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Abstract— Volume and ejection fraction (EF) measure-
ments of the left ventricle (LV) in 2-D echocardiography are
associated with a high uncertainty not only due to inter-
observer variability of the manual measurement, but also
due to ultrasound acquisition errors such as apical fore-
shortening. In this work, a real-time and fully automated EF
measurement and foreshortening detection method is pro-
posed. The method uses several deep learning components,
such as view classification, cardiac cycle timing, segmen-
tation and landmark extraction, to measure the amount of
foreshortening,LV volume, and EF. A data set of 500 patients
from an outpatient clinic was used to train the deep neural
networks, while a separate data set of 100 patients from
another clinic was used for evaluation, where LV volume
and EF were measured by an expert using clinical proto-
cols and software. A quantitative analysis using 3-D ultra-
sound showed that EF is considerably affected by apical
foreshortening, and that the proposed method can detect
and quantify the amount of apical foreshortening. The bias
and standard deviation of the automatic EF measurements
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were −3.6 ± 8.1%, while the mean absolute difference was
measured at 7.2% which are all within the interobserver
variability and comparable with related studies. The pro-
posed real-time pipeline allows for a continuous acquisition
and measurement workflow without user interaction, and
has the potential to significantly reduce the time spent on
the analysis and measurement error due to foreshortening,
while providing quantitative volume measurements in the
everyday echo lab.

Index Terms— Deep learning, echocardiography, ejection
fraction (EF), foreshortening.

I. INTRODUCTION

LEFT ventricle (LV) ejection fraction (EF) and volume
measurements are important clinical indices in cardiol-

ogy. When using 2-D echocardiography, an established pro-
tocol describes which images to use for measurement, which
frames during the heart cycle should be selected for tracing,
and how to properly trace the heart wall (endocardium) [1].
Despite the existence of a standard protocol, these measure-
ments are associated with a high interobserver variability. This
variability is known to be caused by differences in manual
frame selection and endocardial tracing, all done after image
acquisition. In this context, automatic measurements without
user intervention have the potential to limit the interobserver
variability as well as to reduce time spent on analysis.

An important and often overlooked challenge in echocar-
diography is finding the properly aligned views without any
foreshortening of the LV. Apical foreshortening occurs when
the operator places the ultrasound probe in a suboptimal
position such that the imaging plane does not cut through the
true apex of the LV, as shown in Fig. 1. Foreshortening is a
common problem in routine 2-D cardiac ultrasound resulting
in inaccurate volume and thus EF measurements, as empha-
sized in a recent study by the European Association of
Cardiovascular Imaging (EASCVI) and the American Society
of Echocardiography (ASE) Standardization Task Force [2].
Using a foreshortened imaging plane results in an under-
estimation of the volume and inaccurate EF. It also has a
major impact on deformation measurements such as global
longitudinal and regional strain. Since apical foreshortening
is introduced when the operator is scanning, it is required to
have a detection method that runs in real time while scanning
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Fig. 1. Illustration of apical foreshortening in 2-D ultrasound imaging of
the LV. The green imaging plane cuts through the true apex, while the
red imaging plane does not. Using the red plane for volume estimation
will result in an underestimation of the LV volume.

in order to help the operator acquire a more optimal view of
the LV.

In this work, a fully automated real-time EF and foreshort-
ening detection method is proposed with the potential of reduc-
ing inter- and intraobserver variability, measurement time,
and acquisition errors such as foreshortening. The observer
variability and the frequency of acquisition errors are expected
to be much higher for inexperienced users. Thus, the proposed
method may be an important tool for enabling and improving
the performance of inexperienced users in echocardiography.
The method uses several deep learning components, such as
view classification, cardiac cycle timing, and segmentation and
landmark extraction, to measure the amount of foreshortening,
LV volume, and EF.

A. Related Work
Segmentation of the endocardial border is fundamental to

automate LV measurements. This has been an active research
area for several decades for both 2-D and 3-D ultrasound.
Due to reverberation noise, poor contrast, and heterogeneous
tissue intensity of cardiac ultrasound images, this has been
a challenging task. Traditionally, LV segmentation methods
have used some form of shape prior (e.g., active contours,
deformable models, active shape models, and active appear-
ance models) to constrain the segmentation [3]. Recently,
the advances in deep learning have pushed the field of LV
segmentation even further in the work of [4] for 2-D and [5]
for 3-D. In both these studies, a U-net [6] type of architecture
was used to achieve state-of-the-art performance.

