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a b s t r a c t

This paper focuses on motion tracking in echocardiographic ultrasound images. The difficulty of this task
is related to the fact that echographic image formation induces decorrelation between the underlying
motion of tissue and the observed speckle motion. Since Meunier’s seminal work, this phenomenon
has been investigated in many simulation studies as part of speckle tracking or optical flow-based motion
estimation techniques. Most of these studies modeled image formation using a linear convolution
approach, where the system point-spread function (PSF) was spatially invariant and the probe geometry
was linear. While these assumptions are valid over a small spatial area, they constitute an oversimplifi-
cation when a complete image is considered. Indeed, echocardiographic acquisition geometry relies on
sectorial probes and the system PSF is not perfectly invariant, even if dynamic focusing is performed.

This study investigated the influence of sectorial geometry and spatially varying PSF on speckle track-
ing. This was done by simulating a typical 64 elements, cardiac probe operating at 3.5 MHz frequency,
using the simulation software Field II. This simulation first allowed quantification of the decorrelation
induced by the system between two images when simple motion such as translation or incompressible
deformation was applied. We then quantified the influence of decorrelation on speckle tracking accuracy
using a conventional block matching (BM) algorithm and a bilinear deformable block matching (BDBM)
algorithm. In echocardiography, motion estimation is usually performed on reconstructed images where
the initial sectorial (i.e., polar) data are interpolated on a cartesian grid. We therefore studied the influ-
ence of sectorial acquisition geometry, by performing block matching on cartesian and polar data.

Simulation results show that decorrelation is spatially variant and depends on the position of the
region where motion takes place relative to the probe. Previous studies did not consider translation in
their experiments, since their simulation model (spatially invariant PSF and linear probe) yields by def-
inition no decorrelation. On the opposite, our realistic simulation settings (i.e., sectorial probe and real-
istic beamforming) show that translation yields decorrelation, particularly when translation is large
(above 6 mm) and when the moving regions is located close to the probe (distance to probe less than
50 mm).

The tracking accuracy study shows that tracking errors are larger for the usual cartesian data, whatever
the estimation algorithm, indicating that speckle tracking is more reliable when based on the uncon-
verted polar data: for axial translations in the range 0–10 mm, the maximum error associated to conven-
tional block matching (BM) is 4.2 mm when using cartesian data and 1.8 mm for polar data. The
corresponding errors are 1.8 mm (cartesian data) and 0.4 mm (polar data) for an applied deformation
in the range 0–10%. We also show that accuracy is improved by using the bilinear deformable block
matching (BDBM) algorithm. For translation, the maximum error associated to the bilinear deformable
block matching is indeed 3.6 mm (cartesian data) and 1.2 mm (polar data). Regarding deformation, the
error is 0.7 mm (cartesian data) and 0.3 mm (polar data). These figures also indicates that the larger
improvement brought by the bilinear deformable block matching over standard block matching logically
takes place when deformation on cartesian data is considered (the error drops from 1.8 to 0.7 mm is this
case).

We give a preliminary evaluation of this framework on a cardiac sequence acquired with a Toshiba
Powervision 6000 imaging system using a probe operating at 3.25 MHz. As ground truth reference
motion is not available in this case, motion estimation performance was evaluated by comparing a ref-
erence image (i.e., the first image of the sequence) and the subsequent images after motion compensation
has been applied. The comparison was quantified by computing the normalized correlation between the
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reference and the motion-compensated images. The obtained results are consistent with the simulation
data: correlation is smaller for cartesian data, whatever the estimation algorithm. The correlation asso-
ciated to the conventional block matching (BM) is in the range 0.45–0.02 when using cartesian data
and in the range 0.65–0.2 for polar data. The corresponding correlation ranges for the bilinear deformable
block matching are 0.98–0.2 and 0.98–0.55. In the same way these figures indicate that the bilinear
deformable block matching yield a larger improvement when cartesian data are considered (correlation
range increases from 0.45–0.02 to 0.98–0.2 in this case).

� 2009 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
2. Echographic image simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

2.1. Ultrasound simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
2.2. The probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
2.3. The tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

3. Applied motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
4. Motion tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

4.1. Block matching (BM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
4.2. Bilinear deformable block matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

4.2.1. Bilinear motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
4.2.2. Motion estimation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

4.3. Polar versus cartesian block matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
5. Quantification of motion tracking reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

5.1. Correlation measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
5.2. Motion accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

6. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
6.1. Decorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

6.1.1. Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
6.1.2. Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

6.2. Motion estimation accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
6.2.1. Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
6.2.2. Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

