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Extension of Fourier-based techniques for ultrafast
imaging in ultrasound with diverging waves

Miaomiao Zhang, François Varray, Adrien Besson, Rafael E. Carrillo, Magalie Viallon, Damien Garcia,
Jean-Philippe Thiran, Denis Friboulet, Hervé Liebgott, and Olivier Bernard

Abstract—Ultrafast ultrasound imaging has become an inten-
sive area of research thanks to its capability in reaching high
frame rates. In this paper, we propose a scheme which allows
the extension of the current Fourier-based techniques derived
for planar acquisition to the reconstruction of sectorial scan
with wide angle using diverging waves. The flexibility of the
proposed formulation was assessed through two different Fourier-
based techniques. The performance of the derived approaches
was evaluated in terms of resolution and contrast from both
simulations and in vitro experiments. Comparisons with the
current state-of-the-art method illustrated the potential of the
derived methods in producing competitive results with lower
computational complexity when compared to the conventional
Delay-And-Sum technique.

Index Terms—Ultrafast imaging, Fourier-based method, di-
verging waves.

I. INTRODUCTION

CONVENTIONAL ultrasound imaging is usually per-
formed by scanning a medium using sequential focused

or multi-focused beams, each firing allowing the reconstruc-
tion of one narrow sector of the final image [1], [2]. Assuming
that the only limitation to the frame rate is the ultrasound
wave propagation, the time needed to construct an image is
thus proportional to the number of lines, the image depth
and the speed of sound. Limitations of conventional approach
appear when a large number of lines is required, or when the
dynamics of the phenomena to be imaged is faster than the
frame rate currently delivered by the ultrasound systems. 3D
cardiac imaging is a typical example of such challenge since
the number of lines to acquire for one volume becomes very
large and the corresponding frame rate substantially decreases,
with a typical value around 1 volume per second (vps) for
the same image quality as in 2D or with values between 10
to 40 vps using dedicated strategies (e.g. slightly broadened
transmission beams or ECG gating) but at the cost of the
resolution and potential stitching artifacts [3].

Although frame rates around several tens of images per
second are sufficient for real-time observation of cardiac
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morphology, the understanding of complex cardiac dynamics
requires a significant increase of the temporal resolution. In
order to reduce the number of transmissions, methods based on
plane wave (PW) insonifications have been proposed. These
approaches use PW to insonify the whole medium with one
single emission. The backscattered echoes are then measured
and post-processed to reconstruct simultaneously all lines of
the image of interest [4]. The concept of broad field-of-view
transmit beams with full parallel receive beamforming dates
back to the late 90s, when Lu et al. developped a high
frame rate imaging method based on limited diffraction beams
[5], [6]. This method is based on the reconstruction of the
Fourier spectrum of the object function. More recently, the
same group proposed to extend this approach to steered plane
waves (SPW) in transmission in order to reconstruct ultrasound
images with wider field of view [7]. Garcia et al. proposed
an f -k migration method for plane wave imaging based on
the exploding reflector model used in exploration seismology
[8]. This method also reconstructs the Fourier spectrum of the
object function but with noticeable differences for the high
lateral frequency components. One important shared property
of the two above mentioned methods is that the Fourier
spectrum of the object is sampled along the kz axis direction
with a lateral step proportional to the inverse of the pitch
(distance between two consecutive active elements). As an
alternative, Bernard et al. recently proposed in [9] a technique
based on the Fourier slice theorem which samples the Fourier
space radially. In a different manner, starting from PW in
transmission, Montaldo et al. proposed a more conventional
Delay-And-Sum (DAS) method applied in reception which
allows the reconstruction of the image of interest directly from
the space domain [10].

The use of these methods to reconstruct an ultrasound image
from only one transmission comes up with an image quality
(defined in terms of resolution and contrast) intrinsically
lower than the one obtained with classical multi-line focused
beamforming. To overcome this limitation, spatial coherent
compounding has been used in many studies to improve image
quality [6], [8], [10].

Based on the steering of several SPW, the concept of this
technique is to uniformize focusing synthetically in the full
image in transmission, as it is done in synthetic transmit
aperture [11], but with a higher frame rate and/or a higher
contrast depending on the transmission settings (e.g. number
of firing elements, steering angles or number of PW). Although
ultrafast imaging based on coherent compounding using SPW
is a recent technique, it has been already applied in many ap-
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plications, such as transient elastography, pulse wave velocity
imaging, flow imaging, shear wave imaging, ultrafast Doppler
imaging and electromechanical wave imaging [10], [12]–[23].