Measurements such as volume and EF require images from
two time points of the cardiac cycle; end-diastole (ED) and
end-systole (ES). According to [1], ED is defined either as
the frame after mitral valve closure, or as the time when the

LV volume is the largest. ES is defined as either the frame after
aortic valve closure, or the moment of smallest LV volume.
Electrocardiogram (ECG) may be used to identify ED and
ES; however, estimating ES solely on ECG is unreliable [7].
There is substantial previous work on the estimation of ED
and ES directly from B-mode images, using approaches such
as deformable models with speckle tracking [8], manifold
learning [9], dimensionality reduction [10], and also recently
deep neural networks [11]–[13].

LV volume and EF can be estimated with a single ultrasound
view, but the current recommendation is to use both the
apical four-chamber (A4C) and the apical two-chamber (A2C)
views [1]. Thus, automatic view classification is needed to
separate image frames of the A4C and A2C views, as well
as other irrelevant views. Highly accurate view classification
has been demonstrated by several groups using deep neural
networks [14]–[16].

To the best of author’s knowledge, there are no published
methods on direct detection and quantification of apical fore-
shortening. However, there are studies on using deep learning
to automatically estimate the overall image quality of an
ultrasound image as done by Abdi et al. [17] using a regression
network to quality assess A4C views. In this study, the image
quality was estimated using five categories, where one of
the criteria for a high-quality image was the absence of
foreshortening. For this quality estimation, Abdi et al. [17]
use a single image to determine the overall image quality, but
foreshortening is hard to see in a still image as it is mainly
characterized by a shorter LV long axis and a false apex which
is moving in the image over time [2]. Our method instead uses
segmented images from both A4C and A2C views in both ED
and ES time points of the cardiac cycle to directly measure
the amount of foreshortening.

Methods for fully automatic volume and EF measurements
were proposed by Zhang et al. [16], although limited details
are provided on their automatic pipeline. Our group proposed a
fully automatic real-time method in 2018 [18]. Jafari et al. [19]
presented a similar approach in 2019, optimized for mobile
devices, although without view classification, requiring users
to specify which view is being scanned, and therefore not
fully automatic. Silva et al. [20] proposed to do automatic EF
estimation as a direct classification problem instead, dividing
EF into four categories.

This article is a substantial extension of our previous
work [18], adding a novel apical foreshortening detection
method, improved ED and ES detection using a separate neural
network, accuracy evaluation on a separate data set, where
EF and volumes were measured using clinical practice and
software, and a more comprehensive analysis of the results.

II. METHODS

This section starts by describing the key components needed
for the foreshortening detection and EF measurements and how
they were optimized for real-time performance. These compo-
nents include view classification, cardiac cycle timing, LV seg-
mentation, and landmark extraction. Then, the proposed apical
foreshortening method is described, and finally we describe
how a real-time application for automatic foreshortening
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detection and EF measurements was created and a description
of the data sets used for evaluating the methods.

A. View Classification
In this work, the cardiac view classification (CVC) network

of Østvik et al. [15] was used, which has demonstrated an
accuracy up to 98% and real-time inference. This network can
recognize eight different cardiac views, A4C, A2C, apical long
axis, parasternal short axis, parasternal long axis, subcostal
four chamber, subcostal vena cava, and unknown views. The
precision and recall for A4C view sequences were 99%,
and 98% for A2C. The network is composed of inception
blocks [21] and a dense connectivity pattern [22] where
the input of the inception block is concatenated with the
output and processed into a transition module with 1 × 1
convolution layer bottlenecks and 2 × 2 max pooling. Each
convolutional layer is followed by batch normalization and
parametric rectified linear unit (PReLU) activation functions,
and a global average pooling layer is used after the final
convolution layer. Input to the network is a 128×128 B-mode
image, and the output is a normalized logit for each class
through a softmax function. Only A4C or A2C views with
a logit output higher than 0.75 were accepted in the auto
measurement pipeline. Also, a valid view has to be maintained
for at least 2 s. For robustness, the view classification output
was averaged over the last ten frames.

