired in vivo. Early versions of this approach appeared in [11], [12].

This paper is structured as follows. We give in Section II the properties of the Generalized Gaussian

model which motivate its use as a model for RF signal in the case of partially and fully developed speckle.

The consistency of parameter estimation for theKRF and the Generalized Gaussian distributions are then

compared from numerical simulations. In Section III, the ability of the Generalized Gaussian to model

RF signals from cardiac tissues and blood pools is evaluatedfrom echocardiographic data acquired in

vivo. The main conclusions are given in Section IV.

II. GENERALIZED GAUSSIAN MODEL FOR THE RADIO-FREQUENCY SIGNAL

A. The KRF model

The KRF model is based on the assumption that the scatterers presentinside the system resolution

cell are uniformly distributed and that their amplitude follow a K distribution. The statistics of a random

variable distributed according to aKRF distribution is described by the following probability density

function (see [1] for details):

fX(x) =
b√

πΓ(ν)

(

b |x|
2

)ν−0.5

Kν−0.5 (b |x|) (1)

1It is to be noted that this behavior is shared by the K-distribution when estimation is performed from the envelope signal

[10]
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whereΓ is the Gamma function andKν−0.5 is the modified Bessel function of the second kind of order

ν − 0.5. This expression is completely specified by its two parametersν andb, such thatν controls the

shape andb the scale of the pdf. Two particular cases forν are to be noted (see Appendix A):

• the KRF tends to a Gaussian asν → ∞
• the KRF is equal to a Laplacian distribution whenν = 1

More generally, theKRF yields a heavy tail distribution with a sharp peak whenν takes small values,

whereas it approaches a Gaussian distribution asν takes large values. As a consequence, large values of

ν are well adapted to the modelling of fully developed specklewhile small values ofν are associated to

partially developed speckle. A few sample plots of the pdf for different parametersν are shown in Fig.

1.

Several estimators may be devised to compute the shape parameter ν from data samples. We have

shown in [1] that the so-called implicit estimator was the most consistent and it is therefore used in this

study.

B. The Generalized Gaussian model

From the observation that fully speckle situations correspond to a Gaussian pdf and non-fully speckle

situations yields heavy tail, Laplacian-like distribution(see Fig.1), we propose to approximate theKRF

distribution by the Generalized Gaussian (G.G.) distribution whose expression is:

gX(x) =
β

2αΓ (1/β)
exp

(

−
( |x|

α

)β
)

(2)

β and α are the two parameters of the distribution whereβ controls the shape andα the scale of the

pdf.

The Generalized Gaussian distribution has already been employed for noise modeling in optical image

analysis [13], [14], wavelet coefficient statistical modeling [15] and recently in radar domain [16]. This

noise model is commonly used in statistical studies since itcaptures the heavy tailed behavior that is

often exhibited by real noise distributions. In ultrasoundimaging, the Generalized Gaussian distribution

appears as a good candidate to characterize the statistics of the RF signal for both fully and partially

developed speckle situations for the following reasons:

• TheKRF distribution with parameterν = 1 is identical to a Generalized Gaussian distribution with

shape parameterβ = 1. For this particular situation, the two distributions are indeed equal to a

Laplacian distribution;
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• TheKRF distribution with parameterν → ∞ is identical to a Generalized Gaussian distribution with

shape parameterβ = 2. For this particular situation, the two distributions are equal to a Gaussian

distribution.

The estimation of the Generalized Gaussian parameters can beeasily done using the Maximum

Likelihood method, in which the set of parameters that maximizes the likelihood function is determined.

Givenn independent realizations{y1, y2, · · · , yn} from a Generalized Gaussian density (with parameters

β andα), the ML estimates of the parameters (β̂ andα̂, respectively) satisfy the following relation [17]:






























1 +
Ψ(1/β̂)

β̂
−
∑n

i=1
log (|yi|) · |yi|β̂
∑n

i=1
|yi|β̂

+
log
(

β̂
n

∑n
i=1

|yi|β̂
)

β̂
= 0 (3)

α̂ =

(

β̂

n

n
∑

i=1

|yi|β̂
)

1

β̂

(4)

whereΨ(.) is the digamma function. From equation (3) the parameters estimates are obtained using a

bisection method.

C. Parameters estimation consistency

As mentioned in the introduction, one practical limitationof the KRF is that the associated parameter

estimators yield large bias and variance, particularly in the case of fully developed speckle situation. The

consistency of parameter estimation for theKRF and the Generalized Gaussian distributions has thus

been investigated. Data distributed according to theKRF distribution and the Generalized Gaussian have

been generated and parameter estimation has been performedas follows:

• KRF : Data were generated for values of the shape parameterν in the range[0.2, 10], which

encompass the range observed from in vivo echocardiographic data, whereν was found to vary

between0.2 and1.3 for myocardial regions (partially-developed speckle situation) and to be higher

than 2 in blood regions (fully developed speckle situation). The implicit estimator mentioned in

section II-A was used to evaluateν.