PW compounding techniques become inefficient at large
depths and for wide field of views since the overlap of the
steered waves does not cover distant regions homogeneously.
In such cases (e.g. in cardiac imaging) a broader wave is
needed in emission in order to insonify a larger part of the
medium of interest with a single transmit. In this context, Lu
and Chen proposed to directly apply their PW reconstruction
technique on the received signals generated from the trans-
mission of diverging wave (DW) [24]. However, their method
introduces geometrical distortions along the lateral direction.
They thus proposed to restrict their method to the emission
of DW with small angles (less than 15◦) to reduce these
artifacts. Hasegawa et al. proposed to use DW compounding
in transmission and parallel beamforming in reception to
perform high frame rate imaging in 2D echocardiography [25].
In particular, the authors proposed to use several diverging
beams with different directions to cover the entire medium.
Contrary to this approach, Papadacci et al. proposed to use
several DWs which individually insonify the entire field of
view along with a compound strategy in order to improve the
image quality [26]. Recently, Porée et al. developed an original
coherent compounding approach with Doppler-based motion-
compensation to generate high-quality cardiac images by DW
imaging [27].

The above mentioned ultrafast imaging methods can be
classified into two groups: the Fourier-based techniques where
the received raw-data are used to reconstruct the Fourier
spectrum of the object of interest [5], [8], [9] and the spatial-
based approaches where the images are directly computed
from the space domain [10], [25], [26]. The main advantage
of the Fourier-based approaches concerns the computational
complexity, this aspect having been investigated in several
studies in the context of planar acquisition from SPW [8],
[28]. In particular, the computational complexity of the DAS
method proposed in [10] is equal to O(ne ne ns) and decreases
to O(ne ns log(ne ns)) for Fourier-based techniques [8] (ne
representing the number of transducer elements and ns the
number of samples of the beamformed signal).

Based on these observations, we introduce in this paper
an explicit transformation which allows a direct extension of
existing Fourier-based techniques derived for planar acquisi-
tion to the reconstruction of sectorial images with wide angles
(90◦). A first trial to validate this approach has been recently
investigated in our previous work but restricted to the emission
of a single DW and the use of one specific Fourier-based
technique [29]. In comparison with this existing work, the
novelties introduced in this paper are the following:
• We derived an explicit spatial transformation which al-

lows the reconstruction of wide angle images from com-
pounding scheme in emission.

• We showed that this new formulation allows a direct ex-
tension of two existing Fourier-based methods to sectorial
acquisitions using a combination of DWs in transmission.

• We assessed the validity of the proposed method from
both simulations and in vitro experiments. Its feasibility

was also investigated in vivo from a human heart.
The remainder of the paper is organized as follows. In

Section II, the proposed approach is described. The quality
of the reconstructed images is then investigated in Section III.
A discussion part is provided in Section IV while concluding
remarks are given in Section V.

II. METHODOLOGY

In this section, we propose a formulation which allows a
direct extension of the Fourier-based methods of Lu et al. [5]
and Bernard et al. [9] to sectorial acquisitions using a combi-
nation of DWs in transmission. These two methods are well
adapted to the formulation given below since the underlying
image formation explicitly involves the same transducer for
both transmission and reception. Contrary to these approaches,
the method of Garcia et al. is based on the exploding reflector
model, leading to approximations which are not adapted in
this work (see [8] for more details).

A. Fourier-based techniques for planar acquisition
A brief summary of the Fourier-based techniques proposed

by Lu et al. and Bernard et al. in the particular case of the
transmission of one horizontal PW is given below. The reader
is refered to [5] and [9] for more details.

1) Lu’s method: Lu et al. first proposed in the late 90s
a Fourier method for high frame rate imaging with limited
diffraction beams (PW being a particular case) [5]. From the
use of limited diffraction beams with normal incidence both
in transmission and reception, the authors demonstrated that
it is possible to reconstruct the Fourier spectrum of the object
function from the following equation:

kz = k +
√
k2 − k2x , (1)

where (kx, kz) corresponds to the wavenumbers of the object
function and k is related to the temporal frequency of the
raw-data by k = 2π f/c (c being the speed of sound).

2) Bernard’s method: more recently, Bernard et al. pro-
posed a new formulation which expresses the problem of
ultrasound image formation through the Fourier slice theorem
[9]. Starting with a PW with normal incidence in transmission,
and by using a SPW in reception with a given angle ξi,
the authors demonstrated that the 1D Fourier transform of
the sum of the received signals corresponds to a radial line
with an angle equals to ξi/2 in the 2D Fourier spectrum
of the insonified medium. In this way, by using a sequence
of varying steered angles in reception, this technique allows
from the transmission of one single PW to radially recover the
Fourier space of the insonified medium based on the following
fundamental relations (see Eq.(7) in [9]):{

kx = k sin(ξi)
kz = k (1 + cos(ξi))

