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A Pilot Study on Convolutional Neural Networks
for Motion Estimation from Ultrasound Images
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Abstract—In recent years, deep learning has been successfully
applied to the analysis and processing of ultrasound images.
To date, most of this research has focused on segmentation
and view recognition. This paper benchmarks different con-
volutional neural network algorithms for motion estimation
in ultrasound imaging. We evaluated and compared several
networks derived from FlowNet2, one of the most efficient
architectures in computer vision. The networks were tested
with and without transfer learning and the best configuration
was compared against the particle-imaging-velocimetry method,
a popular state-of-the-art block-matching algorithm. Rotations
are known to be difficult to track from ultrasound images
due to a significant speckle decorrelation. We thus focused
on images of rotating disks, that could be tracked through
speckle features only. Our database consisted of synthetic and
in-vitro B-mode images after log-compression, and covered a large
range of rotational speeds. One of the FlowNet2 sub-networks,
FlowNet2SD, produced competitive results with a motion field
error smaller than 1 pixel on real data after transfer learning
based on simulated data. These errors remains small for a large
velocity range without the need for hyper-parameter tuning,
which indicates the high potential and adaptability of deep
learning solutions to motion estimation in ultrasound imaging.

Index Terms—Motion estimation, deep learning, ultrasound.

I. INTRODUCTION

THE comparison of state-of-the-art image processing al-
gorithms with approaches relying on Deep Learning

(DL) is a fast growing topic in ultrasound image analysis. In
recent years, DL has been shown to outperform traditional
approaches for a wide spectrum of image analysis tasks,
from the recognition and evaluation of standard acquisition
views [1], [2], to the segmentation [3], [4] and reconstruction
of echocardiographic images, in both 2D [5] and 3D [6]. When
it comes to DL-based motion estimation from images in the
computer vision community, various approaches have been
investigated based on supervised or unsupervised learning.
Supervised learning techniques usually rely on synthetic data
with a reference motion field, while unsupervised techniques
generally involve intensity-based losses. In the latter, the loss
is computed from a pair of images that are warped according
to the estimated displacement field [7]–[9]. In a recent study,
Ilg et al. [10] reviewed and benchmarked a large set of DL-
based motion estimators (see references there in). This study
revealed that the FlowNet2 architecture [10] had excellent
performance compared with other state-of-the-art algorithms
while maintaining a low inference time. FlowNet2 combines
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several networks based on the U-Net architecture [11], a
common choice for image segmentation, showing potential
to solve image tracking problems. All these aspects led us
to take FlowNet2 as a starting point for this study, and to
investigate how the performance of this network generalizes
when applied to ultrasound image sequences. Limiting the
scope to DL-based motion estimators in ultrasound leaves a
very small number of related studies. In [12], FlowNet2 was
embedded with its pre-trained weights (as provided in [10]) to
estimate coarse displacements in the context of elastography.
Similarly, FlowNet2 was applied as such in [2] with a view
classification and semantic partitioning of the mycoardium for
quantifying longitudinal deformation. In [13], the authors used
the first branch of the FlowNet2 architecture with transfer
learning from a simulated dataset to retrieve displacements in
ultrasound breast imaging for elastography. While this pioneer
study reveals the value of adapting deep learning solutions for
motion estimation in ultrasound, it is limited to the direct use
of a branch of an existing network without any evaluation
on the architecture for the targeted application. Moreover,
this study focused on estimating strain from relatively small
displacements, where the decorrelation of speckle is limited.
Based on this literature review, the purpose of this paper is to
answer the following three questions:

1) How do different CNN architectures compare on a given
set of echo images in terms of motion accuracy?

2) How does it compare to non-DL algorithms that have
been designed for ultrasound?

3) What is the gain brought by transfer learning, i.e. by
re-training the weights of a network already pre-trained
on natural (video) scene sequences.

For that purpose, we focused on synthetic and
in-vitro datasets involving controlled motion fields (in
our case rotations) on a simplified geometry - a disk.
Assessing accuracy on these images before and after transfer
learning on simulated data, for a number of FlowNet2-based
networks, allowed for an accurate quantitative comparison
of these networks. Moreover, we decided to focus on rigid
rotations as these motions are important sources of speckle
decorrelation in ultrasound, making it particularly difficult
to estimate actual motion from apparent displacement
(i.e. motion measured from the image itself). Finally,
although our dataset involves simpler motion fields and less
realistic images than in synthetic echocardiography of [14],
our solution has the advantage of providing a reference
displacement field over the entire image domain for training
DL-based motion estimators. This ensures that the learning
phase will not be biased by a segmentation pre-processing
step designed to delineate the region of interest. The resulting
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network is thus self-sufficient and can accurately detect
motion over the entire image domain.

