
554 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 5, MAY 2004

Fully Automatic Luminal Contour Segmentation
in Intracoronary Ultrasound Imaging—

A Statistical Approach
Elisabeth Brusseau*, Chris L. de Korte, Frits Mastik, Johannes Schaar, and Anton F. W. van der Steen

Abstract—In this paper, a fully automatic method for luminal
contour segmentation in intracoronary ultrasound imaging is in-
troduced. Its principle is based on a contour with a priori proper-
ties that evolves according to the statistics of the ultrasound tex-
ture brightness, which is generally Rayleigh distributed. The main
interest of the technique is its fully automatic character. This is in-
sured by an initial contour that is not set by the user, like in clas-
sical snake-based algorithms, but estimated and, thus, adapted to
each image. Its estimation combines two pieces of information ex-
tracted from the a posteriori probability function of the contour
position: the function maximum location (or maximum a poste-
riori estimator) and the first zero-crossing of its derivative. Then,
starting from the initial contour, a region of interest is automati-
cally selected and the process iterated until the contour evolution
can be ignored.

In vivo coronary images from 15 patients, acquired with the
20-MHz central frequency Jomed Invision ultrasound scanner,
were segmented with the developed method. Automatic contours
were compared to those manually drawn by two physicians in terms
of mean absolute difference. The results demonstrate that the error
between automatic contours and the average of manual ones is of
smallamplitude,andonlyveryslightlyhigher(0 099 0 032mm)
than the interexpert error (0 097 0 027 mm).

Index Terms—Active contour, coronary artery, echo envelope
statistics, intravascular ultrasound, Rayleigh distribution, segmen-
tation, snakes.

I. INTRODUCTION

SEGMENTATION of deformable structures is a common
processing problem in medical imaging. For example, coro-

nary atherosclerosis severity is mainly deduced from the degree
of vessel stenosis, induced by the atherosclerotic plaque forma-
tion [1]–[3]. It is generally estimated, from intravascular ultra-
sound (IVUS) images, by segmenting and measuring the lumen
area, and by referencing it to the total cross-sectional area of the
vessel. With the majority of IVUS systems, this work is gener-

Manuscript received July 25, 2003; revised January 12, 2004. The work of
F. Mastik was supported by the Dutch Technology Foundation STW. The work
of J. Schaar was supported by the Deutsch Hertzstiftung and the Dutch Heart
Foundation. The Associate Editor responsible for coordinating the review of
this paper and recommending its publication was M. Insana. Asterisk indicates
corresponding author.

*E. Brusseau is with the CREATIS UMR CNRS 5515, INSERM U630, Lyon,
France.

C. L. de Korte, J. Schaar and A. F. W. van der Steen are with the Biomed-
ical Engineering, Thorax Center, Erasmus Medical Center, 3015 GD Rotterdam,
The Netherlands and also with the Interuniversity Cardiology Institute of The
Netherlands (ICIN), 3501 DG Utrecht, The Netherlands.

F. Mastik is with the Biomedical Engineering, Thorax Center, Erasmus Med-
ical Center, 3015 GD Rotterdam, The Netherlands.

Digital Object Identifier 10.1109/TMI.2004.825602

ally manually performed. However, due to the tedious nature of
manual tracing, many research groups have worked on devel-
oping semi-automatic and automatic segmentation methods.

In this paper, we present a new fully automatic segmentation
method for endoluminal contour detection in intracoronary ul-
trasound images. This method has been developed in the frame-
work of preprocessing for intravascular elastography. However,
the method can be directly used for measuring the lumen area.
Intravascular elastography is an emerging technique whose aim
is to provide clinicians with a map of the arterial wall deforma-
tion during the cardiac cycle [4]–[6]. Arterial wall strain distri-
bution is estimated by tracking changes in the received signals,
induced by the blood pressure variation. Because the transducer
is positioned within the lumen and not in direct contact with
the vessel wall, the first part of the acquired RF signals corre-
sponds to echoes from blood, and the second part to echoes from
tissue. In order to assess arterial wall strain, the blood-wall inter-
face must first be delineated. IVUS elastography might provide
useful information on mechanical characteristics of plaques and,
thus, might be helpful to select the most appropriate treatment
course and to predict the disease evolution. It has also poten-
tial interest for the investigation of plaque vulnerability, since
the rupture process is correlated with plaque composition, mor-
phology, and mechanical properties [7]–[12]. With the develop-
ment of real-time three-dimensional (3-D) elastography, a ro-
bust and fully automatic endoluminal contour segmentation is
prerequisite.