B. Timing of ED and ES
From an accurate segmentation, ED and ES could be

estimated by calculating the LV area, and then selecting ED
as the frame, where the LV area is at its maximum and ES
when it is at its minimum. This method has been used in
several previous publications [16], [18], [19] and we will
refer to it as the LV area method. This method is however
very sensitive to any mistakes in the segmentation during the
cardiac cycle and thus might require outlier detection methods.
Due to this challenge, we have used the neural network method
by Fiorito et al. [13] instead to directly estimate ED and ES
from B-mode images. This method has shown an accuracy
of −5.5 ± 28.2 ms and −0.6 ± 31.8 ms on ED and ES,
respectively, and mean absolute error of 1.53 and 1.55 frames
from ED/ES reference. While the deep learning approaches
of [11] and [12] use 2-D convolutional layers with long
short-term memory (LSTM) layers on fixed length sequences
of 20 and 30 frames, respectively, the neural network of
Fiorito et al. [13] uses 3-D convolutional layers with LSTM
layers and has been trained and tested on variable length
sequences. The image input sequence is processed through five
3-D convolutional layers with an increasing number of filters
all with size 3×3×3, except the first which has a spatial filter
size of 7 × 7 and three in the temporal dimension. The final
feature vectors are processed through two LSTM layers of size
32. Finally, a 1-D convolutional layer with a sigmoid activation
is applied on the temporal axis, generating one prediction per
time step and effectively applying temporal smoothing on the
predictions.

Network input is a sequence of N image frames which were
resized to 80 × 128, while the output is a sequence of N scalars

with values between 0 and 1, where 0 indicates that the image
is from the systolic phase and one diastolic phase. ED and
ES were identified as the crossover points from 1 to 0 and
0 to 1, respectively. Based on our experience, this network
needs a sequence of sufficient length to accurately predict ED
and ES, thus the minimum of N was set to 30 frames. One
can argue that a few frames should be enough to see if the
ventricle expands or shrinks, but the rate of change in the
cardiac cycle is not constant. Around ED and ES, the rate
of change is especially small. This can be one reason why
a large temporal window is needed. Another reason might
be that various pathologies of the heart can seriously affect
the movement of tissue and valves during the cardiac cycle,
leading to complex movement patterns and thereby making
it even more difficult to predict ED/ES using only B-mode
images. As the length of the input sequence also affects the
inference time, the maximum of N was set empirically to 80.
Thus, up to 80 of the latest frames in the current image buffer
were used to find ED and ES.

C. Left Ventricle Segmentation
The segmentation network used in this work was first

described by Smistad et al. [23] and later used as the U-Net
1 in the CAMUS study of Leclerc et al. [4]. This U-net archi-
tecture consists of an encoder and a decoder stage which have
several layers of 3 × 3 2-D convolutional filters with ReLU
activation functions. In the encoder stage, the input image is
processed by an increasing number of filters followed by max
pooling subsampling after the convolution layers. Reaching
a final spatial size of 8 × 8, the decoder stage increases the
spatial size gradually by upsampling and convolution stages
with decreasing number of filters. In addition, the network
has multiple skip connections from the encoder to the decoder
stage to recover the fine-grained spatial details which may
be lost after max pooling. The network was designed for
real-time performance by keeping the number of layers and
convolutions as low as possible and using a simple 2 × 2 repeat
upsampling instead of transposed convolution/deconvolution
for the decoder. The result is a network with about two
million parameters which can do segmentation in a matter
of milliseconds. Network input is a single image resized
to 256 × 256 pixels, and the output is an image of the
same size as the input with four channels. Each channel
is a normalized logit for each class by softmax activation.
The output thus represents an image segmentation with four
classes: background, LV lumen, myocardium, or left atrium.

D. Landmark Extraction
Contours of the LV were extracted using morphological

erosion on the segmentation. These contours were used to
extract three basal landmarks (left, right, and mid �B) and
one apex landmark �A, as shown in Fig. 2. An overview of
the symbols used and their meaning can be found in Table I.
A contour point was determined to be at the base if any
pixels immediately below was segmented as the left atrium.
From these base contour points, the left, right, and mid base
landmarks were extracted. The apex landmark was the contour
point furthest away from the base mid landmark.
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Fig. 2. Illustration of an extracted LV contour, and the apex and base mid
landmarks �A, �B in both ED and ES. These contours and landmarks are
used to calculate the proposed apical foreshortening metrics: LV length
difference ΔL and longitudinal apex movement ΔM.

