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Purpose: We propose to simulate an artificial four-dimensional �4-D� CT image of the thorax during
breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale
breath-hold. Materials and methods: Breath-hold images were acquired with the ABC �Active
Breathing Coordinator� system. Dense deformable registrations were performed. The method was a
minimization of the sum of squared differences �SSD� using an approximated second-order gradi-
ent. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing
step, called a priori lung density modification �APLDM�, was proposed to take into account lung
density changes due to inspiration. It consisted of modulating the lung densities in one image
according to the densities in the other, in order to make them comparable. Simulated 4-D images
were then built by vector field interpolation and image resampling of the two initial CT images. A
variation in the lung density was taken into account to generate intermediate artificial CT images.
The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The
accuracy of the deformable registration was assessed by the spatial correspondence of anatomic
landmarks located by experts. Results: APLDM produced statistically significantly better results
than the reference method �registration without APLDM preprocessing�. The mean �and standard
deviation� of distances between automatically found landmark positions and landmarks set by
experts were 2.7�1.1� mm with APLDM, and 6.3�3.8� mm without. Interexpert variability was
2.3�1.2� mm. The differences between Gaussian and linear elastic regularizations were not statisti-
cally significant. In the second experiment using 4-D images, the mean difference between auto-
matic and manual landmark positions for intermediate CT images was 2.6�2.0� mm. Conclusion:
The generation of 4-D CT images by deformable registration of inhale and exhale CT images is
feasible. This can lower the dose needed for 4-D CT acquisitions or can help to correct 4-D
acquisition artifacts. The 4-D CT model can be used to propagate contours, to compute a 4-D dose
map, or to simulate CT acquisitions with an irregular breathing signal. It could serve as a basis for
4-D radiation therapy planning. Further work is needed to make the simulation more realistic by
taking into account hysteresis and more complex voxel trajectories. © 2006 American Association
of Physicists in Medicine. �DOI: 10.1118/1.2161409�
I. INTRODUCTION

Accounting for organ motion in lung cancer radiation treat-
ment is an important challenge.1 Breathing motion may be
the source of several problems. It can lead to image artifacts
such as distorted target volume.2 Motion potentially leads to
undercoverage of the Gross Tumor Volume �GTV� or unnec-
essary irradiation of healthy tissues. Reducing uncertainties
on target position should result in a decrease in healthy lung
irradiation and should allow tumor dose escalation, poten-
tially leading to a better outcome.3

Respiratory motion during lung cancer radiation treatment

can be addressed in several ways: margin adaptation, patient
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breath-holding, gating, and tracking. The first approach con-
sists of the defining of internal margins that take breathing
motion into account. However, adjusting to the greatest tu-
mor movement would increase healthy tissue irradiation,
whereas defining too small margins might prevent adequate
coverage of the GTV. The second approach consists of im-
mobilizing the patient by controlled and reproducible apnea.4

It requires the evaluation of breath-hold reproducibility5 and
that the patient understands and can follow the procedure.
Gating consists of switching on irradiation when the target
passes through the beam, and off when it moves out; it re-

quires synchronization systems �such as Real-Time Position
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Management, RPM, from Varian Medical Systems�, repro-
ducibility evaluation, and adapted dosimetry, taking into ac-
count residual motion. Tracking is the most ambitious pro-
cess and requires specialized equipment and software.
Ideally, tracking enables the beam to move along with the
target.6

Whatever the approach, one needs patient-specific infor-
mation about movements induced by breathing, and possibly
by heartbeats,7 Several groups have recently proposed meth-
ods to acquire four-dimensional �4-D� CT scans.8–12 The 4-D
images are reconstructed by synchronizing acquisition with
an external �spirometer, RPM, thermometer� or internal �dia-
phragmatic cupola position13,14� respiratory signal. Data are
sorted according to a binning of the synchronizing signal and
a 3-D image is reconstructed for each bin. Such techniques
are not yet widely available. Another common way to ac-
quire such motion information consists of acquiring several
CT images at different breath-hold levels.15–17