Many research groups have investigated contour detection
applied to medical images and in particular, to IVUS images.
The first reported works dealt with techniques that exploited
only the image characteristics to segment structures. For in-
stance, gradient-based algorithms identify, at each angular po-
sition, the contour as the location of the maximum pixel in-
tensity variation. These techniques have been successfully im-
plemented in many fields of image processing [13]. However,
when applied to ultrasound images, their performance are de-
graded by a potentially low contrast between blood and tissue
and by low signal-to-noise ratios (SNRs). Indeed ultrasound im-
ages are characterized by a speckle noise, that is responsible
for many comparatively strong gradients throughout the whole
image. The gradient is a too local feature to discriminate be-
tween noise and diffuse actual boundaries. Consequently, the
endoluminal contour is successfully detected only in regions
where the blood-wall interface corresponds to a significant pixel
intensity variation. For low contrast interface regions, the con-
tour detection fails rapidly.

0278-0062/04$20.00 © 2004 IEEE



BRUSSEAU et al.: FULLY AUTOMATIC LUMINAL CONTOUR SEGMENTATION IN INTRACORONARY ULTRASOUND IMAGING 555

Another approach developed by Li et al. [14] exploited spa-
tiotemporal properties of RF ultrasound signals to detect the
endoluminal contour. The authors demonstrated that these prop-
erties permit an efficient separation between the echoes from
the blood and those from the arterial wall. A temporal corre-
lation method was used to evaluate the changes in RF signals,
which were acquired from the same angle at a time interval of
200 . With such a temporal resolution, this method is easily
able to discriminate between blood and vessel wall, since suc-
cessive wall echoes remain highly correlated, while those from
the blood show poor similarities. But with conventional ultra-
sound examinations, for which data are acquired at a time in-
terval of 30 ms, the processing fails rapidly. This is simply due
to the fact that, during this time interval, the vessel wall suffers
from too much motion and it, thus, decorrelates as much as the
blood.

Semi-automatic border detection techniques [15]–[22] have
also been investigated. These are computer assisted tracing
procedures that require input from experienced observers. Sev-
eral strategies have been developed to integrate the expertise of
humans into segmentation algorithms [19]. The differences in
these strategies are the amount of time and effort required by an
operator. Some procedures consist simply in manually placing
markers along the searched contour, that serve as a guide to
the segmentation algorithm [21]. Such techniques perform well
but they are generally not suited for large population studies.
Thus most programs first start with an automatically detected
contour. Then, over regions where the segmentation has not led
to the expected result, points are manually added or modified
to force the contour passing through the desired location. Such
techniques have notably been developed and validated for 3-D
intracoronary ultrasound [17], [22]. These methods are less
tedious than manual tracing, but in many cases require expert
interaction.

For clinical practice, the most attractive approaches remain
those based on a fully automatic processing. A method pro-
posed by Sonka et al. [23]–[25], dedicated to the automatic seg-
mentation of IVUS images, uses global image information and
heuristic graph searching to identify wall and plaque borders.
The authors have incorporated a priori knowledge on coronary
artery anatomy and ultrasound image characteristics into the
method. This technique is particularly advantageous for images
in which local edge gradients are insufficient to reliably iden-
tify border positions. However, the authors underlined two lim-
itations: the need to select a region of interest (ROI) prior to the
automatic border detection, and the injected a priori knowledge
that might be not applicable in all cases.

Most promising techniques appear to be those based on active
contours or snakes [26]–[29]. The principle of active contours
consists of defining an initial contour with a priori properties,
in terms of shape, continuity, smoothness and then deforming
it according to the image characteristics, until a cost function
is minimized. In practical terms an initial contour, generally a
circle, is set which then evolves according to its intrinsic prop-
erties and image features (image intensity, image gradient, …).
A balloon force [30], [31] can also be added to force the con-
tour to inflate or deflate, and prevent the contour from shrinking
to a point. A related approach exploits textural or statistical dif-

ferences between regions as the basis for active contour defor-
mation [32], [33]. This leads to techniques that are very well
suited to process noisy images like ultrasound images [34], [41].
They mainly model the envelope statistics in IVUS images by
Rayleigh distributions [35]–[37], different regions being iden-
tified by different Rayleigh parameters. The searched contour
is then the one that maximizes an a posteriori probability. This
estimator was initially introduced by Dias and Leitao [38] for
semi-automated contour detection of two heart boundaries.

Algorithm performance also depends on the selected a priori
contour characteristics, for which several models have been pro-
posed. The use of B-splines [39] permits the direct calculation
of smooth contours. Using polygons leads to simple and fast
algorithms, but requires the introduction of smoothness con-
straints [40]. The use of parametric equations makes the al-
gorithm rapidly converge to a solution, but the set of allowed
shapes of the searched contour must be specified [41].

These different algorithms lead to smooth final contours,
which ignore isolated edges and overcome the problem of low
contrast or noisy regions. However, there are a number of prob-
lems associated with these approaches such as the initialization
of the contour, the selection of the ROI, the possible existence
of multiple minima and the selection of the snake parameter
values. It is well known that the parameters of such techniques
are difficult to tune.