7. Results from echocardiographic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

1. Introduction

Motion estimation of the left ventricle is a valuable tool for
assessing cardiac function. Special attention has been paid to mo-
tion analysis in echocardiography, because of its high temporal res-
olution and its relatively low cost. However, the analysis of
echocardiographic images is generally difficult because of the com-
plexity of the echographic image formation process. Echographic
images result from the elementary signals backscattered by the
biological scatterers contained in the insonified tissue. Since the
ultrasonic probe records the coherent sum of these signals, the im-
age can be seen as resulting from an interference scheme, produc-
ing the speckle patterns commonly observed in ultrasound
imaging. While speckle patterns are often regarded as noise (i.e.,
for tasks such as segmentation), they are used as information for
motion estimation, since they provide natural tokens linked to
the local configuration of scatterers in the tissue explored.

As a consequence, many approaches have been described that
use this feature to estimate motion from echocardiographic image
sequences. One of the first types of approaches described in the lit-
erature is based on the differential technique known as optical flow
[1–3]. Since they rely on the local analysis of spatial and temporal
gradients, these methods may fail at estimating large inter-frame
cardiac motion. This implies multiscale strategies or a first stage
of block-matching to provide a reliable displacement estimate
[4–6]. Another approach estimates cardiac motion by performing
speckle tracking, which is generally done by comparing a block
in the reference image and a block in the subsequent deformed im-

age through a similarity measure such as cross-correlation (CC)
[4,5,7], the sum of absolute differences (SAD) [8] or the sum of
squared differences (SSD) [9]. An interesting interpretation of these
measures has been given by Strintzis [10], who formulated block
matching as the maximum likelihood estimation of motion be-
tween blocks of known statistics. Maximum likelihood motion
estimation is then shown to correspond to the maximization of
SAD for Laplacian statistics and SSD in the case of Gaussian statis-
tics. Using this framework, a new similarity measure was derived
when the image was described through a multiplicative noise with
a Rayleigh density. This line of reasoning has been pursued by Co-
hen [11], Boukerroui [12] and Linguraru [13], who incorporated
this similarity measure for block matching.

The above-described approaches were based on conventional
envelope-detected images, obtained through demodulation of the
ultrasound radiofrequency (RF) signals. Some studies have pro-
posed performing speckle tracking by using the RF signal to evalu-
ate small displacements. Since the RF signal contains much higher
frequencies, it is indeed better adapted to the estimation of small-
scale motion (typically on the order of the emitted pulse wave-
length). Examples of this type of study include the work by Lubin-
ski [14] and more recently by D’hooge [15], who used speckle
tracking to estimate the strain or strain rate in the myocardium.
RF-based speckle tracking is, however, currently not widespread
in the field of echocardiography because its high motion sensitivity
implies high frame rates [15,16] and the difference in resolution in
the propagation and transverse directions makes the 2D estimation
of motion difficult. This extension to 2D is a challenge in terms of
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processing [14,17–19] and US image formation [20]. An interesting
comparison between envelope-detected and RF-based echocardio-
graphic speckle tracking has recently been made by Yu et al. [21].

Speckle tracking methods are based on the assumption that the
motion of the speckle patterns reliably reflects the motion of the
tissue, i.e., of the underlying scatterers. Since echographic image
formation is essentially the interference process described above,
this assumption does not hold whenever the tissue motion is large
enough to modify the geometrical configuration of scatterers as
‘‘seen” by the probe, thereby changing the shape of the speckle pat-
terns.1 This yields what is known as motion decorrelation, i.e., a dif-
ference between the apparent motion present in the image and the
real motion of the tissue. In echocardiography, this phenomenon is
directly related to the temporal sampling rate (a low sampling rate
yields large inter-frame motion) and to the specific, sectorial geom-
etry of the probe: a simple translation changes the speckle pattern
received by the probe. It should also be noted that a further conse-
quence of sectorial geometry lies in the fact that it yields a sparser
lateral sampling far from the probe.

Since Meunier’s influential work [22], the influence of decorre-
lation on motion estimation has been recognized and many studies
describe strategies to minimize its influence such as temporal
stretching [23], the Lagrangian model of speckle [24], signal com-
pounding [25], deformable block matching [26], multiscale strate-
gies [27] and nonlinear filtering [6].