The 4-D images are not sufficient in themselves and
should be associated with new image analysis tools.18 Ide-
ally, treatment planning should not rely only on 3-D images,
but also on a patient-specific breathing thorax model, encom-
passing all mechanical and functional information.19 De-
formable registration algorithms can be used to automatically
propagate 3-D organ or target delineation to all time-series
images. They can also be used to build what we call a “4-D
model,” composed of spatiotemporal trajectories of all vol-
ume elements in the thorax. Using such a model would con-
tribute to better patient-adapted management of organ mo-
tion and would provide helpful information for planning
real-time tracking and delivery.

In this paper, we propose a preliminary approach to build
a 4-D breathing thorax model for a given patient. The model
was built from CT scans acquired at exhale and inhale
breath-holds, using image preprocessing, deformable regis-
tration, vector field interpolation, and image resampling with
Jacobian-based generation of lung densities. This prelimi-
nary model does not yet include patient physiological prop-
erties nor mimic motion hysteresis, but could serve as a basis
for more complex models.

II. PREVIOUS APPROACHES

This section is a review of several studies investigating
deformable registration between CT images acquired at dif-
ferent breathing states. Readers interested in generic deform-
able registration methods can refer to Refs. 20 and 21. We
will only focus on studies using deformable registration be-
tween CT thorax images: inhale/exhale breath-hold CT im-
ages, 3-D images of a 4-D CT scan, images acquired at vari-
ous moments during the treatment for follow-up studies �see
Ref. 22�, or interpatient thorax images �to build an atlas of
the human body, for instance23�.

Generally, the deformation is computed iteratively. At
each iteration, the current deformation is evaluated according
to two quantitative measures: a dissimilarity measure and a
regularization measure. Low dissimilarity values indicate

that the reference image is close to the current deformation
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image �high values indicate that this is not the case�. There
are two main types of dissimilarity measures: measures
based on a sparse set of features and measures using statis-
tical analysis on the grey level distribution. Regularization of
the deformation is the process that ensures a spatial coher-
ence of the displacement field. Low regularization values
indicate that the deformation is smooth or well-behaved.
Regularization can be performed by including constraints on
the vector fields, in order to penalize vector fields having
neighboring voxels with motions in opposite directions, for
instance; or an intrinsically smooth deformation field can be
obtained by using different types of splines.16,23–25

Several groups used sparse sets of anatomical features
�mostly selected points or extracted surfaces� in each image,
established pairs of correspondences between features, and
finally computed a dense displacement field with an interpo-
lation model based on the paired features.26,27,23,28,16,24,22 In
Refs. 26, 27, and 16, features were points manually located
and paired by experts. Experts successfully established cor-
respondence between sets of points, even when interobserver
variability was taken into account, but it is a time-
consuming, error prone process that is not appropriate for
daily use. In Ref. 24, features were automatically determined
using the image gradient and, in Ref. 22, using slice by slice
segmentation. Methods employing automatic feature selec-
tion face the difficulties of �1� establishing a correspondence
between landmarks and �2� ensuring that the extracted land-
marks in the two images correspond to the same physical
points. Moreover, landmarks should be uniformly distributed
within the volume, in order to correctly infer the deforma-
tion. Warping models used to compute dense displacement
fields were as follows: thin-plate spline16,23 with inverse-
consistent constraints,23 radial basis interpolation with the
shift log function,22 and B spline.24 Table I summarizes the
different types of landmarks that have been used.

An alternative class of methods relies on dense intensity-
based similarity measures. Most authors27,29,23,30,31,25 used
the sum of squared intensity differences �SSD; see Sec.
IV C� or the sum of intensity differences �SID� for measuring
dissimilarity and neglected the variations of lung density due
to breathing. Sundaram et al.32 used normalized cross-
correlation �CC� on 2-D MRI slices, Coselmon16 used mu-
tual information �MI� on right lung images, Weruaga et al.29

computed a similarity measure that was a combination of CC
and SSD. All these �dis�similarity measures potentially took
into account the change in lung density due to inspiration,
but this was not studied by the authors. However, such ap-
proaches required the computation of the similarity measure
over the neighborhood of each point, while SSD is a voxel to
voxel measure. Table II summarizes some characteristics of
deformable registration methods used for thorax CT analysis.