II. EVALUATED NETWORKS

FlowNet2 relies on the design of the FlowNet architecture
published by the same authors [15]. In particular, FlowNet2
implements a chain of CNNs, mainly combining a set of two
U-Net-like architectures [11]: FlowNetC and FlowNetS. Un-
like FlowNetS, which involves a classical U-Net architecture,
FlowNetC adds a correlation layer to mimic traditional image
registration techniques more explicitly. These two networks
are based on: i) a contraction part to retrieve features in a
low-dimensional space; ii) an expansion part for projecting
back this information at the resolution of the input image;
iii) a set of skip connections to keep more information
from the contractive part and avoid the vanishing gradient
problem, conforming to the standard U-Net design [11]. In
the expanding part, the upsampling scheme is stopped when
the size of the feature maps corresponds to a quarter of the
full resolution, opting for a bilinear interpolation to generate
the final deformation field. This choice was motivated by the
authors after observing the low benefit (in terms of accuracy)
of reaching the full resolution for the last layers, and by
limiting the number of parameters to be optimized. In total,
FlowNet2 is composed of five CNNs divided into two parallel
branches dedicated to low and large displacements, the outputs
of which are merged through a third branch (named as merging
branch in the following), as illustrated in Fig. 1. The branch
that handles large displacement concatenates three networks,
namely one FlowNetC and two FlowNetS CNNs. The branch
in charge of small displacements includes a simple CNN,
named FlowNetSD, with the same architecture as FlowNetS
but with a few more convolution layers and smaller kernel
size (3x3 instead of 7x7 and 5x5) and stride (1 instead of
2). These two branches have a pair of two consecutive color
images as input, and provide as output the corresponding esti-
mated motion field per pixel. Finally, the FlowNetS networks
involved in the large displacement branch take as inputs: i) the
displacement field estimated at the previous step; ii) the same
pair of input images after warping one of them by the current
displacement estimate; iii) the brightness error between the
pair of modified images. This strategy allows to address large
displacements in a multi-scale approach.

In this study, we investigated the performance of FlowNet2
in estimating displacements in ultrasound imaging, and that
of each individual CNN involved in this architecture, namely
FlowNetC, FlowNetS and FlowNetSD. Recently, Cai et
al. used the FlowNet-SD architecture for the estimation of
particle displacements in velocimetry imaging [16]. They
showed that it was possible to improve the overall accuracy of
this network by replacing the bilinear interpolation at the end
of the expansion part with two additional upsampling layers,
leading to a more classical U-Net-like architecture. This was
justified by the fact that small displacements, especially sub-
pixel displacements, would not be sufficiently addressed by
bilinear interpolation. Inspired by this work, we also inves-
tigated the influence of replacing the bilinear interpolation

with two upsampling layers for the FlowNetS and FlowNetSD
architectures, leading to two modified networks referred to
as FlowNetS* and FlowNetSD* in the following. We thus
investigated the performance of 6 different networks for es-
timating motion in ultrasound imaging: FlowNet2, FlowNetC,
FlowNetS, FlowNetS*, FlowNetSD and FlowNetSD*.

III. SIMULATED & IN-VITRO DATASET

All networks evaluated in this paper were trained in a
supervised manner, which required setting up an ultrasound
dataset with reference motion fields. To this end, we created
a dataset consisting of synthetic and in-vitro data with known
motion. We used B-mode images after scan conversion and
log-compression since, in practice, they are the only data that
can be retrieved from clinical ultrasound scanners and they
require low storage compared with RF data. In particular,
we worked on a spinning disk scenario, where the amount
of displacement is well-controlled, both in simulations and
in-vitro experiments. This strategy allowed us to design simu-
lated and real image sequences with similar displacements and
image intensities. It also targets a well-known challenge in the
field of ultrasound, as it may be difficult to recover accurate
rotations due to the greater speckle decorrelation it induces
compared with translations. Working with a combination of
simulated and in-vitro data allowed us to assess accuracy and
robustness. Regarding accuracy, the simulated data showed
the value of transfer learning for specializing the different
networks to ultrasound, as described in Sec. IV. Regarding
robustness, the in-vitro data allowed us to evaluate how several
networks that were trained on synthetic data performed on real
ultrasound images. Examples of in-vitro and simulated images,
with the corresponding reference motion fields are provided in
Fig. 2.

A. In-Vitro Data
We re-processed the in-vitro data described in [17]. These

images were acquired with a Verasonics research scanner
(V-1-128, Verasonics Inc., Redmond,WA) and a 2.5 MHz
phased-array transducer (ATL P4–2, 64 elements) on a agar-
based disk phantom with incremental angular velocities. 32
diverging waves with a triangle steering strategy were emitted
to reconstruct one single image based on a dedicated delay and
sum technique. The disk had four anechoic cysts positioned
symmetrically with respect to its center, as shown in Fig. 2-
b. Each sequence was composed of 293 frames with angular
velocities from 1 to 5 rad/s. From the B-mode images delivered
into a polar coordinate system, we reconstructed all the B-
mode images into a Cartesian coordinate system on a uniform
grid 441x321 with a pixel area of 0.45 mm2. Each sequence
was reconstructed with a frame rate of 312 Hz. In our
experiments, we used pairs of images separated by 6 frames in
order to work with a frame rate of 52 Hz. This temporal and
spatial imaging resolutions are similar to the ones classically
used in clinical echocardiography practice. Based on the range
of the angular velocities, this meant estimating displacements
between 0 (at the center of the disk) and 11 pixels (taking
into account the spatial resolution of the grid) between two
images.
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Fig. 1. Schematic view of the overall architecture of FlowNet2 (bottom) and the architecture of all the sub-networks that compose it (top). Convolution layers
are shown in blue and deconvolution layers in red.

(a) Simulated data (b) In-vitro data

(c) X component of motion field (d) Y component of motion field

Fig. 2. Examples of simulated (a) and in-vitro (b) images extracted from
our dataset, along with an example of reference motion field in pixels (c-d)
corresponding to (a).