In this context, it should be noted that the validation of the mo-
tion tracking techniques proposed in the above-mentioned litera-
ture very often stems from numerical simulations aiming at
estimating their accuracy [1,7,9,13,19,24,25] and the influence of
decorrelation [21,22] by comparing the simulated and the esti-
mated motion. In the specific field of motion tracking from echo-
cardiographic images, the simulations used to validate the
motion estimation approaches [1,7,13,19,21,22] suffer from two
major limitations. First, echographic image formation is modeled
as a linear convolution, where the ultrasonic system point-spread
function (PSF) is invariant in space. While this assumption is valid
over a small spatial area, it is an oversimplification since the PSF
system is not perfectly invariant throughout the entire image, even
with dynamic focusing. These studies introduce a further simplifi-
cation by considering linear probe geometry, although sectorial
probes are used in echocardiography, in order to have acoustic ac-
cess to the heart between the ribs. One notable exception to these
limitations is the study conducted by Langeland [28], which used a
specific simulation environment and sectorial acquisition geome-
try to compare displacement estimators for motion tracking, such
as correlation, SSD and SAD. However, this study was conducted
in the particular context of RF-based motion estimation using very
high frame rates (500 Hz) and a reduced sector (15�).

In this context, the main goal of this paper is to report the study
of the influence of decorrelation and sectorial geometry on the
accuracy of motion tracking through realistic simulation, using
conventional echocardiographic acquisition settings (i.e., large
acquisition sector and motion magnitudes corresponding to the
usual sampling rates). The simulation is based on the Field II sim-
ulation software, which provides an efficient tool to simulate ultra-
sound fields by incorporating realistic transducer features and
allows for beam forming, dynamic focusing, apodization and secto-
rial geometry. To clarify the influence of decorrelation on speckle
tracking, we studied simple 2D affine motions such as translation
and incompressible deformation (i.e., we did not study the decor-
relation related to out-of-plane motion). This influence was quan-
tified by evaluating the inter-frame correlation and the resulting

motion estimation accuracy, using conventional SAD-based block
matching (BM). We also examined whether a more sophisticated
tracking algorithm such as deformable block matching (BDBM)
[29] can minimize the influence of decorrelation and improve the
accuracy obtained. Given the sectorial geometry of acquisition,
the initial data set corresponds to a rectangular grid in polar coor-
dinates. The conventional echographic image is usually recon-
structed from these polar data by conversion and interpolation
on cartesian coordinates. To further explore the influence of secto-
rial acquisition geometry, the block matching methods were ap-
plied to cartesian and polar data. This framework was then
applied to real echocardiographic data. As ground truth reference
motion is not available for these data, motion estimation is evalu-
ated by comparing a given reference image and the subsequent im-
age after motion compensation.

The paper is structured as follows: Section 2 describes the sim-
ulation model with the corresponding parameters of the probe and
tissue and Section 3 details the motion applied to this tissue. Sec-
tion 4 describes the motion tracking methods, i.e., block matching
(BM) and bilinear deformable block matching (BDBM). Section 5
presents the measures used to quantify decorrelation and motion
estimation accuracy. The simulation results are provided and ana-
lyzed in Section 6. Section 7 provides the results obtained from real
echocardiographic data. The paper is concluded in Section 8.

2. Echographic image simulation

2.1. Ultrasound simulation model

Most of the previous studies using simulations to assess motion
estimation in echocardiography [1,7,13,19,21,22] have used the
linear system-based model initially proposed by Meunier to gener-
ate US images. In this approach, the RF signal is obtained as a con-
volution between the PSF representing the system and a set of
tissue scatterers in the far field. However, this model is valid only
locally and cannot properly model the acquisition performed with
a real echographic device, which involves beam forming (allowing
dynamic focusing), apodization and sectorial geometry.

This led us to simulate US images using Field II [30], which pro-
vides an efficient tool to simulate ultrasound fields by incorporating
realistic transducer features. The Field software uses the concept of
spatial impulse responses as developed by Tupholme and Stepani-
shen [31,32], including the excitation scheme (dynamic focusing
and apodization). This approach determines the ultrasound field
at any point in space as a function of time for any type of excitation.
The impulse response obtained varies as a function of position rel-
ative to the transducer. As a consequence, the simulated acquisition
set-up can be seen as a system with a spatially variant PSF.

One limitation of this framework is linked to the fact that Field
II does not allow for simulating non linear wave propagation, such
as second harmonic imaging which is now frequently used in clin-
ical practice. The conclusions drawn from the simulations should
therefore be restricted to conventional fundamental imaging
acquisitions.

2.2. The probe

The simulation requires choosing the parameters defining the
probe. We used a typical cardiac probe whose parameters are given
in Table 1. These parameters are used to simulate acquisitions with
a sectorial probe to take into account the influence of the probe
geometry on the echographic images.

The output of a simulation consists in the RF image of the tissue
explored. The B-mode images are obtained as the logarithm of the
Hilbert transform of the resulting RF signal.

1 A simple illustrative example of this problem is a tissue undergoing a simple
rigid-body rotation and imaged with a linear probe [22].
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To show the spatially variant nature of the PSF, we simulated
the ultrasound image of 22 point scatterers positioned along the
central axis of the probe (Fig. 1a), with the scatterers 5 mm apart.
The resulting image (Fig. 1b) shows how the impulse response de-
pends on the location in the image.