To our knowledge, no study has addressed intermediate
organ positions throughout the breathing process or com-
pared results with and without taking into account changes in
lung density. Motion can be visualize using 4-D CT images
and successive deformations between 3-D image time series.
However, 4-D CT scans are not widely available and further

work is needed to merge successive deformable registrations
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TABLE I. Types of landmarks used for thorax CT registration �BH CT=brea
IMSP=iterative most similar point; SOM=self-organizing map�.

References Types of features

Fan et al., 2001 �Ref. 27� Bronchial points of airway
trees and vessels+lungs
surfaces

Li et al., 2003 �Ref. 23� Branch of the pulmonary
airway tree

Betke et al., 2003 �Ref. 28� Sternum, vertebra, trachea

Coselmon et al., 2004 �Ref. 16� Right lung, in exhale image

Stewart et al., 2004 �Ref. 24� Points according to image
gradient characteristics

Matsopoulos et al., 2005 �Ref. 22� Vertebral spine, thoracic
ribs and shoulder blades

TABLE II. Characteristics of some dense deformable registration methods
OFC=optical flow constraint; MI=Mutual information; TPS=thin-plate spl

Reference Similarity measure

Fan et al., 2001 �Ref. 27� SSD �OFC�

Weruaga et al., 2003 �Ref. 29� Combination of CC+SID

Li et al., 2003 �Ref. 23� Consistent SSD

Lu et al., 2004 �Ref. 30� SSD �OFC�
Guerrero et al., 2004 �Ref. 31� SSD �OFC�
Kaus et al., 2004 �Ref. 25� SSD
Coselmon et al., 2004 �Ref. 16� MI
Sarrut et al., 2005 �Ref. 5� SSD �second-order gradient�
Sundaram et al., 2005 �Ref. 32� CC
This work SSD �second-order gradient�+APL
old Computerized Tomography; FU CT=follow-up CT acquired on the sam

Selection Pairing Numbers

Manual for points
and auto for lung surface

Manual 5 to 6 featu
points on e

Auto �airway tree
segmentation and thinning�

Manual 10–15 poin

Auto �templates based� Template-
based method

80 landmar

Manual �roughly� Semiauto 30 poins on
lung �5–6 b

Auto �image gradient� Auto �IMSP�

Auto �slice by slice
segmentation�

Auto �SOM� About 500

for thorax CT registration �SSD=sum of squared intensity differences; SI
H-CT=breath-hold CT; MRI=magnetic resonance imaging�.

Regularization/warping model Resolution

Optical flow constraint+
anisotropic smoothness+divergence free

Gradient descent

Parametric models and smooth
regularization adapted from snake

Fitting and filter

Consistent TPS Gradient descent
�alternate with la

Frobenius norm on Jacobian matrix Gauss-Seidel fin
Frobenius norm on Jacobian matrix Gradient descent
B spline Levenberg-Marq
TPS Iterative with co
Gaussian Gradient descent
Linear elastic �fluid� Gradient descent
Gaussian and linear elasitc �fluid� Gradient descent
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into a single, consistent 4-D deformable model. In this study,
we propose an image processing technique that takes into
account the changes in lung densities during the deformable
registration, and we outline a method for generating artificial
intermediate CT images.