TABLE I
OVERVIEW OF SYMBOLS USED

E. Apical Foreshortening Detection
Ideally, if there is no foreshortening, the LV length should

be the same in both views and the apex should be station-
ary throughout the heart cycle. However, in real life, some
LV length difference and apex movement are expected even
when there is no apical foreshortening [2]. Based on these
assumptions, an apical foreshortening quantification method
is proposed. The method involves two different metrics which
use the landmarks derived from the LV segmentation as shown
in Fig. 2.

1) The difference in LV length L between the A4C and
A2C views for both ED and ES

�LED = |LED,A4C − LED,A2C| (1)

�LES = |LES,A4C − LES,A2C| (2)

2) Longitudinal apex movement from ES to ED in each
view

�MA4C = | �AES,A4C − �AED,A4C| cos αA4C (3)

�MA2C = | �AES,A2C − �AED,A2C| cos αA2C (4)

where α is the angle between the apex movement vector
from ES to ED and the longitudinal direction �D of the
LV, which is calculated as the vector from apex �A to
base �B summed over ED and ES

�D = ( �AED − �BED) + ( �AES − �BES) (5)

cos α = �D
| �D| · �AES − �AED

| �AES − �AED| (6)

F. EF Estimation
The volumes were calculated using Simpson’s method with

20 disks, as this is the recommended clinical practice [1].
In this method, the diameter d is calculated at 20 steps
perpendicular to the mid-axis of the LV. This is done in both
the A4C and A2C views. The volume V was then calculated as

V = max(LA4C, LA2C)

20

20∑

i=1

π
dA4C(i)dA2C(i)

4
(7)

where L is the length of the LV. Both the ED and ES volumes
(VED and VES) were calculated. From these volumes, EF was
calculated in percentage as

EF = 100
VED − VES

VED
(8)

G. Real-Time Pipeline
The methods were implemented using the medical

high-performance computing and visualization framework
FAST [24]. This framework has been developed with focus
on data streaming and real-time image processing using
parallel and GPU computing. For the neural network infer-
ence, FAST can use Google’s TensorFlow, Intel’s OpenVINO,
or NVIDIA’s TensorRT for high-speed inference [25]. In this
work, the TensorFlow backend was used. Fig. 3 shows the
pipeline used for real-time processing. The different process-
ing steps are spread out over four main threads to enable
concurrent processing in real time. Thread 1 maintains a
connection with the ultrasound scanner and receives 2-D
images from the scanner in real time. When processing stored
images, this thread reads data from disk and outputs them
in the interval they were originally captured in. Thread 2
reads the current image from thread 1 and runs the view
classification neural network for each frame. A4C and A2C
images are stored in separate buffers, and any other views
are discarded. This thread executes every time a new frame
is available from thread 1. Any frames that are older than
2 s are discarded from the buffers. Thread 3 executes at
regular intervals, two times per second. While images are
received, processed, and visualized at real-time frame rates,
this thread only executes at 2 Hz to allow the A2C/A4C
image buffers to build up to the size needed for the timing
network to find ED and ES. This thread first runs the timing
network on the most recent 80 frames, or less, of the current
image view buffer. If the timing algorithm is able to find
an ED and ES frame, the segmentation network is executed
for both these two frames and the result is stored. Thread 4
uses the ED and ES ultrasound images and segmentations to
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Fig. 3. This block diagram shows the real-time application pipeline, and how data flows between each processing step and thread. The green blocks
are the three neural networks used in the pipeline.

first find the landmarks and then performs the measurements.
Finally, the results are visualized as shown in Fig. 4 which
also shows how the resulting application works in practice.
The user simply starts by placing the probe and looks for
the A4C or A2C view, when one of these views is found the
user can optimize the view using the view quality feedback,
the segmentation, and also the foreshortening information
shown on screen while scanning. When satisfied with one of
the views, the user can move the probe to find the next view,
optimize it, and view the measurements without any manual
user input. A video demonstrating the real-time application is
available online in the multimedia material and on YouTube
htt.ps://youtu.be/MYeM-qPD_yk

H. Data
1) Training Data: The neural networks for ED/ES timing and

LV segmentation were trained using the publicly available
CAMUS data set [4] with A4C and A2C 2-D ultrasound
recordings of 500 patients from a French outpatient clinic.
The view classification network was trained using 2-D ultra-
sound recordings from multiple views of 500 patients from
a Norwegian population study and data from a Norwegian
outpatient clinic [15]. None of these training data were used
for the evaluation and testing in this article. The evaluation
data are described in the next two paragraphs.