This phenomenon may be further quantified by computing the
correlation between the PSF at the focus position (D = 67 mm) and

the PSF at other depths, as shown in Fig. 1c. The correlation value is
one at the focus distance and decreases on both sides, especially in
near field (closer to the probe).

2.3. The tissue

Echocardiographic data acquired from the myocardium region
corresponds to fully developed speckle, resulting in Rayleigh statis-
tics for the envelope-detected image as shown by Meunier and Yu
[21,22]. We simulated such conditions as follows. The simulated
tissue is modelled by a collection of individual point scatterers.
Each scatterer is defined through its x–y coordinates and scattering
coefficient. The distribution of scatterers can then be expressed as

dðx; yÞ ¼
XN

i¼1

AðiÞdðx� xi; y� yiÞ

where N is the total number of scatterers in the simulated tissue,
A(i) is the scattering coefficient of the ith scatterer, (xi, yi) are its spa-
tial coordinates and d the delta function.

When the scatterers density is high (i.e., N is large) and the spa-
tial coordinates follow a uniform distribution, this model yields
fully developed speckle and Rayleigh statistics for the envelope sig-
nal [33].

In our simulation, the tissue was simulated as a 20 mm � 5 mm
rectangular region containing N = 1000 point scatterers. A uniform

Table 1
The simulation parameters.

Parameters Value

Transducer frequency 3.5 MHz
Sound speed in tissue 1540 m/s
Wavelength 0.256 mm
Sampling frequency 33 MHz
Dynamic focusing distance (40 mm, 50 mm, 60 mm. . .

120 mm)
Angle of increment 0.7�
Number of active elements 64
Number of lines 128
Element height 14 mm
Pitch (distance between two consecutive

elements center)
0.3 mm

Kerf (space between two consecutive
elements)

0.05 mm

Elevation focus 67 mm

Fig. 1. (a) Location of the scatterers along the central axis of the probe. (b) Corresponding simulated image. (c) Correlation between PSF at the focus zone and the PSFs at other
depths.
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random generator was used to generate the spatial coordinates (xi,
yi) within the region. In the same way, a Gaussian distribution was
used to select the scattering cross-section A(i) of each scatterer.

Fig. 2a displays an example of a simulated image. Fig. 2b shows
the histogram of this image and the fit of a Rayleigh distribution
computed from the image data, using the maximum likelihood
estimator. The quality of this fit shows that our settings yield the
desired fully developed speckle conditions.

3. Applied motions

The first experiment consisted in a simple axial translation (i.e.,
along the central axis of the probe). This motion transformation
was a useful reference in this study. This motion model had not
been considered in previous studies [21,22]: their use of a linear
system-based model implies by definition that translation yields
no decorrelation. A recent paper [34] showed that even with a lin-
ear probe a decorrelation occurs for a simple translation. This dec-
orrelation increases with the sectorial geometry of the probe. The
second motion studied consisted in an axial deformation with an
incompressibility constraint (i.e., axial dilation and lateral com-
pression) centered on the tissue. The translation was performed
in the range of 0–10 mm, as in [15,21,22], the deformation was ap-
plied from 0 to 10%. Note that to assess the influence of PSF varia-
tion and probe geometry on motion estimation; these experiments
were conducted for different depths D of the region relative to the
probe, as shown in Fig. 1a.

4. Motion tracking

4.1. Block matching (BM)

For each block, a motion vector was estimated as the one that
maximized a measure criterion, which typically is either the sum
of squared difference (SSD) or sum of absolute difference (SAD).
Here we chose the SAD as a similarity measure and the velocity
vector (dx, dy) that yields the best fit between image regions at dif-
ferent times as:

SADðx; y; dx; dyÞ

¼
Xn

i¼�n

Xm

j¼�m

I1ðxþ i; yþ jÞ � I2ðxþ iþ dx; yþ jþ dyÞj j ð1Þ

where I1 and I2 are the corresponding image regions, 2 � n and
2 �m are, respectively, the lateral and axial size of region of interest
and (x, y) the position of the node around what the SAD was
computed.

4.2. Bilinear deformable block matching

The method referred to as a bilinear deformable block matching
(BDBM) [35,36] was developed for ultrasound applications to im-
prove motion tracking, as compared to conventional block match-
ing. This iterative approach uses a local bilinear model with eight
parameters for controlling the local mesh deformation. We briefly
outline this method hereafter.