The aim of this paper is to present a fully automatic endolu-
minal contour segmentation algorithm we developed, that over-
comes the previously stated limitations. Like the methods pre-
sented by Haas et al. and Guerault et al. [32], [33], our technique
is based on an active contour that evolves until it optimally sep-
arates regions with different statistical properties. However, un-
like these methods, our technique requires neither the preselec-
tion of an ROI tight around the search contour, nor the initial-
ization of the contour close to its final position. This has been
overcome by the integration of a process dedicated to the com-
putation of the initial contour.

This paper is organized as follows: the theoretical framework
of echo envelope statistics and bayesian estimation of the con-
tour position is described in Section II, followed by the descrip-
tion of the method implementation in Section III. Results using
images from 15 different patients are presented in Section IV.
Section V provides a discussion of the results along with con-
cluding remarks.

II. THEORETICAL FRAMEWORK

The approach adopted in this study is mainly a statistical one.
It exploits statistical differences in blood and tissue scattering to
deform the contour. Consequently, it is of fundamental impor-
tance to first investigate the specific echo envelope statistics of
the images.

A. Statistics of Ultrasound Echo Envelope

An inherent characteristic of ultrasound B-scans is the
presence of speckle noise. Speckle is an interference pattern,
resulting from the interaction between the ultrasound waves and
the scatterers within the tissue. It has a stochastic nature since
it is formed by the summation of echo signals from randomly



556 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 5, MAY 2004

located scattering centers, each of which backscatters a random
amount of energy. Statistics of ultrasound echo envelope have
been a major subject of investigation [35], [36], [50]. It has
been demonstrated that the statistics of the B-scan brightness
depends mainly on the number of scatterers per resolution
cell, and on the distribution law of the scatterers locations
[41], [42], [43]. Three main models have been identified. The
first is for fully developed speckle induced by a large number
( ) of randomly located scatterers,
which is well modeled by a Rayleigh probability density func-
tion [32], [33], [41], [44], [45]. With this model, the probability
that a pixel has an amplitude is given by

(1)

where is the distribution parameter that needs to be estimated.
When a coherent component is introduced, for example by

the presence of a regular structure of scatterers within the tissue,
the B-scan brightness statistics can be approximated by a Rician
distribution [42]

(2)

where is the -order modified Bessel function of the
first kind, and and are parameters to be estimated. The pa-
rameter is relative to the coherent component. The group of Ri-
cian probability density functions is composed of distributions
that evolve from the Rayleigh distribution when the coherent
component is equal to zero, to the Gaussian distribution when
the coherent component tends toward infinity.

Finally, partially developed speckles induced by a low effec-
tive number of scatterers can be modeled by a -distribution (3)
[41], [45]–[49]. The -distribution family is composed of dis-
tributions that evolve from the exponential probability density
function, when the scatterer density within the tissue tends to
zero, to the Rayleigh distribution when the scatterer density be-
comes large. The -distribution is, thus, a generalization of the
Rayleigh distribution for small effective number of scatterers

(3)
where is the modified Bessel function of second kind of
order , the second moment of the amplitude, and the
effective number of scatterers per resolution cell or the effective
density of scatterers.

B. Experimental Checking of Distributions

Since scatterer density and distribution within biological
tissues are not known features, we have investigated indepen-
dently the envelope statistics of the blood and that of arterial
wall echoes in our images. The study consists of selecting,
within ultrasound envelope images, regions of homogeneous
brightness, computing their histograms and comparing them
with the above probability density functions. We have observed
that, in most of cases, the echo envelope brightness follows
a Rayleigh distribution or a -distribution, but with a large

Fig. 1. llustration of the echo envelope brightness statistics in the images
under investigation. (a) The pixel amplitude follows a Rayleigh distribution,
or a K-distribution, but with a scatterer density sufficiently large to allow
no distinction between the two curves. This corresponds to the majority of
cases. (b) The pixel amplitude here follows a K-distribution, distinct from the
Rayleigh distribution. This has been observed in a few cases only.

scatterer density that makes it similar to the Rayleigh distri-
bution [Fig. 1(a)]. Only a few cases were found to follow a

-distribution, distinct from that of Rayleigh [Fig. 1(b)].
Since the -distribution is a generalization of the Rayleigh

distribution, these observations would suggest the use of the
former as a model of the pixel amplitude in our images. How-
ever, some additional considerations have to be taken into ac-
count and, in particular, the accuracy of the distribution param-
eter estimates. Several techniques have been proposed to esti-
mate distribution parameters. The maximum likelihood method
has the least variance of all the parameter estimation techniques
and is preferred whenever it can be used. This method is em-
ployed when sample sizes are small but the form of distribu-
tion is known. It employs a likelihood function which computes
the probability that the observed samples come from a distri-
bution with specified parameters. The parameter estimates are,
therefore, the values that maximize the likelihood function. For



BRUSSEAU et al.: FULLY AUTOMATIC LUMINAL CONTOUR SEGMENTATION IN INTRACORONARY ULTRASOUND IMAGING 557

probability density functions like the Rayleigh model, the like-
lihood function results in a closed-form expression and param-
eter estimates can, thus, be easily computed [32], [33]. But for
the case of -distributions, a closed-form solution to the likeli-
hood function is unobtainable [41]. A numerical approximation
to this function can be adopted at a high computational cost,
or parameters can be estimated using a moment method [41],
[49]. The problem with moment methods is that they require
large sample sizes to estimate the sample moments with small
enough variance to provide parameter estimation with a reason-
able precision. This condition is unfortunately hardly met.