2) Apical Foreshortening Evaluation: A 3-D ultrasound data
set was used to evaluate if the two proposed foreshortening
metrics can quantify the amount of apical foreshortening. For
this purpose, the open CETUS data set [26] was used, which
contains several 3-D echocardiography recordings with ground
truth segmentations of both ED and ES. This annotated 3-D
data set enables us to: 1) know the true volume of the LV;
2) locate the true anatomical apex; and 3) extract a 2-D
ultrasound image with an arbitrary amount of foreshortening.
The CETUS data set consists of recordings from 45 patients
in total, where 15 of these have ground truth segmentations
available publicly. Since 3-D ultrasound images have a lower
image quality than 2-D, the five recordings with the best image
quality were selected for analysis with an EF ranging from
14% to 51% according to calculations done by the database
organizers. The optimal four- and two-chamber planes were
manually found defining the apex and base points in both

ED and ES. The 3-D volumes were then sliced systematically
about these planes to create 2-D images at different angles,
simulating a tilt effect as shown in Fig. 1, and thus different
amounts of apical foreshortening. Each slice runs through
the two base points, while the distance from the apex was
gradually increased at a tilt angle of 1◦.

3) Volume and EF Evaluation: A data set of 100 patients
was collected from a clinical database of patients diagnosed
with acute myocardial infarction or de novo heart failure
at a Norwegian hospital. The study was approved by the
regional ethics committee (ref. 2013/573) and written consent
was given by all patients. The images were acquired using a
GE Vingmed Vivid (E7, E9 or E95) scanner. Patients were
included consecutively regardless of image quality. All exams
were performed in clinically stable patients with sinus rhythm.
Images were analyzed by a single clinician using clinical best
practice as defined in [1] with the clinical software EchoPAC
(GE Vingmed, Horten, Norway), thereby, ensuring that the
proposed automated method is compared with actual clinical
practice measurements techniques. Also, this data set was
not used for training any of the neural networks, ensuring
that there is no data overfitting involved on the final clinical
measurements.

III. RESULTS

A. Apical Foreshortening Detection
Fig. 5 shows the absolute error in EF when the amount of

apical foreshortening was gradually increased by tilting the
view plane as shown in Fig. 1. The plot shows the mean and
deviation of the absolute difference for both A4C and A2C
views as a function of the amount of tilt in degrees in both
directions. This shows clearly that the EF error increases with
the amount of foreshortening. Similar plots were created for
the two proposed foreshortening metrics. In Fig. 6, the apex
motion and LV length difference metrics are plotted as a
function of the amount of apical foreshortening in degrees.
The same trends can be seen in these plots; as the amount of
apical foreshortening increases, the two metrics also increase.
This strongly indicates that given an accurate segmentation,
the two metrics can in fact detect foreshortening. Also, note
that even when there is no foreshortening (x-axis = 0◦),
there is some apex motion (0.5–3.5 mm) and LV length
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Fig. 4. Four screenshots of the real-time implementation of the full pipeline enabling users to do volume and EF measurements without any manual
input. The users simply need to find and optimize the A4C and A2C views. The segmented ED and ES images of both A4C and A2C views are
displayed on the left side when scanning and may be updated at any time by repositioning the ultrasound probe as seen in (b) and (c). A quality bar at
the bottom gives users feedback on the view quality [see (a)–(c)], and if apical foreshortening is detected, a warning with quantitative information is
displayed in the top right corner as seen in (b) and (c). A video demonstrating the real-time method is available online in the multimedia material and on
YouTube htt.ps://youtu.be/MYeM-qPD_yk. (a) Start by placing the probe and look for A4C using the view quality feedback at the bottom. (b) Optimize
the A4C view using view quality feedback, segmentations, and foreshortening info. (c) Optimize the A2C view as well, view the measurements, and
redo the A4C view if needed. (d) View a summary of the measurements along with segmentation in both views in both ED and ES.