(2)

where k is the same wavenumber as the one introduced in
Lu’s theory (Eq. (1)). Although the Fourier sampling scheme
is different, it has been shown that Lu and Bernard methods
reconstruct close Fourier spectrum, the only difference arising
in the sampling density [9].
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B. Extension of Fourier-based techniques to sectorial imaging
The key idea of this part is to establish an isomorphism in

terms of travel time when either a DW or a PW is used in
transmission as illustrated in Fig. 1. Indeed, such a relation
would allow the reconstruction of a sectorial image from
a DW using the same formalism as the one derived for
planar acquisition. Isomorphism between travel times has been
first proposed by Garcia et al. to adapt the seismic Stolt’s
migration technique to ultrasound plane wave imaging [8].
Let us define a probe located at z = 0, centered at x = 0
and where each transducer element E is positioned at (xE , 0).
Getting inspired by the recent works performed on ultrasfast
imaging for sectorial acquisition [25]–[27], we propose in
this work to use DW in order to insonify the entire field of
view with one transmission. Such a wave is obtained through
the excitation of a virtual source located behind the probe
and placed at (xv, zv), where xv ∈ [−L/2, L/2] (L being the
width of the probe), and zv ≤ 0 is determined by the chosen
angular aperture α and the sub-aperture width D as:

zv = − D/2

tan(α)
(3)

The transmit delays ∆E associated with the virtual source
position and computed for each transducer element are then
calculated as:

∆E = (
√

(xE − xv)2 + z2v + zv) / c (4)

where the second term in the brackets is used as an offset
to ensure that the smallest transmitted delay is null. In this
context, the travel time of a DW to reach a point scatterer
positioned at (xd, zd) in the medium and to come back to a
transducer element placed at (xE , 0) is given by:

τd(xE) =
(√

(xd − xv)2 + (zd − zv)2 + zv (5)

+
√

(xd − xE)2 + z2d

)
/ c

In the case of PW with normal incidence, the travel time
involved to reach a point scatterer (xp, zp) and to come back
to the same transducer element (xE , 0) is given by:

τp(xE) = (zp +
√

(xp − xE)2 + z2p ) / c (6)

By equating the first order Taylor approximation of (5) and
(6) at xE = xv , the following relation between (xd, zd) and
(xp, zp) can be derived:



xp ≈
(xd−xv)

(√
(xd−xv)2+(zd−zv)2 +zv

)
zd+
√

(xd−xv)2+z2d

+
(xd−xv)

√
(xd−xv)2+z2d

zd+
√

(xd−xv)2+z2d
+ xv

zp ≈
zd

(√
(xd−xv)2+(zd−zv)2 +zv +

√
(xd−xv)2+z2d

)
zd+
√

(xd−xv)2+z2d

(7)

Fig. 1. Illustration of the travel time (te and tr) involved when either (a) a
DW or (b) PW is used in transmission. In both cases, (te + tr) corresponds
to the time needed by the insonifying wave to reach a scatterer (orange dot)
and then come back to a specific transducer element.

and



xd ≈ 1
2

(xp−xv)
(
z2v−(zp +

√
(xp−xv)2+z2p− zv)

2
)

zv zp− (zp+
√

(xp−xv)2+z2p−zv) (
√

(xp−xv)2+z2p)

+xv

zd ≈ 1
2

zp
(
z2v−(zp+

√
(xp−xv)2+z2p−zv)

2
)

zv zp− (zp+
√

(xp−xv)2+z2p−zv) (
√

(xp−xv)2+z2p)

(8)

From Eq. (7) and (8) the following algorithm is thus
proposed to reconstruct a sectorial image: i) transmission of a
DW using a standard phased-array; ii) from the received echo,
application of a standard Fourier-based technique derived for
PW. From Eq. (7), one can see that the output of this step
will reconstruct the desired ultrasound image but expressed in
the (xp, zp) coordinate system; iii) application of the spatial
transformation given through Eq. (8) which allows expressing
the reconstructed image in the conventional cartesian space.

C. Correctness of the proposed formulation

It is worth pointing out that Eq. (7) and (8) have been
obtained for the particular case xE = xv , meaning that the
equivalence between the travel time of equation (5) and (6)
is exact only near the region defined by x = xv , where
the Taylor approximation remains valid. We thus investigated
the error in terms of travel time difference for the special
case xv = 0 when the relation (7) and (8) are used for
each point in the medium. More precisely, for each point
(xd, zd) of the medium, we first computed the set of travel
times {τd(i)} i∈ [1,N ] from the virtual source point (0, zv) to
(xd, zd) back to each transducer element i of the probe (N
being the number of elements). We then derived the corre-
sponding (xp, zp) points and compute the set of travel times



4

Fig. 2. Error map derived from the travel time equivalence between a sectorial
acquisition using DW and the equivalent PW imaging after the application of
the proposed spatial transformation. The computed error is expressed relatively
to the wavelength used in the experiments. The black line on the top of the
figure models the transducer location while the axis origin is located at the
center of the probe. The two black curves drawn inside the error map represent
the boundary of the region at the edge of the image where the maximum error
is higher than λ/8

{τp(i)} i∈ [1,N ] from the probe to (xp, zp) back to each trans-
ducer element i. In the case of a perfect equivalence between
the two systems, the set of the pair-wise difference τd(i)−τp(i)
over the probe element should be zero. Fig. 2 shows the corre-
sponding maximum value (i.e. max

i
(τd(i)− τp(i))) computed

for each point of the medium in terms of the wavelength
λ. From this figure, one may first observe that there is no
difference in terms of travel time at the center of the probe and
this error increases at the edge of the image. The maximum
error appears in the near field (depth lower than 1-cm) at
the edges of the image with a value around 0.8 × λ. This
figure also allows the assessment of the potential defocusing
effect induced by the proposed formulation. Indeed, each value
displayed in figure 2 corresponds to the maximum of the error
between the two systems computed over the full aperture.
Since for each reconstructed point, the travel time error for
most of the elements is below λ/8 (which is the commonly
accepted value under which errors in travel distances can be
neglected), it reveals the marginal effect of defocusing during
the beamforming process. A more detailed investigation of
this particular aspect is given in the online supplementary
materials. Finally, it is worth pointing out that the negliged
effect of defocusing also justifies the correct reconstruction
of the point positioning after the spatial transformation. This
aspect will be further investigated in Section III-A1.