For all these reasons, we chose to approximate the ultrasound
envelope image brightness by Rayleigh distributions, for which
parameter estimates can be accurately and quickly computed.

C. Bayesian Estimation of the Endoluminal Contour Position

Let us consider an IVUS B-mode image . The searched con-
tour (denoted by ) is the border between the blood (Rb) and the
arterial wall (Rw). By using the Rayleigh model for the image
brightness, the contour position can be statistically estimated. It
is searched as a continuous, smooth closed curve that optimally
separates two Rayleigh distributions, one modeling the blood
brightness and identified by the parameter , the other charac-
terizing the arterial wall brightness and identified by .

A suitable statistical procedure to determine the contour po-
sition from an initial a priori contour with prior probability

, is the Bayesian estimation [32], [33], [37]. The Bayesian
estimator that is often used in practice is the maximum a pos-
teriori (MAP) approach. The a posteriori probability
computes for a given contour position its probability to occur.
By considering all possible positions for the contour , and
given the image , can be seen as a function, that gives
the a posteriori probability as a function of . The MAP ap-
proach, thus, searched the contour as the argument that maxi-
mizes , i.e., that has the highest probability to occur, for
the image .

This approach performs well when two regions have to be
discriminated. For the present vascular application, this tech-
nique will accurately detect the border between the blood and
the tissue, provided that both have a homogeneous brightness.
This condition is unfortunately rarely met. Indeed, the arterial
wall, specifically in the presence of an atherosclerotic plaque,
is highly heterogeneous. This implies that the representation
of the arterial wall in ultrasound images is not a single wide
area, but several juxtaposed regions whose brightness follows
different Rayleigh statistics. This complicates the shape of the
function . We will show in the following developments
that this implies that the searched border does not necessarily
correspond any more to the position of the function maximum,
but rather to a local maximum. For those reasons we propose an
approach that combines the information of both the global and
local maxima of the a posteriori probability .

By Bayes’ rule, the function of interest can be ex-
pressed as

(4)

where is the data model and is the a priori data
probability, a normalization constant which only depends on

the noise. For expression simplification and computation time
gain purposes, the equivalent formulation (5) is preferred. This
is made possible since the logarithm is a strictly increasing func-
tion, thus conserving the global and local maxima location

(5)

In our study, the data statistical model is based on
Rayleigh distributions. Since two independent regions are
considered, the blood and the arterial wall, the analytical
expression of is

(6)

where is the brightness value of the sample, and
and are the parameters of the probability density func-
tions, depending on the contour position, and on the brightness
of regions Rb and Rw, respectively. Combining (6) and (5) leads
to

(7)

with
since

The last requirement is the estimation of the parameters
and of the Rayleigh distributions. These unknown parame-
ters are estimated with the maximum likelihood approach. The
principle is to find the parameter value of the Rayleigh distribu-
tion that would have most likely produced the data we observe.
The procedure consists in computing the likelihood function.
The searched parameter value is the one that makes the likeli-
hood function reaches its maximum. This function, denoted by

, is the joint probability function of the considered samples and
is defined for the estimation of the parameter by

(8)

where is the number of considered observations, which is in
our case the number of samples of region Rb.

For the purpose of simplification, using the logarithm of
the likelihood function is preferred, since that transforms the
problem of maximizing a product into maximizing a sum.
Thus, the optimal value for is the solution of

(9)
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leading to

(10)

where is the number of samples in region Rb, given .
Similarly, the maximum likelihood estimator for is

(11)

with , the number of samples in region , given .
By replacing and by their estimates in (7), the

expression of becomes

(12)

The contour model can take many different forms (set of
points, parametric contour, …). The model implemented in our
algorithm will be fully described in the next section.

As previously mentioned, the searched borders may corre-
spond not only to the global maximum but also to a local max-
imum of and, thus, of . In order to illustrate
these difficulties, we have simulated three 3-layer media and
computed the corresponding functions (Figs. 2 and 3).
The first simulated medium is composed of 3 layers (l1,l2,l3) of
equal size [Fig. 2(a)]. Within each layer, the pixel amplitude
has been generated with a Rayleigh distribution [Fig. 2(b)]. The
only difference results from the distribution parameter value
that has been set to 25 for l1, to 60 for l2 and to 300 for l3. The
second medium has identical statistical properties than those of
the medium 1, except that the layers l2 and l3 have been re-
versed. The third medium is also the same as the first one, ex-
cept that the first layer has been shortened [Fig. 2(a)]. These
simulations are good representations of IVUS images we have
to work with. Let us consider the darker area l1 as the blood
and {l2,l3} as the tissue. The first simulation is representative
of the brightness heterogeneity of the arterial wall, due to the
attenuation of the ultrasound beam with depth [51], [52]. The
brightness of the deeper layer l3 is, thus, darker than that of the
layer l2. The second medium is a good representation of images
of arteries with soft plaques (which would correspond to l2).
Indeed soft plaques are mostly hypo-echoic, with a brightness
that is slightly higher than that of the blood. Finally, the third
simulation is representative of the situation where the catheter
is positioned close to the arterial wall, which leads to a small
blood area.