Fig. 5. Absolute error in EF when the image plane is gradually tilted
with respect to the defined four- and two-chamber base point axes,
respectively. The trend lines correspond to a mean and deviation of five
patients. The red lines and area correspond to the four-chamber view,
while the blue correspond to the two-chamber view.

difference (0–3 mm). This highlights that in real life some
apex motion and LV length difference is to be expected,
but still the minimum values are obtained where there is no
foreshortening.

An additional experiment was performed to validate how
the proposed method works in practice with the proposed
pipeline and the 100 patients 2-D data set. On average,
the foreshortening metrics with the automatic pipeline on
this data set were 3.9 ± 4.2 and 3.4 ± 4.3 mm for
the LV length difference in ED and ES, respectively, and
2.4 ± 2.1 and 2.8 ± 2.3 mm for the apex motion in
A4C and A2C, respectively. In this experiment, one expert
performed a qualitative assessment by categorizing recordings
of the 100 patients into three categories of no/low, moderate,
and significant foreshortening. A histogram showing that this
classification versus the automatic foreshortening metrics is
shown in Fig. 7, where each color represents the expert’s
qualitative assessment. In six of the patients, there was a clear
anatomical error in the segmentation, and these are marked in
blue in the histogram. For this histogram, a combination F of
the four foreshortening measurements was made

F = 4 max(�MA4C,�MA2C) + max(�LED,�LES) (9)

where the factor 4 was introduced by observing in Fig. 6 that
the LV length difference increased much faster than the apex
motion. This experiment indicates that although there is a clear
trend of moderate and significant foreshortening, as well as



Fig. 6. Apical foreshortening detection metrics when the degree of apical
foreshortening was gradually increased. The trend lines correspond to a
mean and deviation of five patients, where 3-D volumes and correspond-
ing LV meshes were used to simulate the effect of apical foreshortening
by moving the image planes systematically about the true apex of each
mesh as shown in Fig. 1. (a) Apex motion ΔMA4C and ΔMA2C versus
foreshortening angle. The red lines and area correspond to the four
chamber view, while the blue correspond to the two chamber view.
(b) LV length difference ΔLED and ΔLES versus foreshortening angle.
The red lines and area correspond to ED, while the blue correspond
to ES.

anatomically incorrect segmentations, having larger values of
apex motion and LV length difference, there is no clear cutoff.

B. Measurement Accuracy
The accuracy of automatic ED volume, ES volume,

and EF measurements compared with the clinical data set
of 100 patients is collected in Table II. Accuracy was mea-
sured using a Bland–Altman analysis, where the bias and
standard deviation were calculated as the reference minus the
proposed automatic method. Fig. 8 shows a Bland–Altman
plot of EF. The mean and median absolute difference were also
measured. For comparison, reported volume and EF accuracy
numbers were taken from relevant articles (see [4], [16], [19])
and included in Table II. While the studies of Zhang et al.
[16] and Jafari et al. [19] used the LV area method to find ED
and ES, the proposed method uses a separate neural network
to find ED and ES. To study the effect of using the LV area
method instead on the same data, an additional experiment

Fig. 7. Histogram with six bins showing the proposed foreshortening
detection method compared with a qualitative foreshortening analysis
performed by one expert on the 100 patient 2-D data set. The different
colors represent the expert’s assessment of each patient, and the x-axis
is F, a combination of the two proposed foreshortening measurements
extracted from the neural network segmentation of the ultrasound
images, [see (9)]. In six of the patients, there was a clear anatomical
error in the segmentation, and these are marked in blue in the histogram.

Fig. 8. Bland–Altman plot of EF with reference minus the proposed
automatic method for 100 patients. The green field marks the standard
deviation around the mean, while the red lines are the 95% limits of
agreement.

was performed using the proposed method with the LV area
method instead. The results of this experiment are included in
the second row of Table II.