D. Summary and pratical implementation
The formulations introduced in section II-B allow the re-

constructiion of an image from the transmission of a diverging
wave with a virtual source positioned at any (xv, zv). Thus,
by reproducing the scheme proposed in [26], i.e. emitting
several diverging waves with virtual sources positioned at
zv = −D/(2 tan(α)) and for different xv values, our formal-
ism can be used to reconstruct wide field of view ultrasound
images with efficient compounding scheme. The implemen-
tation of the procedure for sectorial imaging from the two

Fourier-based techniques described in Section II-A can thus
be summarized as follows:

1) Transmit one or several DWs to insonify the medium. In
particular, for a virtual source positioned at (xv, zv), the
corresponding DW is generated by applying the delays
given in Eq. (4) for each transducer element.

2) Receive simultaneously on each transducer the backscat-
tered echoes. This step allows the collection of a 2D
matrix for each DW insonification.

3) Apply one particular Fourier-based reconstruction
method designed for PW (i.e. Lu or Bernard’s method)
on each received 2D matrix. This step allows the recon-
struction of an RF image which is expressed in a space
with coordinates (xp, zp).

4) Apply the spatial transformation given in Eq. (8) to
reconstruct the corresponding RF image in the Cartesian
space with coordinates (xd, zd).

5) If successive DWs are used to perform coherent com-
pounding, repeat steps 3 and 4 for each firing and
average all the reconstructed RF images to get the final
compounded image.

Note that step 3) implies the interpolation of the collected
data on a regular grid in the Fourier domain in order to
compute the reconstructed image using a regular 2D inverse
Fourier transform. Such interpolation is an old topic which has
been widely studied in the literature [30]–[32]. In particular,
as described in details in [31], the linear interpolation applied
in k-space leads to the multiplication of the real image by a
squared sinc function. This results in a decrease of the intensity
of the current reconstructed image along depth. To reduce
this artifact, we applied a depth-varying intensity correction
for the Fourier-based techniques. An intensity correction of
0.5-dB/MHz/cm was used.

E. Experiments

The performance of the proposed transformation associated
with the Fourier-based techniques proposed by Bernard and
Lu was evaluated from both numerical and in vitro phantoms,
as well as from in vivo data from a cardiac acquisition.

1) Acquisition protocol: the same standard phased-array
probe of 64 elements with a center frequency of 2.5-MHz
(100% bandwidth), 0.32-mm pitch, 13-mm height and 60-mm
elevation focus was used for all the tests. No apodization was
used in transmission or reception. The imaging depth was set
to 100-mm. For all the tests, the two extended Fourier methods
were compared with the current state-of-the-art spatial-based
method of Papadacci et al. Each reconstructed image was
obtained from the following protocol: i) raw-data signals
were acquired using DW with different virtual source point
positions; ii) those signals were processed either following
the two Fourier based methods described above or using the
method of Papadacci et al. to obtain the compounded RF
image; iii) the corresponding envelope image was derived
through a Hilbert transform and normalized; iv) the envelope
image was then gamma-compressed using γ = 0.3 as in [8]
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and finally converted to 8-bit grayscale to get the B-mode
image.

2) Transmission scheme: for comparison purposes and be-
cause of its efficiency, we used the same transmission scheme
as the one proposed in [26]. Each DW involved in transmission
was emitted from a virtual source point with an angular aper-
ture of 90◦ and a sub-aperture width composed of 21 elements.
For a single transmission, the virtual source was placed at the
center of the probe. For three transmissions, the two others
sources were placed near the edges of the transducer (i.e. at
xv = [−6.7, 0, 6.7]-mm). For more than three transmissions,
the additional virtual sources were uniformly distributed (i.e.
at xv = [−6.7,−3.35, 0, 3.35, 6.7]-mm for 5 transmissions in
our experiments). The number of transmitted DWs varied from
1 to 25, providing a frame rate between 7700 and 308 frame
per second (fps).

3) Evaluation metrics: the image quality was assessed from
the lateral resolution and the image contrast metrics. The
contrast was measured from the B-mode images using the
following classical contrast ratio (CR) [33]:

CR = 20 log10

|µt − µb|√
(σ2
t + σ2

b )/2
, (9)

where µt and µb (σ2
t and σ2

b ) are the means (variances) of
gray levels in the targets and the surrounding background.