• Generalized Gaussian : Data were generated for values of theshape parameter in the range[0.6, 2],

which encompass the range observed from in vivo echocardiographic data, whereβ was found to

vary between0.6 and1.2 for myocardial regions and to be in the range[1.5, 1.9] for blood regions.

The ML estimator given in (3) was used.

The number of data samples (N) was chosen to be1024 and the procedure was repeated20000

times. The corresponding bias and variance are presented in Fig. 2. The results clearly show that the

June 12, 2007 DRAFT



ACCEPTED FOR IEEE TRANSACTION ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 5

Generalized Gaussian estimator has a better consistency than theKRF estimator for the range of values

corresponding to myocardium and blood regions. In particular, it may be observed that the estimator

variance grows rapidly for theKRF when the shape parameter increases. Moreover, it is interesting to

note that forν = 1 (i.e. when theKRF distribution is equal to the Generalized Gaussian distribution

with parameterβ = 1), the bias of the Generalized Gaussian estimator is 4 times lower than the bias

corresponding to theKRF estimator (the bias values are0.012 and0.049 for the Generalized Gaussian

and theKRF respectively). In this case, the variance of the Generalized Gaussian estimator is 5 times

lower than the variance corresponding to theKRF estimator (the variance values are0.0034 and 0.02

for the Generalized Gaussian and theKRF respectively). These results illustrates the interest of using

the Generalized Gaussian distribution as an approximationof the KRF distribution.

III. E XPERIMENTAL RESULTS

We tested the ability of the two distributions to model RF data on a variety of ultrasound cardiac images

of clinical interest using the same protocol as in [1]. Data were acquired using a Toshiba Powervision

6000 (Toshiba Medical Systems Europe, Zoetermeer, The Netherlands) equipped with an RF interface for

research purposes and a 3.75-MHz probe. The RF signal was acquired without any attenuation correction.

The RF sample frequency varied between25 and 32 MHz according to the acquisition mode. Table I

summarizes the various image orientations and the corresponding left ventricular segments used in the

experiments. For each view, five independent RF data sets (from five different, healthy volunteers) were

acquired, from which a single image was selected visually toprovide easy discrimination between the

myocardium region and the blood pool. Subsequently, a trained cardiologist manually drew a contour

delimiting a region inside the myocardium and a region inside blood pool (Fig. 3 give examples of

myocardial regions obtained for each view). In each region,the fit of the KRF and the Generalized

Gaussian distributions was done from the corresponding RF data. The fits were obtained using the implicit

and the ML methods for estimating the parameters of theKRF and Generalized Gaussian distributions,

respectively. The sample size was chosen to be equal to1024 in each region.

The ability of the distributions to model the RF data was expressed through the root mean square

error (RMSE) and a goodness-of-fit measure. The latter was measured through a Chi-square (χ2)-type

test. As the conventionalχ2 test, based on the Pearson’s measure, is heavily affected by small, expected

frequencies that commonly appear when dealing with heavy tail distributions such asKRF or Generalized

Gaussian , we used theχ2 Freeman-Tukey measure (FT) instead [1]. The number of bins used to build the

histograms from the data was selected according to the approach proposed by D’Agostino and Stephens
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[1] by settingM = 2n2/5, whereM is the number of bins andn is the sample size. The test associated

to FT also enables us to accept or reject the hypothesis that a particular distribution could model the

empirical data for a chosen level of significance.

Table II(a) and II(b) show the average RMSE and FT goodness of fit measures for each of the two

distributions for each image view, respectively for blood and myocardial regions. Table II(a) shows that

for blood regions, theKRF and Generalized Gaussian distributions provide almost thesame fit for each

image orientation. The value of the shape parameter is in the range[1.9, 89.4] for the KRF and in the

range[1.5, 1.9] for the Generalized Gaussian model. This shows that the two distributions are close to

a Gaussian. This observation is consistent with the fact thatblood areas corresponds to fully developed

speckle. Table II(b) shows that for myocardial regions, theGeneralized Gaussian distribution provides

slightly better fits than theKRF model for each image orientation. The value of the shape parameter is

in the range[0.2, 1.3] for the KRF and in the range[0.6, 1.2] for the Generalized Gaussian model.

Finally the FT test was undertaken with a significance level of0.01 to accept or reject theKRF or

Generalized Gaussian hypothesis on the40 studied cases. Results show that the acceptation rate was

24 for the KRF and 29 for the Generalized Gaussian . Here again, the Generalized Gaussian performs

slightly better than theKRF . In order to illustrate more qualitatively the above results we give in Fig.

4 fits of the distributions to the empirical RF data for two opposite situations. Fig. 4(a) shows a result

obtained for a case where the goodness of fit measure was low andthe FT test succeeded. Fig. 4(b)

shows a result for a case where the goodness of fit measure was high and the FT test failed. Fig. 4(a)-(b)

illustrates again that the Generalized Gaussian provides areliable approximation of theKRF distribution.