B. Simulated Data

Synthetic images of a spinning disk were generated using
the ultrasound simulator proposed in [18]. The same acquisi-
tion protocol as the one used to acquire the in-vitro data was
simulated. Foreground scatterers were randomly positioned
inside a disk and moved at angular velocities ranging from 1
to 5 rad/s. The full synthetic dataset was composed of 14300
pairs of images with the corresponding reference displacement
fields per pixel. For each angular velocity, 10 sequences of
287 images were simulated: 5 sequences with a homogeneous

disk at the center of the image, and 5 including four anechoic
cysts placed symmetrically with respect to the center of the
disk, as illustrated in Fig. 2-a. For each sequence, background
and foreground scatterers were randomly distributed on the
first frame, leading to different speckle textures over the
dataset. The spinning disk involved in the in-vitro experiment
corresponds to an agar phantom immersed in water. There
is therefore an intrinsic difference in terms of backscattering
coefficient of the acoustic wave, and thus in the reconstructed
B-mode images, between the background (water) and the
object (disk). We experimentally fixed a ratio of 8 between the
backscattered coefficients of the foreground and background
scatterers involved in our simulations so to generate B-mode
images with similar intensity histograms to the ones of the
in-vitro dataset. As for the in-vitro data, all the simulated B-
mode images were reconstructed into a Cartesian coordinate
system on a uniform grid 428x321 with a pixel area of 0.47
mm2. The frame rate was set at 312 Hz and pairs of images
separated by 6 frames were used for motion estimation.

IV. TRANSFER LEARNING

This section provides details on the transfer learning strategy
that we applied to specialize the networks described in Sec. II
in ultrasound images. In particular, starting from the networks
weights learned from several synthetic sequences provided
by the FlowNet2 authors [10], we launched a new learning
procedure independently for each network based exclusively
on the 14300 synthetic ultrasound data described in Sec. III-B.

A. Loss functions

To perform transfer learning on the FlowNet2 architecture,
we followed the recommendations of [10]. From the network
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already trained from several synthetic sequences, we restricted
the update procedure to the weights belonging to the merging
branch during the learning phase (fusion network displayed in
the bottom part of Fig. 1). For this purpose, the Lpq loss func-
tion with p = 2 and q = 0.2 was used, as suggested in [10]. To
perform transfer learning on the remaining networks described
in Sec. II, we opted for the EndPoint Error (EPE) as loss. EPE
is a standard metric used in optical flow and is defined as the
L2 norm of the difference between the estimated flow vector
and the ground truth [19] (in pixels):

EPE =
√
(u− ugt)2 + (v − vgt)2, (1)

where (u, v) stands for the estimated flow and (ugt, vgt) is the
ground truth displacement vector. For FlowNetC, FlowNetS
and FlowNetSD architectures, the actual loss function corre-
sponded to the weighted sum of the EPE calculated at different
resolution levels in the expansion part of the networks as
in [10]. The values of the weights involved in this loss function
were the same than those chosen experimentally in [10]. For
FlowNetS* and FlowNetSD*, since two additional layers were
inserted at the end of the expansion part of the network, it
was necessary to adapt the loss function by adding two EPE
terms computed from each new resolution. The corresponding
weights were the same as those proposed in [16], thus adding
more importance to the last layers.

B. Hyper-parameters

An initial learning rate of λ = 1e−4 was set experimentally.
Moreover, as recommended in the original paper of Ilg et al.
[10], λ was then divided by two after reaching 40% (and
every 20%) of the total number of epochs. This procedure was
performed to ease convergence of the optimization process.
Indeed, this scheme allows for fast learning at the beginning
of the training process, making gradually smaller updates over
the course of the optimization to refine the weights. The Adam
optimizer [20] was used in this study and a batch size of 4
pairs of images was chosen mainly for reasons of memory
capacity.

C. Dataset split

The full set of the synthetic data was divided into three
folds: 60% for the training set, 20% for the validation set and
20% for the test set. Moreover, each fold contained data for
the entire angular velocity range (i.e. from 1 to 5 rad/s). The
validation set was used to select the most efficient weights
of the deep learning architectures during the training process,
while the test set was used to produce all the results given in
this paper. It is important to note that all algorithms were
tested only once on the test set and that no optimization
was performed on it in order to avoid overfitting. For each
velocity, a balanced selection of sequences with and without
anechoic cysts was realized. Data from a whole sequence were
not mixed across the 3 folds. In particular, 6 full sequences
were chosen for the training phase, 2 full sequences for the
validation phase and 2 full sequences for the testing phase.
This procedure ensured that each fold contained the same
diversity of information without introducing any bias.

D. Data Augmentation

To avoid overfitting, data augmentation was realized follow-
ing the procedure described in [21]. The deployed augmenta-
tion integrated some typical alterations that could happen in
ultrasound, i.e. variations in brightness, saturation and contrast.
We involved variability in terms of translation, Gaussian noise,
black borders and cut-outs, as they are reported to improve
the generalization of networks [22]. Concerning the additive
noise, we used a Gaussian noise with small variance in order
to remain close to the original images while increasing the
network robustness against intensity fluctuations. We also
added random cropping to increase the variability of the
dataset and reduce the dimensions of the images to 384x320
pixels to respect the input image size of the different networks
described in Sec. II. Finally, to ensure that the networks did
not overspecialize in a single direction of rotation, pairs of
images were randomly flipped with a probability of 0.5. In
this way, both clockwise and counterclockwise rotations were
equally included during the training process.