4) Numerical simulations: the conceptual correctness of the
proposed spatial transformation was first investigated from
a simple synthetic phantom composed of a discrete set of
point scatterers (Fig. 4). The same phantom was also used to
evaluate the quality of the reconstructed images through the
lateral resolution. The corresponding values were measured as
the full width at half maximum of the point spread function
associated to the points located at 20-mm, 40-mm, 60-mm and
80-mm in the image. The image contrast was investigated from
another phantom composed of a medium with high density of
scatterers (20 per resolution cell) with two anechoic cysts of
diameter 8-mm lying at 40 and 80-mm depth, respectively.
For all the numerical simulations, the corresponding raw-data
were generated using Field II [34], [35].

5) In vitro experiments: the in vitro experiments were per-
formed with a Verasonics research scanner (V-256, Verasonics
Inc., Redmond, WA) and a 2.5 MHz phased-array trans-
ducer (ATL P4-2, 64 elements). The CIRS tissue-mimicking
phantom displayed in Fig. 3 was used for the in vitro ex-
periments. The lateral resolution was first investigated from
the acquisition centered on the 0.1-mm nylon monofilament
targets positioned at 20-mm, 40-mm, 60-mm and 80-mm. The
performance in terms of contrast was then measured from the
hyperechoic cyst presents at 40-mm depth.

6) In vivo experiments: the in vivo experiments were
performed with a Verasonics research scanner (V-1-128, Ve-
rasonics Inc., Redmond, WA) and a 2.5 MHz phased-array
transducer (ATL P4-2, 64 elements). Very recently, Porée et
al. have introduced a scheme for coherent compounding of
tilted DWs which has been validated in cardiac imaging [27].

Fig. 3. Schematic diagram of the CIRS tissue-mimicking phantom (model:
054GS) with the corresponding imaging sector used in the DWs experiments.

In particular, to deal with high myocardium velocities, the
authors have proposed to use a triangle transmit sequence
of DWs, combined with tissue Doppler imaging to perform
motion compensation (MoCo). In order to assess the ability
of our approach to deal with in vivo data, we applied the
exact same transmission scheme as the one described in [27]
to reconstruct a cardiac sequence with and without motion
compensation. In particular, we used 32 DWs in transmission
(tilted from −25◦ to +25◦ with a triangle strategy) for the
reconstruction of each frame of the final sequence. The cardiac
data from Porée et al. [27] were reanalyzed as follows: i) apply
the triangle transmit sequence of DWs given in [27], ii) for
each firing, reconstruct a beamformed sectorial image using
the extension of Lu’s method; iii) apply the MoCo algorithm
described in [27] on each of the image obtained at the previous
step; iv) perform the compounding on the corrected images;
v) repeat this process for each frame of the sequence.

III. RESULTS

A. Numerical Simulations

1) Validation of the proposed framework: Fig. 4 displays
the images reconstructed from the algorithm described in
section II-D associated with the Fourier-based method of
Bernard (Fig. 4a and 4b) and Lu (Fig. 4c) as well as the
image reconstructed by the method of Papadacci et al. (Fig.
4d). The red circles correspond to the real position of the
scatterers. From these figures, it can be seen that the proposed
transformation allows the reconstruction of all the scatterers
with the correct position whatever the chosen Fourier-based
technique. This illustrates the marginal effect of the error map
presented in section II-C and validates the flexibility of the
proposed approach.
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(a) Sectorial extension of Bernard’s method using 1 DW (b) Sectorial extension of Bernard’s method using 15 DWs

(c) Sectorial extension of Lu’s method using 15 DWs (d) Papadacci’s method using 15 DWs

Fig. 4. Synthetic phantom reconstructed from the extension of the Fourier-based methods of Bernard et al. and Lu et al. as well as the method of Papadacci
et al. The red points correspond to the real position of the scatterers involved in the simulation.

2) Lateral resolution: Fig. 5a investigates the influence of
the number of DWs on the lateral resolution using the different
reconstruction techniques and for the different depths at the
middle of the image (azimuth angle of 0◦). First, it can be seen
that the 3 methods produce similar image quality whatever the
depth and the number of DWs. In particular, it can be observed
that the lateral resolution improves quickly for 3 DWs and then
tends to stabilize to the optimal value, i.e. around 0.8-mm at
20-mm depth, 1.4-mm at 40-mm depth, 2.0-mm at 60-mm
depth and 2.7-mm at 80-mm depth. It is also important to note
that, for each depth, the lateral resolution tends to degrade a
little bit after the compounding of 3 DWs. This behavior can
be explained by the chosen transmission scheme. Indeed, in the
particular case of a monochromatic far-field approximation at a
focal distance F , the width W of the main lobe corresponding

to a coherent summation of N DWs (N > 1) is in the order
of (see Eq. (4) in [26]):

W = 2
λF

Wva

N − 1

N
(10)

where λ = 2π/k and Wva corresponds to the width of
the virtual array which is considered as fixed in this study.
Based on this equation, we display in Fig. 6 the evolution
of the approximation of the full width at half-maximum
from the probe settings used in our simulations at a focal
distance of 60-mm. From this figure, one can see that the
theoretical evolution of this measure is consistent with the
lateral resolution measured in simulations.