4.2.1. Bilinear motion model
A bilinear model was chosen to describe the local displacement.

The components of the motion vector are formulated as follows:

uðx; yÞ ¼ au � xþ bu � yþ cu � x � yþ du ð2Þ

vðx; yÞ ¼ av � xþ bv � yþ cv � x � yþ dv ð3Þ

where u and v are, respectively, lateral and axial displacements at
each position (x, y).

In this context, we need to estimate the eight parameters of the
bilinear model to estimate local displacement.

4.2.2. Motion estimation algorithm
The parameters of the bilinear motion model are estimated in

rectangular regions of interest (ROI R (hatched region in Fig. 3),
chosen around the defined nodes N. They are estimated by estimat-
ing the translations of the four corners (noted Ci) of this region of
interest. Corner translations are estimated considering rectangular
blocks (noted Bi) centered on each corner and joined in the current
node N. Simple block matching is then used to estimate these four
2-D translations. In Fig. 3, an asterisk denotes the nodes, corners
and blocks after the local spatial transformation.

The estimation of these four translations of corners allows esti-
mating the parameters of the bilinear model. This algorithm
works iteratively with a multiscale approach. At each resolution
level, the computation grid is refined by bilinear interpolation.
At each iteration, the current study zone of the initial image is de-
formed using the bilinear parameters estimated at the previous
iteration. In this way, the next iteration starts with four deformed
blocks, which allow better estimation of the current region of
interest’s corner translations. The iterative multiscale approach
has the advantage of decreasing motion error with the advance-
ment of iterations.

Experiments conducted by [35] demonstrated that an interpola-
tion factor of 3 at two iterations for the BDBM provide a better
compromise between motion estimation accuracy and estimation
time. In our study, we decided to compute the BM with an interpo-

Fig. 2. (a) B-mode image of the simulated tissue. (b) Histogram of the B-mode image and the fitted Rayleigh distribution. The solid rectangles correspond to the histogram of
the image while the blue curve corresponds to the Rayleigh distribution fitted to the image data. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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lation factor of 9, which finally corresponds to an interpolation of 3
at two iterations for the BDBM.

4.3. Polar versus cartesian block matching

Because of the sectorial geometry of acquisition, the initial data
set corresponds to a rectangular grid in polar coordinates. The con-
ventional echographic image is usually reconstructed from these
polar data by conversion and interpolation on cartesian coordi-
nates. As sketched in Fig. 4, when block matching is performed, a
rectangular block contains less information (i.e., fewer lines from
the original polar data) far from the probe, which influences the
accuracy of motion estimation as a function of depth.

This situation can be improved by performing block matching
with rectangular blocks directly on the initial polar data (Fig. 4a).
By doing so, the quantity of information in a block is the same at
any depth. In cartesian coordinates, performing block matching is
equivalent to using fan-shaped, adaptive blocks (Fig. 4c).

These two block matching schemes were used in the
experiments.

5. Quantification of motion tracking reliability

5.1. Correlation measure

We used the normalized correlation to quantify the difference
between apparent and real motion. An initial image I0 was simu-
lated using the initial position of the scatterers (i.e., ‘‘before” mo-
tion). A motion transformation T was then applied to I0, yielding
the image I1. I1 was used as a reference image, since it corresponds
to the image that would be obtained if no decorrelation occurred.
We then applied the same motion transformation T directly to
the scatterers from which a second image I2 was generated, corre-

sponding to the ‘‘real” echographic image after motion. Comparing
I1 and I2 makes it possible to measure the decorrelation induced by
motion.

Since the data obtained by Field II in the example of a sectorial
probe are in polar coordinates, we used the normalized correlation
in polar coordinates (r, h), i.e.:

corr ¼
P

X

P
XðI1ðr; hÞ ��I1Þ � ðI2ðr; hÞ ��I2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

XðI1ðr; hÞ ��I1Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

XðI2ðr; hÞ ��I2Þ2
q ð4Þ

where �I1 and �I2 are the grayscale means of I1 and I2.
In our study, the normalized correlation was computed on

X = (two-resolution cell-size region), corresponding to a
1.2 � 2.5-mm tissue region.

5.2. Motion accuracy

Accuracy was assessed by comparing the estimated motion and
the true motion applied to the scatterers. At each image point, we
computed the absolute error vector as the difference between the
true and estimated velocity vectors. We computed this error on
N = 50 tissues. For each experiment, the mean of the error vector
magnitude (called MEM) and the associated standard deviation
(SDEM) are reported.