V. EVALUATION PROTOCOL

A. Metrics

Performance of all evaluated networks was assessed
through: i) the EPE metric described in Sec. IV-A and com-
puted inside the disk only; ii) the error on the angular velocity,
which was computed by dividing at each point inside the disk
the estimated velocity magnitude by the distance to the disk
center. We reported the distribution of each of these metrics
using the median and the median absolute deviation (MAD)
defined as

MAD = median(|X −median(X)|) , (2)

where X stands for the distribution of the metric values inside
the disk. MAD was preferred to the standard deviation as it is
more robust to outliers.

B. State-of-the-art method

We compared all CNN networks described in Sec. II with
a state-of-the-art Particle Imaging Velocimetry (PIV) method,
which was used during the challenge on synthetic aperture
- vector flow imaging organized during the International
Ultrasonic Symposium in 2018 [23]. This comparison was
made both on the test set of the simulated data and on the
in-vitro data. PIV is a block-matching algorithm that worked
with ensembles of n consecutive images, under the assumption
that the motion remained unchanged during that temporal
window, to calculate the average of n − 1 cross correlation
matrices (ensemble correlation, see [24]). Peak detection of
the averaged normalized cross correlation provided the dis-
placements with a pixel precision. Subpixel precision of the
displacement estimates was then obtained through parabolic
peak fitting of the cross correlation. Taking into account the
physical properties of the ultrasound images involved in our
experiments, we applied a multiscale strategy to estimate mo-
tion by using 3 different sizes of search areas, namely 24x24,
16x16 and 12x12 pixels. These values span a search range
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TABLE I
MEDIAN EPE, ESTIMATED ANGULAR VELOCITY AND MAD DISPERSION VALUES COMPUTED INSIDE THE SPINNING DISK ON THE SYNTHETIC DATASET
FROM THE NETWORKS DESCRIBED IN SEC. II. FOR EACH NETWORK, DIFFERENT LEARNING STRATEGIES WERE ASSESSED (3: TRANSFER LEARNING, -
PRE-TRAINED WEIGHTS FROM NATURAL SCENE IMAGES; 7 RANDOM INITIALIZATION). THE BEST SCORES FOR EACH CATEGORY ARE HIGHLIGHTED IN

BOLD WHILE THE OVERALL BEST NETWORK IS SHADED

Methods TL 1rad/s 2rad/s 3rad/s 4rad/s 5rad/s
EPE Velocity EPE Velocity EPE Velocity EPE Velocity EPE Velocity
pixel rad/s pixel rad/s pixel rad/s pixel rad/S pixel rad/s

FlowNet2
3

1.4 0.0 1.6 0.2 2.8 0.6 4.5 0.4 6.1 0.2
±0.4 ± 0.0 ± 0.8 ± 0.2 ± 1.1 ± 0.5 ±1.5 ±0.3 ±1.9 ±0.2

- 0.2 0.9 0.5 1.7 2.0 1.6 4.3 1.0 6.2 0.6
±0.1 ±0.1 ±0.2 ±0.1 ±0.6 ±0.2 ±1.3 ±0.4 ±2.0 ±0.4

FlowNetC

3
5.3 4.0 6.5 4.6 7.8 5.2 8.7 5.3 9.6 5.3
±2.6 ± 2.4 ± 3.0 ± 2.7 ± 3.4 ± 3.1 ±3.5 ±3.1 ±3.5 ±3.1

7
1.5 0.1 2.9 0.1 4.4 0.1 5.9 0.1 7.3 0.1
±0.5 ±0.1 ±0.8 ±0.1 ±1.1 ±0.1 ±1.5 ±0.1 ±1.9 ±0.1

- 1.0 0.4 2.2 0.6 3.7 0.7 5.0 0.8 6.4 0.8
±0.3 ±0.2 ±0.6 ±0.2 ±1.0 ±0.3 ±1.4 ±0.3 ±1.8 ±0.4

FlowNetS

3
0.2 0.9 0.3 1.9 0.5 2.7 1.1 3.2 2.2 3.4
±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.2 ±0.4 ±0.2 ±0.6 ±0.2

7
1.2 1.0 1.5 1.3 2.6 1.5 3.8 1.7 4.9 1.9
±0.5 ±0.5 ±0.7 ±0.5 ±1.1 ±0.5 ±1.5 ±0.6 ±1.8 ±0.6

- 1.0 0.6 1.9 0.9 3.3 1.0 4.7 1.2 6.0 1.4
±0.3 ±0.2 ±0.6 ±0.3 ±1.0 ±0.4 ±1.5 ±0.5 ±1.8 ±0.6

FlowNetS*
3

2.0 1.2 3.2 1.1 4.6 1.2 5.9 1.2 7.3 1.2
±1.0 ±0.8 ±1.3 ±0.8 ±1.6 ±0.8 ±1.9 ±0.8 ±2.2 ±0.8

7
1.9 1.1 3.1 1.1 4.5 1.1 5.9 1.2 7.4 1.4
±0.7 ±0.7 ±1.0 ±0.7 ±1.3 ±0.7 ±1.6 ±0.7 ±1.9 ±0.8

FlowNetSD

3
0.1 1.1 0.4 2.2 0.4 3.2 0.3 4.2 0.4 4.9
±0.0 ±0.0 ±0.1 ±0.0 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1