Fig. 5b investigates the influence of the number of DW
on the lateral resolution using the different reconstruction
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(a) (b)

Fig. 5. Numerical phantom - lateral resolution measurements as a function of the number of DWs computed at 20-mm, 40-mm, 60-mm and 80-mm at (a)
the middle of the image (azimuth angle of 0◦) and (b) at the edge of the image (azimuth angle of 40◦).

Fig. 6. Approximation of the full width at half maximum of the main
lobe corresponding to the coherent summation of DWs in the case of a
monochromatic far-field at a focal distance of 60-mm.

techniques and for different depths at the edge of the image
(azimuth angle of 40◦). As for the middle case, it can be seen
that the 3 methods produce similar image quality whatever the
depth and the number of the involved DWs. It is also inter-
esting to note that the lateral resolution (computed along the
azimuth direction for consistency) degrades with the azimuth
angle. For instance, at 80-mm depth, the lateral resolution
goes from values around 2.7-mm at the middle of the image
to values around 3.4-mm at the edge. This phenomenon can
be explained by the fact that the region where the different
DWs contribute to the image pixels is optimal at the middle
of the image, leading to a better image resolution. The limited
opening angle of the effective aperture may also reinforce this
phenomenon. Finally, it can be observed from Fig. 5a and
5b that the difference in terms of lateral resolution between
Papadacci’s method and the Fourier based methods varies in
average from 0.06-mm (at 20-mm depth) to 0.10-mm (at 80-
mm), which corresponds of a maximum difference lower than
λ/6. Since this difference is much lower than half of the

wavelength, this phenomenon may be considered as negligible.

3) Image contrast: Fig. 7a displays the CR values mea-
sured for two different depths at the middle of the image
(azimuth angle of 0◦) for each compounding experiment. The
three methods yield very close results, the CR measurements
showing same tendency with an increasing number of DW
and with better CR scores at 40-mm. This can be easily
explained by the intrinsic decrease of the transmit ultrasound
pressure with depth which inevitably induces lower contrast.
It is also interesting to note that for more than 15 DWs,
the image contrast tends to stabilize to the optimal value for
all methods, which is consistent with the results provided in
[26]. Finally, Fig. 7b to 7d display the images reconstructed
with the three different methods using 15 DWs. These results
illustrate visually the closeness in terms of image quality
and speckle definition of the images reconstructed from the
proposed extension of the Fourier-based techniques and the
spatial-based method of Papadacci et al.

Fig. 8 displays the CR values measured for two different
depths at the edge of the image (azimuth angle of 40◦). As
for the cysts in the middle, it can be seen that the 3 methods
yield very similar image quality whatever the depth and the
number of involved DW. It is of importance to note that the
image contrast decreases a little bit with the azimuth angle.
For instance, at 40-mm depth, the CR decreases from values
around 13-dB at the middle of the image down to values
around 10-dB at the edge.

B. In vitro and in vivo experiments

1) Lateral resolution: Fig. 9 illustrates the impact of DW
compounding number on the lateral resolution for the different
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(a) Contrast ratio measurements for different depths (b) Sectorial extension of Bernard’s method

(c) Sectorial extension of Lu’s method (d) Papadacci’s method

Fig. 7. Numerical phantom - (a) contrast ratio measurements computed at the middle of the image (azimuth angle of 0◦) as a function of the number of
DWs. B-mode images reconstructed from (b) the proposed extension of Bernard’s method, (c) the proposed extension of Lu’s method and (d) the spatial-based
method of Papadacci using 15 DWs with coherent compounding.

(a) Contrast ratio measurements for different depths (b) Sectorial extension of Bernard’s method

Fig. 8. Numerical phantom - (a) contrast ratio measurements computed at the edge of the image (azimuth angle of 40◦) as a function of the number of DWs.
B-mode images reconstructed from (b) the proposed extension of Bernard’s method using 15 DWs with coherent compounding.
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Fig. 9. Experimental acquisition - lateral resolution measurements computed
at the middle of the image (azimuth angle of 0◦) as a function of the number
of DWs computed at 20-mm, 40-mm, 60-mm and 80-mm.

reconstruction techniques and for the different depths. One
can first see that all the experimental results are consistent
with what have been previously observed from simulations,
both in terms of tendency and measured values. Indeed, for
all the methods, the lateral resolution improved quickly for
3 DWs and then tended to stabilize to the optimal value, i.e.
around 0.8-mm at 20-mm depth, 1.4-mm at 40-mm depth, 2.1-
mm at 60-mm depth and 3.2-mm at 80-mm depth. Moreover,
it is worth pointing out that at each depth, the different
methods reached the optimal lateral resolution values for the
transmission of 15 DWs, leading to an optimal frame rate of
855 fps.