For these three configurations the functions were
computed. The a priori information on the layer interfaces
is that they are vertical edges. is, thus, determined
by moving a virtual vertical border from left to right, and
by computing the a posteriori probability for each position.
Results are presented in Fig. 3. We observe that the shape of
the function depends on the number of regions, their sizes, and
the brightness contrast between regions. The searched border,
which in our simulations is the boundary between l1 and l2,
rarely corresponds to the global maximum of the function

, but generally to a local maximum. The explanation is

Fig. 2. (a, b) Illustrative simulations. The medium 1 is composed of 3 layers
(l1, l2, l3) of equal size L. Within each layer, the pixel amplitude follows a
Rayleigh distribution, with a parameter value � set to 25 for l1, to 60 for l2,
and to 300 for l3 (b). The medium 2 has identical statistical properties than
those of the medium 1, excepted that the layers l2 and l3 have been reversed.
The medium 3 is identical to the medium 1, but with a shorter first layer.

simple: because in the medium 2 the brightness contrast is low
between l1 and l2, and strong between l2 and l3, separating
this medium into two regions implicitly leads to the result
that l1 and l2 belong to the same part. The maximum of the a
posteriori probability is, thus, reached at the higher contrast
interface. Similarly, because in medium 3 the size of the first
layer is small and because the contrast between l2 and l3 is
high, dividing this medium into two areas implicitly leads to
the result that the most probable border is the one between l2
and l3. However, whatever the case, the borders correspond to
either global or local maxima of the function and are
highlighted in the function derivative.

Contour position estimation using both the global (13) and
local maxima (14) of will be considered in the following
developments:

(13)
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Fig. 3. Representation of the a posteriori probability P(CjI) and its derivative, as a function of the contour position C. We can observed, that the searched border
corresponds to either global or local maximum of P(CjI). This observation is put in relief in the function derivative.

having removed the terms whose summation yields a constant,
since they do not intervene in the maximization problem, and

(14)

It should be noted that the previously discussed methods only
used the maximum a posteriori estimator.

III. METHOD IMPLEMENTATION

The major interest of our method for the blood-wall interface
segmentation in IVUS images is that it is fully automatic.
Indeed, it does not require that the user preselects an ROI tight
around the lumen boundary, or chooses a set of parameter
values. This fully automatic characteristic is achieved by one
essential feature of the method: contrary to most classical
snake-based algorithms, the initial contour position is com-
puted from the information of both the function and its
derivative.

The implementation of our segmentation method includes the
three main following steps:

1) preprocessing;
2) initial contour computation;
3) contour evolution.

All of them are performed on polar images. The raw data,
used in this study, are RF intracoronary ultrasound images.
These RF data were acquired in vivo with a JOMED Invision
ultrasound scanner, working with a 20-MHz 64-element array
catheter.

A. Step 1) Preprocessing

Acquired images frequently have a poor SNR and/or a low
blood-to-tissue ratio. Moreover they are affected by the presence
of a “ring-down artifact” (Fig. 4). This artifact is nearly time
invariant, and caused by the physical features of the catheter. It
results in a high brightness region around the catheter, which
makes it difficult to detect the blood-tissue interface close to the
probe.

To facilitate border segmentation, three preprocessing steps
are applied to improve the image quality. These steps are an
image truncation, a ring-down artifact amplitude weakening and
a detection of the signal envelope.

1) Image Truncation: The basis of our algorithm is to make
a snake evolve until it separates two regions, the blood and the
tissue. In IVUS images, we can observe three regions: the blood,
the arterial wall, and an area corresponding to the dead zone
of the catheter (Fig. 4). The latter, of catheter size, contains no
information about the blood or the tissue, and needs to be re-
moved, otherwise it will negatively influence the evolution of
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Fig. 4. Typical B-mode image to process (a) in Cartesian coordinates and (b) in polar coordinates. We can observe the blood, the tissue, the dead zone of the
catheter, and the ring-down artifact.

the active contour. This operation is easy to perform since the
catheter, as the imaging element, is always located at the image
center (in Cartesian coordinates), which corresponds to the first
lines in range of the image (in polar coordinates). In practical
terms, the number of lines corresponding to the catheter radius
are automatically removed from the polar image.

2) Ring-Down Artifact Amplitude Weakening: The ring-
down artifact has the property of being nearly invariant in time.
Averaging successive RF frames, thus, preserves the artifact
amplitude while strongly decreasing the amplitude of the other
structures. An averaged image of the ring-down artifact can,
therefore, be computed. The removal of this artifact is achieved
by subtracting the artifact averaged image from the image
under investigation (15).