7
1.6 0.3 3.3 0.6 4.5 0.6 5.8 0.7 7.3 0.8
±0.4 ±0.2 ±0.7 ±0.3 ±1.0 ±0.3 ±1.4 ±0.4 ±1.7 ±0.4

- 0.2 0.9 0.5 1.8 1.5 2.1 3.5 1.7 5.0 1.7
±0.1 ±0.1 ±0.2 ±0.1 ±0.5 ±0.3 ±1.0 ±0.3 ±1.4 ±0.4

FlowNetSD*
3

0.1 1.1 0.5 2.3 0.6 3.4 0.6 4.4 0.4 5.2
±0.0 ±0.0 ±0.1 ±0.0 ±0.2 ±0.0 ±0.2 ±0.0 ±0.1 ±0.1

7
1.4 0.1 2.8 0.1 4.3 0.1 5.8 0.1 7.2 0.1
±0.4 ±0.1 ±0.7 ±0.1 ±1.1 ±0.1 ±1.4 ±0.1 ±1.8 ±0.1

from 3 to 6 times the speckle size and were experimentally
tuned to obtain the best results. We also verified that adding
a larger window did not improve the results and that the
multiscale strategy returned the best results regardless of the
frame rate. Experimentally, we observed that PIV produced
erroneous results when the displacement was either too low
(average displacements lower than one pixel) or too large
(average displacements higher than ten pixels) between two
consecutive frames. For this reason, we applied the PIV
algorithm under two different conditions: i) by using pairs
of images corresponding to a frame rate of 52 Hz and used
to train the different networks (referred to as PIV); ii) by
reducing the number of frames that separate two images of a
pair in order to adapt the frame rate for each angular velocity
and taking 16 images into account to obtain the best possible
results (referred to as PIV-adapt). In practice, the higher the
angular velocity, the higher the optimal frame rate chosen, up
to 312 Hz for a velocity of 5 rad/s. This way of proceeding
gives natural bounds of PIV accuracy, as giving to PIV data
at a higher temporal resolution than the evaluated CNNs gives
an upper bound of PIV’s accuracy.

VI. ACCURACY BENCHMARKS

A. Numerical simulations

1) Network Selection: We first compared the performance
of all CNNs described in Sec. II on the simulated database

for three different configurations: i) using the weights of the
networks pre-trained from [10] as published by the authors
(rows marked as − under the TL column in Table I); ii) apply-
ing transfer learning starting from the pre-trained weights and
tuning them on the simulated dataset described in Sec. III-B
(rows marked as 3 under the TL column in Table I); iii)
learning the weights from scratch using random values as
initialization (rows marked as 7 under the TL column in
Table I). Note that since 2 layers were added to FlowNetS* and
FlowNetSD*, random initialization of these layers was applied
before making the transfer learning for these two networks.
Moreover, since these two networks were not studied in
the original FlowNet2 paper, there is no pre-trained weights
available for these architectures.

Table I summarizes all the results obtained during this
experiment. Each network was evaluated for angular velocity
increments of 1 rad/s, which corresponds on average to an
increase of two pixels on pairwise displacements, making
the tracking task particularly challenging for high rotation
values (≥ 4 rad/s). From the analysis of Table I, it first
appears that the different training schemes produced EPE
results that varied according to the type of architecture. For
instance, the best results from FlowNetC were obtained from
the pre-trained weights, the application of transfer learning
degrading the results independently of the angular velocity.
On the contrary, the transfer learning procedure applied on
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Fig. 3. Reference (blue) and estimated (red) motion fields using FlowNetSD on (left) a synthetic image without transfer learning; (middle) the same synthetic
image but with transfer learning; (right) an in-vitro image with transfer learning. The displayed data were all extracted from a sequence with a spinning disk
rotating at 1 rad/s.

FlowNetS and FlowNetSD improved significantly the quality
of the estimation, the improvement being more visible with
the increase in velocity. This illustrates the feasibility of
adapting pre-trained networks, trained on images from another
domain (i.e. computer vision), to the intrinsic characteristics of
ultrasonic images, especially in terms of speckle decorrelation,
for motion quantification.

Regarding the architecture complexity, it appears that both
FlowNet2 and FlowNetSD produced the best EPE scores
based on their pre-trained weights for angular velocity of 1
and 2 rad/s. However, for higher velocity values, the simpler
architecture (i.e. FlowNetSD) obtained better results, which
suggests that there is no need to increase network capacity to
improve motion estimation for large displacements in ultra-
sonic imaging. Concerning FlowNetS* and FlowNetSD*, one
can see that the insertion of two additional layers degraded the
overall performance of FlowNetS and did not improve results
for FlowNetSD. This reveals the uselessness of adding these
two layers in the context of motion estimation in ultrasound
and corroborates the choice made by FlowNet2 authors of a
bilinear interpolation of the network outputs.

Based on this analysis, it appears that the FlowNetSD
network with transfer learning achieved the best results in
terms of median EPE for all angular velocity except at 2
rad/s, where the difference with the best network is mini-
mal (0.1 px). It is also interesting to note the remarkably
low MAD values obtained by this method, not exceeding
0.1 px. FlowNetSD also performed an accurate estimation of
the angular velocity, with a maximum error of 0.2 rad/s. In

addition, this method displayed similar performance across a
wide range of velocities with MAD values ≤ 0.1 rad/s. An
example of a motion field estimated by this technique is shown
in Fig. 3. As FlowNetSD with transfer learning appeared to
be the best CNN architecture to estimate motion from our
simulated database of ultrasound images, we kept this network
in our next experiments.