Defining vest(T) and vtrue(T) as the estimated and true motion
vector at the experiment T, the error is given as:

ErrðTÞ ¼ vestðTÞ � vtrueðTÞjj ð5Þ

We then have

MEM ¼
PN

T¼1ErrðTÞ
N

ð6Þ

and

SDEM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
T¼1ðErrðTÞ �MEMÞ2

N

s
ð7Þ

6. Simulation results

6.1. Decorrelation

6.1.1. Translation
Fig. 5 qualitatively illustrates the influence of decorrelation as a

function of translation magnitude. Fig. 5a shows the speckle pat-
terns of the image corresponding to the tissue initial position,
while Fig. 5b and c shows the images corresponding to a 2 mm
and a 10 mm translation applied to the tissue, respectively. For a
better interpretation of the images, a well-defined speckle pattern

Fig. 3. Scheme of the bilinear spatial transformation applied to the block where
bilinear deformable block matching is performed.

Fig. 4. (a) Geometry of the block matching method when applied on the reconstructed image in cartesian coordinates. (b) Geometry of the block matching method when
applied to polar data, represented in polar coordinates. (c) Geometry of the block matching method when applied to polar data represented in cartesian coordinates.
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has been isolated by a black rectangle in the initial image on
Fig. 5a. Because a 2 mm translation yields a weak decorrelation,
this speckle pattern may be easily recognized in the corresponding
rectangle on Fig. 5b. On the opposite, the larger translation corre-
sponding to Fig. 5b yields a stronger decorrelation and the speckle
structure is almost completely lost.

The correlation between the reference image and the image cor-
responding to motion was computed as described in Section 5.1.
The results obtained are plotted in Fig. 6 for different translation
magnitudes and for different depths D of the region relative to
the probe. Fig. 6 shows that the correlation coefficient decreased
when the translation magnitude increased. This behavior is clearly
more pronounced when the tissue is located near the probe. This
phenomenon is consistent with the observation made from

Fig. 1c: because of the rapid variation of the PSF near the probe,
a tissue located in this area and experiencing translation is ‘‘seen”
with two different PSFs, inducing the observed decorrelation.

On the contrary, this problem is quite insignificant given that
the insonified tissue was far enough from the probe: even for large
translations, the correlation showed satisfying values beyond
65 mm.

6.1.2. Deformation
The results obtained for deformation are similar to the ones ob-

tained for the translation, as shown in Fig. 7. The initial speckle
pattern designated by the rectangular box in Fig. 7a is almost com-
pletely preserved for a small 2% deformations (Fig. 7b), and is lar-
gely modified for the larger deformations Fig. 7c.

The resulting correlation is given in Fig. 8. As in the previous
case, correlation decreased when deformation magnitude in-
creased and when the distance to the probe decreased. We note,
however, that for large deformation, the correlation showed small
values, even far from the probe.

6.2. Motion estimation accuracy

This section reports the influence of previous decorrelation re-
sults on the accuracy of two motion estimation methods based
on region matching. We compared classical block matching (BM),
a reference method used in the field of motion estimation, and
the bilinear deformable block matching (BDBM).

6.2.1. Translation
Fig. 9 displays the mean error MEM as a function of displace-

ment magnitudes and depth D. For polar data and for BM and
BDBM (Fig. 9a and b), the error increased with translation magni-

Fig. 5. Simulated polar image corresponding to the tissue in initial position. A well-defined speckle pattern is designated by the black rectangle. (b) Image obtained after a
2 mm translation has been applied to the tissue. Decorrelation is very low and the initial speckle pattern may be easily tracked. (c) Image obtained after a 10 mm translation
has been applied to the tissue. Because the translation is larger, important decorrelation takes place and the initial speckle pattern is almost lost.

Fig. 6. Normalized correlation for the translation, as a function of depth from the
probe and translation magnitude.
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tude and the error was larger near the probe (D = 35 mm), consis-
tent with decorrelation being greater in this area. We note that
BDBM improved accuracy in this latter case. The same tendencies
can be observed with cartesian data (Fig. 9c and d). However, it
should be noted that the error for cartesian data was larger than
for polar data, for both BM and BDBM.

Fig. 10 displays the standard deviation SDEM as a function of
translation magnitude and depth D. As compared to the mean error
MEM, two similar tendencies appear:

� In all cases, SDEM increased with translation magnitude and was
greater near the probe.

� SDEM was smaller for polar data (Fig. 10a and b) than for carte-
sian data (Fig. 10c and d).

However, a larger difference can be observed between BM and
BDBM: in all cases, the standard deviation associated with BDBM
(Fig. 10b and d) was smaller than the standard deviation corre-
sponding to BM (Fig. 10a and c).

6.2.2. Deformation
Fig. 11 displays the mean error MEM as a function of deforma-

tion magnitude and depth D. The results associated with polar data
(Fig. 11a and b) shows that BM and BDBM were very close. In both
cases, the MEM error increased with deformation magnitude. As
opposed to translation, depth had little influence on the error. This
is related to the deformation magnitude and to the applied defor-
mation being centered on the tissue region. The maximum axial
deformation (10%) applied to the 5-mm-long tissue thus corre-
sponds to a maximum local displacement of 0.5 mm.