(15)

where
initial RF image, characterized by the presence of
the ring-down artifact;
raw RF images;
number of RF images used for the averaging;
resulting filtered RF image.

The number of images used for the averaging has been fixed
to 50. This number has been observed to be sufficient to ensure
an artifact averaged image of good quality.

3) Envelope Detection: The enveloped detected image is
then computed as the absolute value of the Hilbert transform
of the artifact filtered RF image. The resulting envelope polar
image will be denoted from now on.

It has to be underlined that resulting image brightness statis-
tics are in agreement with the theory (Section II-A). Indeed the
experimental checking of the image brightness distributions pre-
sented in Section II-B was performed after these preprocessing
steps.

B. Step 2) Initial Contour Computation

Contrary to classical snake-based algorithms, our method
involves computing the initial contour. Let us divide the en-
velope polar image into regions of equal width

Fig. 5. Problem representation. The polar image under investigation is divided
intoN regions of equal width (R ; i 2 [1; . . . ; N ]) along the angular direction.
To each region R , is attributed a point M of the contour. The contour C is,
thus, searched as a polygon with N control points. The angular position of
M corresponds to the middle of R . Only its radial position r , remains to be
determined.

along the angular direction. These regions are denoted by ,
(Fig. 5). To each region we attribute a point of

the contour, . Hence, the contour ( ) is a polygon with
control points. These points are regularly positioned along the
angular direction in the middle of each region . Only their
position in the radial dimension, , remains to be determined.
This leads to a representation of the contour as a one-dimen-
sional vector

(16)

For each , the computation of its radial position is per-
formed independently of the other points. It integrates informa-
tion from the maximum of the function (i.e., the MAP
estimator) and its derivative. Because the width of is small,
we assume that, over this region, the border between the blood
and the tissue is a horizontal straight line. Therefore is
computed at all the radial positions of this line. The assumption
that the blood-wall interface is a horizontal line is only used for
the computation of . The initial contour will be obviously
the union of the points .
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Fig. 6. Illustration of the initial contour computation with N = 7 (a) Determination of the reliable points, for which the maximum of the function P(CjI) is at
the same radial position than the first zero crossing of its derivative (r max = r root) (b) Determination of the initial contour between two reliable points. It is
searched as the shortest path through r max and r root to join the two considered reliable points (c) resulting initial contour.

The location of the function maximum is then determined,
as well as the first zero crossing of the derivative. This infor-
mation is saved in two vectors and , of length

, which give for each point its two possible radial posi-
tions and . We emphasize that among the
zero-crossings of the derivative, only the first one is here consid-
ered. Indeed in IVUS images, brightness heterogeneity occurs
mainly in the arterial wall, whereas blood brightness is more
homogeneous. Under these conditions, the luminal border has
to be searched as the first zero-crossing of the function deriva-
tive. However, the ring-down artifact weakening step modifies
locally the blood statistical properties. Over sectors where the
artifact is concentrated, this preprocessing significantly modi-
fied the brightness statistics. As a result, the first zero-crossing
no longer corresponds to the luminal border. This is why is also
necessary to consider both the first zero-crossing of the deriva-
tive as well as the MAP estimator.

The initial contour is determined in two steps, as illustrated
in Fig. 6 (with ).

1) First, the points for which the maximum of the function
and the first zero-crossing of its derivative are at the

same radial position, have a strong probability to be well lo-
cated. They are points selected for the initial contour, and
are termed reliable points. In our example, they correspond
to , , , and .

2) Then, for the points for which the maximum of the function
is at a different position than that of the first zero-

crossing of the derivative, both radial positions
and are considered as possible. Let us denote by

( , respectively) the point whose coordinates
are ( ) ( ), respectively). We have to
select which one of the two points and is
going to be used for the contour initialization. This selection
requires consideration of the two nearest reliable points on
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both sides of [Fig. 6(b)]. Let us consider the region ,
where and are two distinct points. The two
nearest reliable points on both sides of are and ,
respectively. The segment [ ] represents the absolute
shortest path between the two points. Let be the point of
[ ], at angular position . is, thus, the point of ref-
erence with respect to the shortest path problem. Between

and , the one chosen for the contour ini-
tialization is the one closer to [ in our example,
Fig. 6(c)].

To sum up, the initial contour is obtained by first determining
all the reliable points, and by then finding the shortest path
through and to join two reliable points.

It has to be specified that the situation for which no reliable
points would have been found, has never been encountered. On
average around half of the points that compose an initial contour
have been determined as reliable points. Then, by completing
the contour with the shortest path strategy, we have observed
that, in most of the cases, the initial contour is already close to
its final position.

C. Step 3) Contour Evolution

The contour evolution process is no longer performed over
the entire image but rather in an ROI around the contour. This
ROI ranges from pixels above the contour to pixels below it
and will evolve with the contour.