III. MATERIAL

We used images from patients enrolled in a clinical study
initiated at our institution �a study approved by the local
ethics committee according to French law�. For each patient,
three CT image sets were acquired in breath-hold. Active
breath-holding was implemented with Active Breathing Con-
trol �ABC� device, developed by Wong et al.33 and commer-
cialized by Elekta©. ABC immobilizes a patient’s breath dur-
ing acquisition at a predefined respiratory level controlled by
a digital spirometer. The three image sets were acquired at
about 0.2L below normal expiration �BH1�, about 0.2L
above normal inspiration �BH2� and at 70% of the total lung
capacity �BH3�, according to patient ability. The dataset was
composed of 3-D images of size 512�512 with 60−70
slices and 0.9�0.9�5 mm3 voxels. In this study we studied
four datasets. Functional lung information such as vital ca-
pacity, residual functional capacity, and compliance was
available for each patient. Finally, for each CT image acqui-
sition, the air-time signal was recorded by the ABC device.
The signal corresponded to the airflow �in liters� as a func-

FIG. 1. Concatenation of three parts of an ABC �air flow� signal. Each part s
The three breath-hold levels correspond to about 0.2L below normal expirati
of the total capacity �BH3�. The three horizontal lines delimit the end, the b
tion of time �in seconds�, at a rate of 1 /50 s. Figure 1 depicts
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the three parts of the signal. Each part shows a short period
of free breathing, followed by a breath-hold of about 20 s.

IV. METHOD

The proposed method involved four main steps. �I� Pre-
processing consisted of segmenting the 3-D images into
three regions labeled as air, patient, and lung. �II� We per-
formed an a priori lung density modification in order to take
into account the density decrease due to inhalation. �III� A
dense deformation field between two CT images was then
computed by using an optical-flow-like approach, adapted
for large deformations. �IV� The last step consisted of gen-
erating intermediate deformation fields by linear interpola-
tion and generating intermediate 3-D CT images by back-
ward warping and Jacobian-based lung density generation.

A. Step I: Image preprocessing

Preprocessing steps consisted of identifying voxels that
did not belong to the patient �air, table� and removing them
from images. This was done by thresholding and morpho-
logical operations.5 Voxels outside the patient were attributed
a Hounsfield value of −1000 �air density�. Images were then
rigidly registered in order to align as much as possible the
rigid bony structures �spine�. This was done by downsam-
pling voxel intensities from 16 bits to 8 bits and by selecting

a short period of normal breathing followed by a breath-hold of about 20 s.
xhale, denoted BH1�, 0.2L above normal inspiration �inhale, BH2� and 70%
ning, and the mean of normal respiration.
hows
on �e
egin
intensities centered on bony structures. We used an imple-
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mentation of voxel-based rigid registration �based on Refs.
34 and 35� developed at our institution, using a correlation
coefficient as the similarity measure and Powell–Brent as the
optimization method. The quality of rigid registration was
difficult to assess because images were not related by a rigid
transformation. However, we checked that rigid structures
were aligned by computing the overlap percentage of a seg-
mented spine. The mean overlap was 64% between BH1–
BH2 and 51% between BH1-BH3 before rigid registration,
and, respectively, 74% and 84% after registration; see Fig. 2.
We did not further investigate the validation of rigid regis-
tration because the accuracy of deformable registration is not
sensitive to the rigid step’s accuracy. When registered, im-
ages were resampled using the rigid transformation model
and trilinear interpolation in order to have isotropic voxels.

B. Step II: A priori Lung Density Modification
„APLDM…

The use of dissimilarity measures such as SSD leads to
the assumption that point intensity is conserved from one
image to another, but at a different location. This intensity
conservation assumption is globally valid for each volume
element outside the lungs because images are of the same
modality. However, it is invalid inside the lung where the
quantity of inspired air leads to a decrease of lung density.
The density decrease is known to be distributed in the whole
lung volume,36 although it is more important in the lower
parts of the lungs than in the upper parts;37 indeed, regional
specific thoracopulmonary compliance was found to increase
with the lung distance from the lung apex. We thus proposed
to artificially change the lung density of one image in order
to be closer to the intensity conservation assumption.