2) Image contrast: we investigated in Fig. 10 the quality
of the reconstructed images in terms of contrast. In particular,
Fig. 10a displays the CR values measured at 40-mm depth
for each compounding experiment. From the corresponding
graph, it can be observed that the three methods yield very
close results. The CR measurements involve same tendency
over the increase of the number of DW. The optimal CR
values are reached in all cases after the transmission of 15
DW (frame rate of 855 fps), which is in accordance with
the simulation results we obtained in Section III-A3. Fig.
10b to 10d display the reconstructed B-mode images obtained
using 15 DW with coherent compounding. As in simulations,
these results illustrate visually the closeness in terms of image
quality and speckle definition of the images produced by
different methods. It is also interesting to note that the decrease
of the intensity observed at the two borders of the image
can be explained, on the left side, by the presence of a
structure with high reflectivity (due to an unexpected flaw
present in the CIRS phantom we used at the interface between
the background and the hyperechoic cyst of +3dB) which

produces classical ultrasound shadow and, on the right side,
by the physical limit of the CIRS phantom which induces
reverberation phenomenon. Finally, the limited opening angle
of the transducer elements and the limited opening angle of
the effective aperture may be additional causes responsible for
the observed decrease of intensity at the edges.

3) In vivo experiment: Fig. 11 displays one particular frame
of the full sequence we reconstructed from a real acquisition
performed on a healthy volunteer with and without motion
compensation, as described in section II-E6. The transmission
scheme used during the acquisition process allowed us to
compute a B-mode sequence of the whole left and right
ventricles at high frame rate (250 fps). This result demonstrates
the feasibility of the proposed formulation in a real setting, as
well as its flexibility, since we could easily integrate the motion
compensation framework proposed by Porée et al. [27].

IV. DISCUSSION

A. Fourier-based methods of sectorial imaging

We proposed in this study an explicit transformation which
allows the extension of existing Fourier-based approaches,
initially proposed for planar acquisition, to the reconstruction
of sectorial images with wide angle using DW. The pro-
posed formulation was evaluated through the extension of two
Fourier-based techniques, i.e. the one proposed by Lu et al.
which samples the Fourier space along the kz axis direction
and the one of Bernard et al. which samples the Fourier space
radially. Results obtained from both simulations and experi-
ments revealed that the two extended Fourier-based approaches
reconstruct images with comparable quality as it is the case
for planar acquisition, the introduced spatial transform having
no effect on their relative behavior. More importantly, we also
demonstrated in this study that the proposed extended Fourier-
based approaches produce competitive results compared to the
state-of-the art method proposed by Papadacci et al. both in
terms of lateral resolution and image contrast.

Although the proposed transformation has been specifically
designed for the transmission scheme described in [26] (i.e.
the virtual source point of each DW lies on a horizontal line
positioned behind the probe), our approach can also be easily
used for other strategies like, for instance, the steered diverging
waves presented in [25]. In the case of SDW of angle θ,
the second term zv of Eq. (4) has to be simply replaced by
−min

E

√
(xE − xv)2 + z2v to ensure that the smallest transmit

delay is null. The same reasoning then holds to derivate the
akin spatial transformation. The corresponding equations have
been used to produce the results given in Section III-B3.

B. Computational complexity

One strong interest of Fourier-based techniques for secto-
rial acquisition is a potential reduction of the computational
complexity compared to the conventional DAS method. To
determine the computational complexity of the proposed ex-
tension of Lu and Bernard methods, let ne denotes the number
of elements that compose the transducer (in general 64, 128
or 192), ns the number of time samples (typically in the range
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(a) Contrast ratio measurements (b) Sectorial extension of Bernard’s method

(c) Sectorial extension of Lu’s method (d) Papadacci’s method

Fig. 10. Real acquisition - (a) Contrast ratio measurements as a function of the number of DWs. B-mode images reconstructed from (b) the proposed extension
of Bernard’s method, (c) the proposed extension of Lu’s method and (d) the spatial-based method of Papadacci using 15 DWs with coherent compounding.

Fig. 11. Motion compensation for high frame rate echocardiography of the left ventricle using the sectorial extension of Lu’s method. Each frame has been
reconstructed from the transmission of 32 DWs (tilted from −25◦ to +25◦ with a triangle strategy as described in [27]). Online movies are also available
in the supplementary materials. The data from Porée et al. [27] were reanalyzed with the technique described in the present paper.
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1000-3000), nx the number of samples along the x-axis for the
reconstructed image (typically between 100 and 500) and nξ
the number of angles over two used in reception for Bernard’s
method (the ratio of 2 being explained by the use of half of
the spectrum). This value was fixed to 85 in our experiments,
the reader is refered to [9] for more details.

Complexity of Papadacci’s method: the DAS method pro-
posed by Papadacci et al. must retrieve λ (nx ns ne) inter-
polated data and perform λ (nx ns) summations over ne, λ
being the ratio between the scanned sectorial area and the cor-
responding encompassing rectangle (with dimensions nx ns).
For an angular aperture of 90◦, λ is defined between [0.5, 1].
The computational complexity of the method of Papadacci et
al. thus corresponds to O(nx ns ne).