At this step of the segmentation, a priori information about
the contour is introduced, to ensure that the final curve is smooth
and closed. The contour model expresses for each contour
point a strong correlation with its close neighbors and neglects
the influence of the other contour points further apart. To limit
computational requirements, we have, for each contour point,
taken into account the influence of the two adjacent neighbor
positions only (17). This has been observed to be sufficient (see
results Section IV)

(17)

where is the smoothness constraint. Large values of imply
smoother contours.

Hence, starting from the initial contour, the contour evolves
according to the scheme of iteratively defining the ROI and com-
puting the new contour position. This process stops when the
contour motion becomes so small that it can be ignored. The
statistical criteria we compute for estimating the new contour
position is the MAP estimator only. Indeed because the size of
the ROI is limited, the maximum of the function and the
first zero crossing of its derivative occur at the same radial po-
sition nearly all the time. Since it requires less computational
effort, the MAP estimator (13) was preferred.

D. Extension

The algorithm can be used to process image sequences. Two
images, consecutive in time or in space, often exhibit strong sim-
ilarities, and corresponding luminal contours are close to one an-
other. Using the final contour in the image [ ] as the initial con-
tour for the image [ ] is not only suitable, but facilitates and
accelerates the convergence of the snake to the searched contour,
since only the contour evolution step remains to be performed.

IV. RESULTS

In vivo coronary images from 15 patients, acquired with a
20-MHz central frequency JOMED Invision ultrasound scanner,
were segmented with the developed method. Images with a very
low SNR, soft plaques and stents were included in this study.
Only the situations of totally occlusive plaques, dissections and
side-branches were ignored. All the images were processed with
the same parameter values which were: the number of contour
points set to 26, the smoothness constraint fixed to 0.5 and
the ROI size parameter initialized to 30. The number of con-
tour points was chosen high enough to follow accurately any
luminal shape, and low enough to limit computation time. The
smoothness constraint was determined heuristically, allowing
for variations between contour points while annihilating discon-
tinuities.

Six segmented contours are displayed in Fig. 7 to illus-
trate the border detection performance. Several illustrations of
an eccentric catheter close to the arterial wall are presented
[Fig. 7(a)–(e)]. We can observe that the algorithm converges
to the right contour even when the catheter is close to a soft
hypoechoic plaque [Fig. 7(a)]. Similarly, in the case of a very
narrow lumen [Fig. 7(f)] the small size blood area has not pre-
vented the algorithm to detect the luminal border. Finally, in
Fig. 7(c), the image of a coronary artery with a stent restenose
is displayed. The stent is not located on the surface of the ar-
terial wall but inside the wall. Its representation in the B-mode
image is a set of highly bright spots, that can negatively influ-
ence the contour detection. However, the snake has not been
attracted by the bright spots and the detected contour is the
correct interface.

To assess the performance of the presented technique, the au-
tomatic contours were compared to those manually traced by
two experienced physicians. Manual contours are represented
by a variable number of irregularly spaced points. To enable
comparison between two contours, it is fundamental that each
point of one contour has a corresponding point in the other. This
problem was overcome by interpolating the contours along the
angular direction.

For each frame, the mean radius from manually traced
and automatically detected lumen contours were compared
(Fig. 8). Results demonstrate a high correlation (regression
line: , correlation coefficient ,

), although we observed that the algorithm slightly
underestimated the contours in comparison to physicians. To
assess the position of automatic contours, two kinds of errors
were computed: the error between the automatic contours and
the average of the manual ones, ( ) as described in (18),
and the error between the manual contours ( ). Re-
sults are reported in Table I. The error between two contours is
defined as the mean absolute difference on the radial position
of the contour points

(18)

where is the number of points, considered for the error com-
putation.
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Fig. 7. Six examples of automatically computed contours, including the cases of (a)–(e) an eccentric catheter position close to the arterial wall, (c) a stent restenose,
and (f) a narrow lumen. In all cases the active contour converges to the searched luminal border.
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Fig. 8. Correspondence of the mean radii of luminal contours determined by the algorithm and measured by the experts.

TABLE I
PERFORMANCE EVALUATION OF THE FULLY AUTOMATIC SEGMENTATION. MEAN, STANDARD DEVIATION, MINIMUM, AND MAXIMUM OF THE MEAN ABSOLUTE

DIFFERENCE IN RADIUS BETWEEN TWO EXPERTS (EXPERT ERROR) AND BETWEEN THE COMPUTED CONTOURS AND THE EXPERTISE (EXPERT VERSUS ALGORITHM

ERROR) ARE SUMMARIZED. THE DIFFERENCE BETWEEN A CONTOUR OBTAINED BY THE ENTIRE PROCESSING FOR AN IMAGE [i + 1] AND THE CORRESPONDING

ONE COMPUTED BY USING AS INITIAL CONTOUR THE FINAL CONTOUR FOR THE IMAGE [i] HAS ALSO BEEN INVESTIGATED (EXTENSION ERROR)