In the CAMUS study of Leclerc et al. [4], predefined ED
and ES frames were used. The methods in this study were
thus not fully automatic in calculating volume and EF, and the
exact same frames were used for the reference measurements
as the automatic measurements. While for the other studies,
including the proposed method, the frames used for reference
and automatic measurements can be different. We also applied
the proposed fully automatic method on the CAMUS data set
producing volume and EF measurements seen in the third row
of Table II. As these data are publicly available, others may
also use this data for direct comparison. Note, however, that EF
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TABLE II
MEASUREMENT ACCURACY OF THE PROPOSED METHOD COMPARED WITH CLINICAL MEASUREMENTS IN ECHOPAC. BIAS WAS MEASURED AS

THE REFERENCE MINUS THE AUTOMATIC MEASUREMENTS. REPORTED EF AND VOLUME ACCURACY TAKEN FROM ARTICLES OF RELEVANT

WORK ARE ALSO PROVIDED AT THE BOTTOM FOR COMPARISON

TABLE III
AVERAGE RUNTIME PERFORMANCE OF EACH STEP IN THE PIPELINE

AND THE OVERALL FPS PROCESSED

was not measured using clinical software in CAMUS, as was
done for the 100 patients data set.

C. Runtime Performance
Since real-time performance is essential for enabling users

to optimize their ultrasound acquisition with regard to fore-
shortening and EF measurement, execution runtimes were
measured and collected in Table III. The runtimes were mea-
sured using an Alienware laptop with an Intel i7-6700 CPU
and an NVIDIA GTX 980M GPU with 8 GB of memory, and
the real-time hardware setup is shown in Fig. 9. The overall
runtime was measured in frames per second (FPS). When a
frame is received in thread 2, its timestamp is recorded. When
thread 3 is about to process the buffer of image frames, the FPS
is calculated as the number of frames in the buffer divided by
the duration from the first to the last frame in the buffer. From
this table, we see that real-time performance was achieved with
an average FPS of 42. Additionally, the runtime of each of the

Fig. 9. Hardware setup used for real-life testing. Ultrasound images are
streamed in real-time from a GE Vivid E95 scanner to a laptop with a
GPU which runs the proposed method.

three neural networks: view classification, ED/ES timing, and
LV segmentation were measured. These runtimes include the
time needed for normalizing the image intensities and resizing
the images to fit the input layer size. Note that the runtimes
were calculated while the entire application was running. Thus,
the neural networks, visualizations, and other computations are
all executing simultaneously which affects the runtime of each
component. The runtime of the neural networks reported here
may therefore be higher than if the network runtimes were
measured independently.

IV. DISCUSSION

The apical foreshortening plots in Figs. 5 and 6 show first
that EF is considerably affected by apical foreshortening,
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which is a known issue in echocardiography [1], [2], and sec-
ond that the proposed LV length difference and longitudinal
apex movement metrics have the potential of detecting and
quantifying apical foreshortening. The proposed foreshorten-
ing detection is therefore a promising tool for improving the
quality of volume and EF measurements in echocardiogra-
phy. Still, inducing apex motion and LV length difference
through synthetic image slicing in 3-D is suboptimal, due
to dependence of myocard motion and difference in image
quality. The histogram in Fig. 7 shows the foreshortening
detection method’s agreement with one expert’s qualitative
assessment of the amount of foreshortening in the 100 patients
data set. Although there is a clear trend of moderate and
significant foreshortening having larger values of apex motion
and LV length difference, there is no clear cutoff. Still,
a limitation with this data set is that only 6 of 100 patients
had significant foreshortening. The acquisitions in this data
set were acquired as part of a research project by experienced
cardiologists. Thus, the frequency of significant foreshortening
is expected to be higher for a normal busy outpatient clinic and
more inexperienced operators. Since the current segmentation
method only processes one frame at a time, the segmentation
contour do not necessarily follow the same physical contour
over time. This is especially important for the apex motion
metric, and therefore we believe a more temporal consistent
segmentation will improve the foreshortening detection results.
It can also be observed that the metrics can be used to detect
anatomically incorrect LV segmentations. A follow-up study
is necessary to see if the method can help clinicians to get
more accurate and consistent measurements while scanning the
patient. Furthermore, the trend in the plots in Fig. 6 indicates
that these metrics might even be used to correct the volume
and EF measurements. However, substantially more data are
needed to properly establish the true relationship between the
measurement errors and the foreshortening metrics.