As shown in Fig. 11c, the combined effect of decorrelation and
sectorial geometry yielded large MEM error for cartesian data, as
compared to polar data when BM was applied. In contrast,
Fig. 11d indicates that BDBM was able to noticeably compensate
these effects and yielded an improved accuracy at all depths, par-
ticularly for the larger deformations (i.e., from 4%).

Fig. 12 displays the standard deviation SDEM as a function of
deformation magnitude and the depth D. From Fig. 12, various
observations similar to the MEM error above can be made:

� For polar data (Fig. 12a and b), BM and BDBM show similar
results. SDEM was small and increased with deformation
magnitude.

Fig. 7. (a) Simulated polar image corresponding to the tissue in initial position. A well-defined speckle pattern is designated by the black rectangle. (b) Image obtained after a
2% deformation has been applied to the tissue. Decorrelation is very low and the initial speckle pattern may be easily tracked. (c) Image obtained after a 10% deformation has
been applied to the tissue. Because the deformation is larger, important decorrelation takes place and the initial speckle pattern is almost lost.

Fig. 8. Normalized correlation for the deformation, as a function of depth from the
probe and deformation magnitude.
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Fig. 9. Error associated with translation. Row 1: Mean error obtained when motion estimation is applied on polar data using: (a) block matching (BM), (b) bilinear deformable
block matching (BDBM). Row 2: Mean error obtained when motion estimation is applied on cartesian data using, (c) block matching (BM) and (d) bilinear deformable block
matching (BDBM).

Fig. 10. Standard deviation associated with translation. Row 1: Standard deviation obtained when motion estimation is applied on polar data using: (a) block matching (BM),
(b) bilinear deformable block matching (BDBM). Row 2: Standard deviation obtained when motion estimation is applied on cartesian data using, (c) block matching (BM) and
(d) bilinear deformable block matching (BDBM).
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Fig. 11. Error associated with deformation. Row 1: Mean error obtained when motion estimation is applied on polar data using: (a) block matching (BM), (b) bilinear
deformable block matching (BDBM). Row 2: Mean error obtained when motion estimation is applied on cartesian data using, (c) block matching (BM) and (d) bilinear
deformable block matching (BDBM).

Fig. 12. Standard deviation associated with deformation. Row 1: Standard deviation obtained when motion estimation is applied on polar data using: (a) block matching
(BM), (b) bilinear deformable block matching (BDBM). Row 2: Standard deviation obtained when motion estimation is applied on cartesian data using, (c) block matching
(BM) and (d) bilinear deformable block matching (BDBM).
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� SDEM was much larger for cartesian data when BM was used
(Fig. 12a). BDBM noticeably improved this situation (Fig. 12d).

7. Results from echocardiographic data

A preliminary evaluation of the previous framework is per-
formed from an echocardiographic sequence. Data were acquired
using a Toshiba Powervision 6000 (Toshiba Medical Systems Eur-
ope, Zoetermeer, The Netherlands) equipped with a 3.25-MHz
probe and acquired on a normal subject with a frame rate of
61 fps. Each image was composed of 120 lines with an angular
interval of 0.76�, corresponding to a 90-degree explored sector.

As in the simulation, motion was estimated using the two block
matching methods (BM and BDBM) and applied to cartesian and
polar data. To conduct the experiment with varying motion ampli-
tude, the estimation was made between a fixed reference image
(frame one of the sequence) and the subsequent images (ith frame
in the sequence). The sequence studied was located in middle sys-
tole for the parasternal short axis of the left ventricle (as shown in
Fig. 13), corresponding to six frames of the data set, itself corre-
sponding to a mean displacement magnitude increasing up to
10 mm.

As ground truth reference motion was not available for these
data, the motion estimation results were evaluated by comparing
the reference image and the subsequent images after motion com-
pensation. This comparison was made on a 10 � 30-mm rectangu-
lar region of interest corresponding to the myocardium (this
region2 is depicted as a blue rectangle in Figs. 14 and 15). The com-
parison was quantified by computing the normalized correlation
(NCC).

Fig. 14a and b shows the displacement field corresponding to
the second frame obtained with BM and BDBM from polar data
and superimposed on the reference image. Fig. 14c and d provides
a detailed view of the estimated displacement field in a region in-
cluded in the myocardium and shown as the blue window on the
complete images (Fig. 14a and b). It can be observed that the field
corresponding to BDBM is somewhat smoother than for BM, which
produces higher amplitudes in the upper right region.