2) Comparison with PIV: Table II summarizes the
comparison between FlowNetSD with transfer learning
(FlowNetSD-TL) and the two PIV versions described in
Sec. V-B. Regarding PIV, results for the velocity estimation
were consistent with the actual true values up to 2 rad/s, along
with EPE errors ≤ 0.2 px and MAD values ≤ 0.1 px. At 3
rad/s, PIV slightly underestimated the velocity with a value of
2.5 rad/s but with higher median EPE (from 0.2 px to 0.9 px)
and MAD (from 0.1 px to 0.6 px) values. For higher angular
velocities, PIV estimates deteriorated with EPE errors over
6.4 px and an underestimation of the velocity, revealing the
limitations of this algorithm for angular velocities higher than
2 rad/s at a frame rate of 52Hz.

Nonetheless, when adapting the frame rate for each angular
velocity (thus assuming the true displacement range was
known for every input sequence and providing PIV with
images at a higher temporal resolution than FlowNetSD),
PIV-adapt results became consistent and accurate. Indeed,
all estimated angular velocity values were accurate and EPE
errors were found to be constant and around 0.2 px. It is
interesting to note that FlowNetSD produced slightly worse
results but close to the PIV-adapt method, with EPE errors ≤
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TABLE II
MEDIAN EPE, ESTIMATED ANGULAR VELOCITY ACCURACY AND MAD DISPERSION VALUES COMPUTED INSIDE THE CENTERED SPINNING DISK ON THE

SYNTHETIC DATASET (FIRST THREE ROWS) AND ON THE in-vitro DATASET (LAST THREE ROWS) FOR FIVE DIFFERENT ANGULAR VELOCITIES. FOR THIS
EXPERIMENT, FLOWNETSD WITH TRANSFER LEARNING (FLOWNETSD-TL) WAS COMPARED WITH THE TWO VERSIONS OF THE NON-DEEP LEARNING

STATE-OF-THE-ART PIV TECHNIQUE DESCRIBED IN SEC. V-B

Methods 1rad/s 2rad/s 3rad/s 4rad/s 5rad/s
EPE Velocity EPE Velocity EPE Velocity EPE Velocity EPE Velocity
pixel rad/s pixel rad/s pixel rad/s pixel rad/s pixel rad/s

Si
m

ul
at

ed

FlowNetSD-TL 0.1 1.1 0.4 2.2 0.4 3.2 0.3 4.2 0.4 4.9
±0.0 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ±0.1 ±0.1 ±0.1 ±0.1

PIV 0.2 1.0 0.2 2.0 0.9 2.5 3.7 1.4 6.4 0.6
±0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.6 ± 0.6 ± 2.1 ± 1.1 ± 2.5 ± 1.0

PIV-adapt 0.2 1.0 0.2 2.0 0.2 2.9 0.2 3.9 0.1 4.9
± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.1 ± 0.2

In
-v

itr
o

FlowNetSD-TL 0.7 1.3 0.8 2.3 1.1 3.4 1.0 4.3 0.8 5.0
±0.2 ± 0.1 ± 0.3 ± 0.2 ± 0.4 ± 0.3 ±0.4 ±0.3 ±0.3 ±0.4

PIV 0.4 1.2 0.8 2.3 2.3 1.6 4.8 0.8 6.5 0.5
± 0.1 ± 0.1 ± 0.3 ± 0.4 ± 1.5 ± 1.2 ± 2.3 ± 1.1 ± 2.6 ± 1.0

PIV-adapt 0.2 1.2 0.3 2.4 0.3 3.6 0.2 4.5 0.2 5.6
± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.1 ± 0.3 ± 0.1 ± 0.5 ± 0.1 ± 0.6

0.4 px and angular velocity errors ≤ 0.2 rad/s. However, the
strong advantage of FlowNetSD is that all the results were
obtained with data at the same temporal resolution, i.e. at 52
Hz, for all angular velocities. For qualitatively assessing the
distribution of errors produced by FlowNetSD, we displayed
in Fig. 4 the spatial distribution of EPE and angular velocity
errors obtained for an angular velocity of 1 rad/s. From this
figure, it can be seen that the error was uniformly distributed
over the entire disk, except at the center and on the edges of
the disk, where higher values punctually appeared.

Regarding the computation time, FlowNetSD had a training
time of about 10 hours on an NVidia 980Ti GPU and the
inference time on a pair of images was 130 ms. PIV algorithms
used the CPU only and had different computation times per
pair of images: 1.12 s for PIV (n=2, where n is defined in
Sec. V-B) and 5.02 s for PIV-adapt (n=16) with a CPU at 2.3
GHz.

3) Robustness to non-centered images: We investigated the
ability of our FlowNetSD-TL network to estimate angular
velocity for a spinning disk that was not centered with respect
to the acquisition field of view. This allowed us to verify
whether using only a centered dataset during the training
phase introduced a bias. This experiment was carried out for
a shift of the disk of +/- 30 pixels in both lateral and axial
directions for all 5 angular velocities. The obtained results
are reported in Table III. Concerning FlowNetSD-TL, we
observed that even if the EPE scores were not as good as those
obtained from the centered spinning disks, they remained close
with a median error between 0.3 and 1.1 pixels and MAD
values ≤ 0.3 pixels, showing similar performance as on the
in-vitro dataset. In terms of angular velocity estimates, results
remained accurate between 1 and 4 rad/s (error ≤ 0.2 rad/s),
and with a maximal error of 0.4 rad/s for the 5 rad/s velocity.
For all estimated velocities, MAD values remained lower than
0.3 rad/s, revealing a good consistency of these measurements.