As foreshortening is introduced during acquisition, it is
essential to have a detection method that runs in real time
while scanning in order to help the operator optimize the
view of the LV. To this end, the runtime results showed that
by utilizing a mid-end GPU, fully automatic foreshortening
detection and EF measurements can be performed in real time
with an average FPS of 42. Input image resolution of the
neural networks is one factor that affects the runtime of these
networks. Thus, we have kept the input image resolution as
low as possible while maintaining a high accuracy for each
task. This is why the input resolution differ for each network:
256 × 256, 128 × 128, and 128 × 80 for the segmentation,
view classification, and timing, respectively. The timing of
ED and ES was the most time-consuming task, and cannot be
executed in real time in its present form as it has to process
a long sequence of frames. This was solved in this study by
executing the timing network in a separate thread at regular
intervals. Runtime may be further improved by for instance
using dynamic recurrent neural networks by stateful LSTMs
which can process a single frame at a time while keeping an
internal state.

The volume accuracy measurements of the proposed auto-
matic pipeline show that there is a considerable bias in the

Fig. 10. Example of three expert’s tracings of the LV from the CAMUS
study [4] illustrating the need for establishing a common data set for
machine learning created by consensus of multiple experts.

volume estimation (40 mL EDV and 29 mL ESV) meaning that
the method generally underestimates the volume. This is most
likely due to the fact that two different experts have analyzed
the data used for training the segmentation network (CAMUS
data set), and the data used in this article for evaluation.
The additional experiment using the proposed fully automatic
method on the CAMUS data set shows an improvement on
almost all metrics, thus, the accuracy differences are most
likely due to interobserver variability. Fig. 10 is an example
from the CAMUS study which illustrates the large tracing
differences that can exist between three different experts.
Clearly, the three different tracings in this example would
result in large volume differences. This illustrates the need for
establishing a common data set for machine learning created
by consensus of multiple experts. The bias difference between
EDV and ESV is thus translated to a bias in EF, resulting
in a slight overestimation of EF by the proposed automatic
method. Still the standard deviation in EF is low, lower than
the interobserver variability measured on the CAMUS data
set [4] (8.1–11.0), but a little bit higher than the automatic
segmentation methods (7.1–7.7). However, in the CAMUS
comparison study, segmentation and EF measurements were
performed on the same predefined ED and ES frames, the mea-
surements are thus not fully automatic. Also, both training and
test data were annotated by the same expert, and poor quality
images were excluded from the evaluation. These three factors
are most likely the cause of the higher variability in EF in this
study versus the CAMUS study. The semiautomatic method
of Jafari et al. [19] achieved slightly worse results, and they
presented no variability measures, making it hard to compare
the robustness of the two methods. Our EF results compared
favorably with the work of Zhang et al. [16] which reported
a median absolute difference of 9.7 and a standard deviation
of 10.2. This is most likely because of their lower segmentation
accuracy (0.89 versus 0.92 in Dice score) and the fact that they
also, like Jafari et al. [19], select ED and ES frames based on
the LV segmentation area. However, Zhang et al. [16] used an
outlier detection method to deal with this issue, while Jafari
et al. [19] did not report such. Thus, the LV area method
may not be optimal for measuring EF automatically, since it
is sensitive to errors in the segmentation. This might change
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in the future if a more accurate segmentation is achieved over
the entire heart cycle. Another major difference to consider
between these studies in automatic EF measurements is that
our training and evaluation data are two completely separate
data sets from different clinics and annotated by different
experts using different software, while [16] and [19] have used
data from the same data set for training and evaluation.

An end-to-end neural network approach for automatic
estimation of EF directly from ultrasound images is feasi-
ble, as demonstrated [20]. The downside of an end-to-end
approach is that it results in a black-box method in which
clinicians cannot visually inspect, verify, and correct the EF
measurements. Also, with an end-to-end method, it would not
be straightforward to give real-time visual quality assurance
feedback as the proposed method does.

The same applies for foreshortening detection; it might be
possible to train an end-to-end neural network to detect and
quantify foreshortening, but it would suffer from the same
black-box dilemma. The proposed method that uses multiple
neural networks has the advantage of being based on real
physical quantities, explainable, visualizable, and very fast.

V. CONCLUSION

This study presented a method for real-time automatic
EF measurements and quantification of apical foreshorten-
ing in 2-D cardiac ultrasound using deep neural networks.
A quantitative evaluation using 3-D ultrasound showed that
EF is considerably affected by foreshortening, and that the
method can measure the amount of foreshortening and thereby
a promising tool for improving ultrasound image acquisitions
while scanning. The automatic EF measurements were showed
to be within interobserver variability and comparable with
other related work on automatic EF.
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