TABLE II
PERFORMANCE EVALUATION OF THE FULLY AUTOMATIC SEGMENTATION. MEAN, STANDARD DEVIATION, MINIMUM, AND MAXIMUM OF THE MEAN ABSOLUTE

AND RELATIVE DIFFERENCES IN AREAS BETWEEN TWO EXPERTS (EXPERT ERROR) AND BETWEEN THE COMPUTED CONTOURS AND THE EXPERTISE (EXPERT

VERSUS ALGORITHM ERROR) ARE SUMMARIZED. RESULTS FOR THE ALGORITHM 3-D EXTENSION ARE ALSO REPORTED

The results of the comparison of contours drawn by two
experts are the following. The interexpert error, ,
has been estimated to . This means that the
mean absolute error on the radial position of the contour points
is equal to 0.097 mm. The corresponding value for the error
between the automatic contours and the average of the manual
ones has also been determined. It has been found equal to

, i.e., only slightly higher than the interexpert
error. The maximal value of has been estimated to be 0.15
mm. This is identical to the maximal error between experts.
Finally, the minimal radial position error of the algorithm
versus experts (0.04 mm) is inferior to that between experts
(0.05 mm).

The comparative study dealt also with the absolute and
relative differences of the corresponding areas (Table II).
Because manual contours remain the reference, the algorithm
versus expert area relative difference was computed as the
absolute difference related to the experts. For the expert area
relative difference, we have considered as a reference the
average of the two manual areas drawn by the physicians. This
interexpert relative difference has, thus, been computed as the
absolute difference between the two manual areas related to
their average. Results are the following: the mean absolute

(relative) difference between manually determined areas has
been estimated to ( , respectively).
Between automatic areas and the average of the manual ones,
the absolute and relative differences have been found equal to

and , respectively. These values
are only a little bit higher than the expert errors. The maximum
area difference between experts (1.36 ) and between
experts and the algorithm (1.5 ) are of the same order.

These results demonstrate a good correlation between the
computed contours and those manually drawn by the two
physicians.

A first evaluation on the method extension was also per-
formed. We investigated the behavior of the algorithm to
process image sequences. The final contour for an image [ ]
was used as the initial contour for the image [ ]. Thus
only the contour evolution step needed to be performed. In
order to quantify the influence of this contour initialization,
the resulting final contours were compared to those obtained
by the entire processing. The corresponding error is termed
extension_error in Table I. We observe that, the resulting con-
tours are very close to those obtained by the entire processing.
Indeed, the mean absolute error on the contour radial position
was estimated to , which is very inferior to
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the interexpert error. The maximal extension_error has been
found to 0.037 mm. It still remains significantly lower than the
mean interexpert error. These results are corroborated by those
obtained for the corresponding areas. Only slight differences
are observed, that have a global tendency of slightly improving
the contour position.

V. CONCLUSION AND DISCUSSION

In this paper, a fully automatic algorithm, dedicated to lu-
minal contour segmentation in IVUS images has been intro-
duced. The technique is based on an active contour that evolves
according to the image statistical properties. The analysis of the
echo envelope statistics of the images we work with, has led
us to model the B-mode image brightness by Rayleigh distribu-
tions. The idea is then to make the contour evolve, until it sepa-
rates the blood and the tissue, represented by different Rayleigh
distributions. The main interest of the algorithm presented in
this paper is that it requires no user intervention. The fully auto-
matic character has been achieved by computing a good guessed
initial contour, from two pieces of information extracted from

. They are the location of the function maximum (MAP
estimator) and of the first zero-crossing of the derivative. Pre-
viously reported works only make use of the MAP estimator to
perform segmentation.

The method evaluation was performed in comparison to con-
tours drawn by two experts. Results have demonstrated that the
error between the computed contours and the average of the
manual ones is of very small amplitude (0.099 mm), and of the
same order than the interexpert error (0.097 mm)

The 3-D extension of the algorithm has also been discussed.
When processing image sequences, two consecutive images
often exhibit strong similarities. Therefore, the corresponding
luminal contours are often close to one another. Taking ad-
vantage of the contour location information in an image [ ] to
segment the luminal border in the image [ ] is very suitable.
This is performed by using the final contour in the image [ ]
as the initial contour for the image [ ]. This eases and
accelerates the snake convergence to the right contour.

Owing to the particular objective of this study, only the seg-
mentation of the luminal boundary has been considered. This
method can be naturally extended to the detection of the media-
adventitia interface, necessary for the assessment of the plaque
dimensions and of the degree of vessel stenosis. In practical
terms, once having determined the position of the blood-tissue
interface, the luminal area will be excluded and the second con-
tour will be searched in the remaining region, as a continuous
smooth closed curve that evolves according to the statistics of
the image. The fully automatic character of the method should
be preserved.

In this paper, the cases of totally occlusive plaques, dissec-
tions and side-branches were not considered. Future objectives
are directed toward an improvement of the algorithm, such that
it can process successfully any of these particular cases.
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