Regarding PIV, as in the centered images case, results for
the velocity estimation were consistent with the actual true
value up to 2 rad/s, along with EPE errors ≤ 0.5 px and
MAD values ≤ 0.2 px. However, from 3 rad/s, PIV estimates
deteriorated with EPE errors over 6.6 px and a systematic

(a) EPE error map (Ours) (b) Angular velocity error map

Fig. 4. Mean error maps of FlowNetSD with transfer learning computed (a)
from the EPE (expressed in px) and (b) the angular velocity metrics (expressed
in rad/s) over the synthetic dataset at 1 rad/s.

underestimation of the velocity that worsens with speed,
which confirms the limitations of this algorithms for angular
velocities higher than 2 rad/s at a frame rate of 52Hz. As long
as PIV-adapt is concerned, results stay close to those obtained
on the centered images, both in terms of EPE and estimated
velocity. The median error over all speeds remained constant at
0.3 px with MAD values between 0.1 and 0.2 pixels, while the
error on the estimated velocity remained lower than 0.1 rad/s.
Finally, it is interesting to note that in the case of non-centered
images, PIV-adapt produced even better results compared to
those obtained with FlowNetSD-TL, revealing the need for
adding non-centered scenario cases during data augmentation
to make FlowNetSD-TL more robust to such situations.

B. In-vitro experiments

The performance of FlowNetSD-TL was then assessed on
the in-vitro dataset described in Sec. III-A. Results were
reported in Table II. First of all, one can observe an increase
of the EPE errors with respect to the values obtained on the
simulated dataset for all angular velocities. This illustrates the
challenge of processing real data compared to simulated ones.
However, EPE errors remained around or under 1.1 px with
MAD values ≤ 0.4 px for all angular velocities. This shows
a good generalization of our network to real data, despite the
fact of being trained solely on simulated data. FlowNetSD-TL
also returned angular velocities close to the true values, with a



SUBMITTED TO IEEE TUFFC JOURNAL : SPECIAL ISSUE ON DEEP LEARNING 8

TABLE III
MEDIAN EPE, ESTIMATED ANGULAR VELOCITY ACCURACY AND MAD DISPERSION VALUES COMPUTED INSIDE THE NON-CENTERED SPINNING DISK
ON THE SYNTHETIC DATASET FOR FIVE DIFFERENT ANGULAR VELOCITIES. FOR THIS EXPERIMENT, FLOWNETSD-TL WAS COMPARED WITH THE TWO

VERSIONS OF THE NON-DEEP LEARNING STATE-OF-THE-ART PIV TECHNIQUE DESCRIBED IN SEC. V-B

Methods 1rad/s 2rad/s 3rad/s 4rad/s 5rad/s
EPE Velocity EPE Velocity EPE Velocity EPE Velocity EPE Velocity
pixel rad/s pixel rad/s pixel rad/s pixel rad/s pixel rad/s

FlowNetSD-TL 0.3 1.0 0.6 2.2 0.8 3.2 0.8 4.0 1.1 4.6
±0.1 ± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.1 ±0.2 ±0.2 ±0.3 ±0.2

PIV 0.3 1.0 0.5 1.9 1.9 1.7 4.7 0.7 6.6 0.4
± 0.1 ± 0.1 ± 0.2 ± 0.3 ± 1.2 ± 0.9 ± 2.0 ± 0.9 ± 2.2 ± 0.9

PIV-adapt 0.3 1.0 0.3 2.0 0.3 3.0 0.3 3.9 0.3 4.9
± 0.1 ± 0.1 ± 0.2 ± 0.2 ± 0.1 ± 0.3 ± 0.2 ± 0.4 ± 0.1 ± 0.4

maximum error of 0.4 rad/s for the 3 rad/s velocity. Moreover,
MAD values were ≤ 0.4 rad/s for all angular velocities.

PIV also produced results that were worse on in-vitro data,
with an increase of the EPE error of 0.2 and 0.6 px for the 1
and 2 rad/s velocities, respectively. In line with the simulated
case, PIV results degenerated for angular velocities higher
than 3 rad/s, with an EPE error of 6.5 px and an angular
velocity error of 4.5 rad/s at 5 rad/s. It can thus be observed
that FlowNetSD produced more accurate and stable results (in
terms of EPE, MAD values and velocity errors) than the PIV
method on in-vitro data across the different angular velocities
at a frame rate of 52 Hz. Regarding PIV-adapt, results for
the velocity estimation were consistent with the true values
up to 4 rad/s, along with EPE errors ≤ 0.3 px and MAD
values ≤ 0.1 px. At 5 rad/s, PIV-adapt slightly overestimated
the velocity with a value of 5.6 rad/s. Interestingly, even if
FlowNetSD works at a lower frame rate of 52 Hz (vs. 312
Hz for PIV-adapt), it produced very close velocity estimates
to those of PIV-adapt (mean difference of 0.1 rad/s) for
angular velocities ≤ 4 rad/s and a better velocity estimate
at 5 rad/s. This demonstrates the strong potential FlowNetSD
in robustly assessing motion from ultrasound images, even at
a lower temporal resolution that is closer to typical values in
echocardiography.