Fig. 14e displays the normalized correlation as a function of
the time interval. For BM and BDBM, the NCC decreased with
motion magnitude, which is consistent with the results observed
in the simulation. Moreover, BDBM appears to be more accu-
rate than BM, since it yielded higher NCC at all time intervals
(NCC is in the interval (0.98–0.55) for BDBM and (0.65–0.2) for
BM).

Fig. 14 shows the corresponding results for cartesian data.
Fig. 15c and d indicates that the field provided by BDBM was some-
what smoother than for BM. Fig. 15e shows that NCC decreased
with motion magnitude, both for BM and BDBM. As with the polar
data, we observe that the BDBM provided better results than BM,
yielding higher NCC at any time interval (NCC is in the interval
(0.98–0.2) for BDBM and (0.45–0.02) for BM).

Comparing Figs. 14e and 15e also show that the results ob-
tained from polar data appear to be more accurate than the results
derived from cartesian data, whatever the estimation method:
BDBM yielded a NCC in the range (0.98–0.55) for polar data versus
(0.98–0.2) for cartesian data. Similarly, BM provided a NCC in the
range (0.65–0.2) for polar data versus (0.45–0.02) for cartesian
data. We also note that the improvement brought by BDBM over
BM was greater for cartesian data. This is consistent with the re-
sults shown from the simulation.

8. Conclusion

This paper reports the investigation of the influence of
echographic image formation parameters (sectorial geometry,
spatially varying PSF) on speckle tracking using realistic
simulations.

These simulations first showed the influence of the decorrela-
tion induced by the system for simple motions (translation and
incompressible deformation). The decorrelation is a spatially var-
iant phenomenon, which depends on the position of the imaged
tissue region relative to the probe: for translation and deforma-
tion, decorrelation is more important for regions of the tissue lo-
cated close to the probe. Moreover, the results indicate that
decorrelation may even appear for translation, which usually
had not been considered in previous studies. This phenomenon
is limited to high-amplitude translations in regions located close
to the probe.

We quantified speckle tracking accuracy using a conventional
block matching algorithm and a bilinear deformable block match-
ing algorithm applied to cartesian and polar data. The results
show that errors are larger for the usual cartesian data whatever
the estimation algorithm: for axial translations in the range 0–
10 mm and conventional block matching, the maximum error is
4.2 mm when using cartesian data and 1.8 mm for polar data.
The corresponding errors are 1.8 mm and 0.4 mm for an applied
deformation from 0 to 10%. In the same way, the bilinear deform-
able block matching yields a maximum error of 3.6 mm (carte-
sian data) and 1.2 mm (polar data) for translation. Regarding
deformation, the error is 0.7 mm (cartesian data) and 0.3 mm
(polar data). This is related to the sectorial geometry of echocar-
diographic acquisition, which induces a sparser sampling far from
the probe.

We also show that the accuracy of tracking is significantly im-
proved by using the bilinear deformable block matching algorithm.
This improvement was found to be more significant with cartesian
data and for deformation: the maximum error indeed drops from
1.8 to 0.7 mm in this case whereas it decreases from 0.4 mm to
0.3 mm in the case of polar data. This result is consistent with
the purpose of the bilinear deformable block matching which
was designed to compensate for local deformation of the speckle
structure. For translation, the maximum error decreases from 4.2

Fig. 13. Parasternal short axis view of left ventricle. The red contours show the
myocardium borders (excluding the papillary muscles). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

2 For interpretation of color in Figs. 14 and 15, the reader is referred to the web
version of this article.
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to 3.6 mm when using cartesian data, whereas it decreases from
1.8 to 1.2 mm for polar data.

Overall, this simulation study suggests that speckle tracking
from echocardiographic data should be performed from uncon-
verted polar data. Whenever these data are not available, the track-

ing on the usual scan-converted cartesian data is markedly
improved by using deformable block matching.

Verifying these conclusions on real echocardiographic data is
difficult, since ground truth reference motion is not available. In
this experiment, this was done by computing the correlation be-

Fig. 14. Motion field estimated from polar data. Column 1: (a) motion field estimated using block matching (BM) superimposed on the whole reference frame. The blue
rectangle indicates a region of interest (c) details of the motion field in the region of interest. Column 2: (b) motion field estimated using bilinear deformable block matching
(BDBM) superimposed on the whole reference frame. The blue rectangle indicates a region of interest (d) details of the motion field in the region of interest. (e) Normalized
correlation (NCC) between the reference image and the subsequent motion-compensated images as a function of the inter-frame interval.
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tween a reference image and the subsequent image after motion
compensation. The results obtained in this way confirmed the re-
sults obtained from the simulations.
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