IV. CONCLUSION

In this work, we have proposed to model the statistics of the radio-frequency signal in the case of both

fully and partially developed speckle using the Generalized Gaussian distribution. We demonstrated that

the statistical distribution derived from the modeling of the scattering configuration (KRF distribution)

can be reasonably approximated by the Generalized Gaussiandistribution. This distribution has the

advantage to have a simple expression with consistent parameters estimation. The experimental results

clearly show the reliability and versatility of this distribution in representing RF data corresponding to

partially developed speckle (myocardial regions) and fully developed speckle (blood regions).
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APPENDIX A

RELATION BETWEEN KRF AND GENERALIZED GAUSSIAN DISTRIBUTIONS

From equation (2), it is easily seen that the Gaussian and the Laplacian distributions can be viewed

as particular cases of the Generalized Gaussian model for shape parameterβ value2 and1, respectively.

In this appendix, we show that these two distributions are also special cases of theKRF model.

A. Gaussian case

The fact that theKRF pdf fX(x) tends to a Gaussian distribution is easily demonstrated using the

basic properties of the K distribution. Let us callKd ν,b
U (u) a K distribution with shape parameterν and

scale parameterb. Kd ν,b
U (u) tends to a Rayleigh distribution asν tends to infinity [8], that is

lim
ν→∞

Kd ν,b
U (u) =

u

σ2
exp

(

− u2

2σ2

)

(5)

Let PX,Y (x, y) be the pdf of the analytic form of the RF signalx + iy. PX,Y (x, y) may be expressed

as a function of a K distribution pdf as [1]:

PX,Y (x, y) =
1

2πz
Kd ν,b

Z (z) where z =
√

x2 + y2 (6)

From (5) and (6) it follows immediately thatPX,Y (x, y) tends to a circular Gaussian distribution asν

tends to infinity.

The RF signal corresponds to the real part of the analytic signal, so theKRF corresponds to the

marginal distribution obtained by integrating ofPX,Y (x, y) with respect to y. Whenν tends to infinity,

the KRF thus tends to a Gaussian distribution.

B. Laplacian case

For the special case ofν = 1, the KRF expression given in (1) is equal to:

fX(x) =
b√
π

√
b
√

|x|√
2

K1/2 (b |x|) (7)

Noting that

K1/2(u) =

√

π

2

exp(−u)√
u

(8)

We obtain

fX(x) =
b

2
exp (−b |x|) (9)

which corresponds to a Laplacian density with mean value equal to zero and shape parameter equal to

1/b
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TABLE I

Orientation Processed tissue area

Apical four chambers (AP4CH) Interventricular septum

Apical two chambers (AP2CH) Left ventricle anterior wall

Parasternal long axis (PALA) Left ventricle inferolateral wall

Parasternal short axis (PASA) Left ventricle inferolateral wall

TABLE II

Blood

Orientation
RMSE measure Freeman-Tukey measure

KRF G.G. KRF G.G.

AP4CH 5.4 5.5 24.2 24.8

AP2CH 4.4 4.5 22.3 22.4

PALA 5.0 5.1 25.3 26.2

PASA 5.7 5.8 23.8 24.5
(a)

Tissue

Orientation
RMSE measure Freeman-Tukey measure

KRF G.G. KRF G.G.

AP4CH 13.3 5.8 51.2 23.5

AP2CH 10.8 6.7 44.4 32.6

PALA 15.1 8.4 63.1 26.2

PASA 17.7 6.3 69.9 28.3
(b)
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Figure 1: KRF pdf for several values of parameterν : {0.75, 1.5, 4, 20}. The smaller the parameterν

value, the sharper the curve. The curves were normalized so that the mean square value of the pdfs is

unity.

Figure 2: Comparison of the estimated Bias and Sample Variance ofν and β using the implicit and

Maximum Likelihood estimator usingN = 1024 for theKRF and the Generalized Gaussian distributions

respectively. Note that the bias and variance are given on a logarithmic scale. (a) : Bias ofν (KRF ).

(b) : Bias of β (Generalized Gaussian ). (c) : Variance ofν (KRF ). (d) : Variance ofβ (Generalized

Gaussian ).

Figure 3: Examples of myocardial regions used for the tests (a): Apicalfour chambers (AP4CH). (b):

Apical two chambers (AP2CH). (c): Parasternal long axis (PALA). (d): Parasternal short axis (PASA).

Figure 4: Fitting probability density function to empirical data for two opposite situations. (a): A case

where the goodness of fit measure was low and the FT test succeeded. The FT measures were17.4 and

16.9 for theKRF and Generalized Gaussian distributions, respectively, and the threshold for the test was

27.7. (b): A case where the goodness of fit measure was high and the FT test failed. The FT measure

were76.7 and52.1 for the KRF and Generalized Gaussian distributions, respectively, and the threshold

for the test was33.4.
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Fig. 1.

Fig. 2.

(a) (b)

(c) (d)
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Fig. 3.

(a) (b)

(c) (d)

Fig. 4.

(a) (b)

June 12, 2007 DRAFT