VII. DISCUSSION

In this paper, we introduced an evaluation framework for
quantitative comparison of different deep learning architec-
tures to quantify motion from ultrasound images. To the best
of our knowledge, this is the first time a study evaluates on ul-
trasound images: i) how different CNN architectures compare
in terms of motion accuracy; ii) what is the impact of transfer
learning when specializing networks trained on generic video
sequences to ultrasound images; iii) how networks trained on
simulated data perform on real ultrasound images (i.e. general-
ization ability to real data); iv) how a DL-based tracking solu-
tion compares with standard state-of-the-art tracking methods
tuned for processing ultrasound images.

In terms of comparing different network architectures on
our ultrasound database, it appeared that the FlowNetC net-
work performed poorly both before and after transfer learn-
ing on the simulated images. This could be explained by
the inability of the correlation layer to cope with speckle
decorrelation induced by the rotations in our images. When
comparing networks with similar architectures (FlowNetS and

FlowNetSD), we observed different performance in terms of
accuracy. Interestingly, the main difference between the two
networks mainly lies in the size of the convolution kernels.
This suggests that this parameter impacts a lot the network
accuracy and that it needs to be tuned carefully with respect
to the acquisition system. In particular, if we assume a speckle
size around 2 to 4 times the wavelength of the system, this
amounts to 1.2 to 2.2 mm which corresponds to 3 to 5 pixels
in our experiments. Regarding the best performing method
(FlowNetSD), the size of the underlying convolution kernels
was equal to 3 pixels, leading to a receptive field for the first
two convolution layers of 3 and 5 pixels, which corresponds to
the speckle size involved in the images. This tends to suggest
that the extraction of features at the scale of the speckle size
represents a good choice for the first layers of a CNN for
capturing motion between ultrasound images. Finally, adding
convolutional layers to reach the full image resolution at the
output of the network did not improve the accuracy on our
simulated dataset.

We compared FlowNetSD with the non-deep learning
state-of-the-art PIV method [23], which showed excellent per-
formance in a recent challenge [23]. At a sampling frequency
of 52 Hz, PIV obtained accurate results for angular velocities
≤ 2 rad/s and failed to estimate velocities for values higher
than 3 rad/s. To cope with large displacements, this method
needs data at higher sampling frequencies, up to 312 Hz
at 5 rad/s. In these conditions, PIV-adapt produced lower
EPE errors and MAD values than FlowNetSD, especially for
in-vitro images. Despite a motion estimate performed at 52
Hz, FlowNetSD yielded results with EPE errors ≤ 1 px for
the full range of the tested velocities and with an accuracy on
angular velocity estimates of less than 0.2 rad/s for simulated
data and 0.4 rad/s for in-vitro data (with a better estimate of the
angular velocity at 5 rad/s compared to PIV-adapt). Achieving
a similar tracking accuracy over a large range of displacement
amplitudes is remarkable, as standard registration algorithms’
performance usually tends to deteriorate with larger motion.

One limitation of this study was the focus on a single motion
pattern (rotations). Such focus allowed us to complete a study
on a fully controlled motion, known to be one of the most
important sources of speckle decorrelation. Results obtained
from this pilot study revealed that deep learning solutions
can be robust and accurate for the estimation of displacement
fields in ultrasound, despite high speckle decorrelation. It is
therefore important that future works extend this study to more
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complex and realistic motion patterns. As out-of-plane motion
is known to occur for many imaging scenarios and to bring
an additional source of speckle decorrelation, it should also
be addressed in future work. This would allow to address
this challenge during the training phase, and to evaluate the
impact of that specific motion artifact on the tracking accuracy.
In particular, 3D numerical simulations could introduce such
decorrelation during the synthetic generation of 2D images,
in the prospect of incorporating physical distortions in the
data augmentation strategy. This would certainly be beneficial
to improving the robustness of the tracking algorithm with
respect to ultrasound-specific motion artifacts. Finally, the ge-
ometry involved in the simulated training dataset (i.e. spinning
disk centered on the image) was the same as the one in the
in-vitro dataset, leading to ideal conditions that could improve
the performance of the evaluated network. This aspect has
been evaluated in Sec. VI-B. From this experiment, it can be
seen that velocity estimation remained accurate but the EPE
increased with the angular speed, revealing the importance of
designing simulations with as much variability as in real cases.

VIII. CONCLUSION

In this paper, we benchmarked different CNN architectures
on simulated and in-vitro data for tracking rotations between
1 and 5 rad/s from pairs of ultrasound images. Different
networks all derived from the FlowNet2 architecture were
compared with the PIV method, a state-of-the-art block match-
ing algorithm tailored to ultrasound. Our quantitative evalua-
tion on both simulated and in-vitro images revealed that the
FlowNetSD network, after adapting its weights to ultrasound
using transfer learning on simulated data, produced accurate
motion estimation on in-vitro data for the full range of angular
velocities and at a single frame rate of 52 Hz. Interestingly,
FlowNetSD obtained angular velocity estimates comparable
with the PIV-adapt method when the latter required adapting
the acquisition frequency up to 312 Hz. This pilot study there-
fore reveals that deep learning solutions represent a potentially
powerful alternative to standard tracking algorithms that can
prove both robust and accurate for retrieving displacement
fields from ultrasound images, including for large displace-
ments and rotations, despite speckle decorrelation. The full
dataset is made available for download at this link.
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