Complexity of the proposed extension of Lu’s method: the
sectorial extension of Lu’s method requires two 2-D FFTs
(complexity of O(nx ns log(nx ns))) and two times the com-
putation of (nx ns) interpolated values (one for the regridding
step performed in the Fourier space and one for the spatial
transformation introduced in this work). The computational
complexity of the extension of Lu’s method thus reduces to
O(nx ns log(nx ns)) compared to the method of Papadacci.

Complexity of the proposed extension of Bernard’s method:
the sectorial extension of Bernard’s method requires ne
1-D FFTs (complexity of O(ne ns log(ns))), one 2D FFT
(complexity of O(nx ns log(nx ns))), the computation of
(nξ ns ne) multiplications for the delays applied in reception
and two times the computation of (nx ns) interpolated values
(one for the regridding step performed in the Fourier space
and one for the spatial transformation introduced in this work).
The computational complexity of the extension of Bernard’s
method thus corresponds to O(nξ ns ne), making the extension
of this method less attractive than for the extension of Lu’s
method.

C. Extension to temporal acquisitions with tissue motion

Tissue motion is an important source of artifact in ultrafast
imaging. In particular, when the motion of the structures of
interest between two consecutive firings is higher than λ/8, it
is common to observe a weakening of the compounding effect
if no particular strategy is applied. Several approaches have
thus been proposed to tackle this problem, both on PW [36]
and DW [27]. In this paper, we showed the feasibility of the
application of the motion compensation algorithm developed
in [27] on the images reconstructed from the proposed ap-
proach. This shows the accuracy of our technique and validates
further the marginal effect of the error map presented in section
II-C.

D. Perspectives

One potential strong interest of the Fourier-based method
compared to the DAS technique concerns its lower compu-
tational complexity. In the particular case of sectorial recon-
struction, we have shown that the computational ratio between
the sectorial extension of Lu’s method and the standard

DAS technique is of the order ne / log(nx ns). Although the
proposed transformation has been derived for 2D, it can be
easily extended to 3D. To this end, one has to take into account
the y-coordinate in the travel time equations of the PW (Eq.
6) and the DW (Eq. 5). By equating the first order Taylor
approximation at xE = xv and yE = yv , one can obtain the
corresponding spatial transformation between (xp, yp, zp) and
(xd, yd, zd). Interestingly, in the 3D case, the computational
ratio between the proposed method and the DAS technique
goes up to nex ney / log(nx ny ns), making the interest of our
approach even more stronger.

V. CONCLUSION

In this paper, an explicit transformation for the extension
of Fourier-based techniques to the reconstruction of sectorial
images using DW has been presented. The key concept of
the proposed formulation is based on the derivation of an
isomorphism in terms of travel time between a planar system
based on PW and a sectorial one based on DW. In particular,
we proposed an explicit spatial transformation which allows
the reconstruction of wide angle images from compounding
scheme in transmission, the optimal quality of images being
reached for 15 DWs (frame rate of 855 fps) on both numerical
and in vitro phantoms. Results obtained from simulations
and experiments revealed that the proposed extension of Lu’s
method produces competitive results with lower computational
complexity when compared to conventional delay-and-sum
technique.
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and M. Tanter, “Ultrafast compound doppler imaging: providing full
blood flow characterization,” IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, vol. 58, no. 1, pp. 134–147, 2011.

[15] J. Provost, V. Nguyen, D. Legrand, S. Okrasinski, A. Costet, A. Gambhir,
H. Garan, and E. Konofagou, “Electromechanical wave imaging for
arrhythmias,” Physics in medicine and biology, vol. 56, no. 22, p. L1,
2011.

[16] M. Lenge, A. Ramalli, E. Boni, H. Liebgott, C. Cachard, and P. Tortoli,
“High-frame-rate 2-d vector blood flow imaging in the frequency do-
main,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 61, no. 9, pp. 1504–1514, 2014.

[17] S. Ricci, L. Bassi, and P. Tortoli, “Real-time vector velocity assessment
through multigate doppler and plane waves,” IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 2, pp.
314–324, 2014.

[18] I. K. Ekroll, T. Dahl, H. Torp, and L. Løvstakken, “Combined vector
velocity and spectral doppler imaging for improved imaging of complex
blood flow in the carotid arteries,” Ultrasound in Medicine & Biology,
vol. 40, no. 7, pp. 1629–1640, 2014.

[19] I. K. Ekroll, M. M. Voormolen, O. K. V. Standal, J. M. Rau, and
L. Lovstakken, “Coherent compounding in doppler imaging,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 62, no. 9, pp. 1634–1643, Sept 2015.

[20] S. Salles, A. Chee, D. Garcia, A. Yu, D. Vray, and H. Liebgott, “2-d
arterial wall motion imaging using ultrafast ultrasound and transverse
oscillations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 62, no. 6, pp. 1047–1058, 2015.

[21] M. Muller, D. Ait-Belkacem, M. Hessabi, J. L. Gennisson, G. Grangé,
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