The a priori precise knowledge of correct densities in the

FIG. 2. Two examples of overlapping between segmented bony structures.
Left images were taken before rigid registration and right images after.
Overlapping areas are displayed in light grey and nonoverlapping areas in
dark grey.
lungs is not possible because it would require knowing each
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volume element’s displacement, which is exactly what we
are looking for. On the other hand, if the final density of each
volume element was known, correct local norms of displace-
ment could be computed. Let I1 and I2 be the two images to
be registered. Let �1�z� and �2�z� denote the mean lung den-
sity of slice z. By identifying and pairing the first and last
lung slices in the two images, we linearly related slice z in
image I1 with slice z� in image I2. Then, modifying density
I1�x� of voxel x belonging to slice z, by I1��x�= I1�x�
+�2�z��−�1�z� allowed to artificially change lung densities of
image I1 according to those of I2. Images modified with this
technique are called APLDM images.

C. Step III: Deformable registration schemes

Deformable registration between two images I1 and I2 is
generally considered as the minimization of an energy func-
tion composed of a tradeoff between image dissimilarity and
deformation regularity. We denoted by u�x� the displacement
of a point x and by ��x�=x+u�x� the related deformation.
Dissimilarity was measured using the sum of squared differ-
ences �SSD�, SSD�I1 , I2 ,��=�x���I1�x�− I2(��x�)�2 �with �
the overlapping image domain�. We used two types of regu-
larization. The first one was Gaussian convolution21 of the
vector field, denoted by G, because it is known to allow fast
convergence for large displacements. It consists of the appli-
cation of a 3-D Gaussian filter to the three components of the
vector field, resulting in a smoother field. The second regu-
larization was linear elastic20 regularization that constrains
the vector field to be close to the deformation of an elastic
material, for which the force- displacement relationship is
assumed to be linear.

As minimization was performed by a steepest gradient
descent, the local gradient �i.e., the gradient of each point� of
the SSD and the regularization had to be computed. For the
gradient of the SSD, we used an expression, denoted by �L,
proposed by Pennec et al.,38 which limits the local displace-
ment at each iteration according to a maximum vector dis-
placement � �see Eq. �1��. This criterion is an approximation
of a second-order gradient descent of the SSD.39 For small
displacements, as is the case at each iteration, it is equivalent
to express �L according to the gradient of image I1 or of
image I2 �by inverting the transformation�. It is, however,
simpler and faster to use �I1 because it does not require the
computation of �I2 at each iteration, unlike in Ref. 30. For
one given voxel x, the local iterative update schemes accord-
ing to the two methods G �Gaussian� and LE �linear elastic�
are expressed in Eq. �2� as proposed in Ref. 39, and Eq. �3�
using steepest gradient descent:40

�L�x,u� =
I1�x� − I2„x + u�x�…

��I1�x��2 + �2�I1�x� − I2„x + u�x�…�2�I1�x� ,

�1�

�G� ui+1�x� = G�„ui�x� + �L�x,ui�… , �2�

�LE� ui+1�x� = ui�x� + ��� �L�x,ui�
+ �1 − ��� LE�x,ui�� , �3�
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�LE�x,u� = �1 − 	��„� · u�x�… + 	 
u�x�; �4�

ui denotes the displacement field at iteration i, u�x� denotes
the displacement at point x, �I1�x� denotes the gradient of
image I1 at point x, G��·� denotes Gaussian kernel of vari-
ance ��0 �large s values smooth the vector field�, LE�·�
denotes linear-elastic regularization operator, � denotes the
tradeoff between image dissimilarity and regularization, and
��0 denotes the gradient descent step. Large � values in-
crease the weight of image dissimilarity, while low values
increase the weight of regularization ��� �0:1��. Large �
values could decrease the number of iterations required to
converge, but also increase the possibility to get trapped in
local minima. The gradient of linear elastic regularization is
expressed in Eq. �4�, with 	 � 1

2 �	
1� denoting the tradeoff
between the Laplacian and the gradient of divergence, as
defined in Ref. 41. Low values of 	 are related to the lateral
contraction due to longitudinal extension. Differential opera-
tors of the linear elastic regularization model were computed
by finite differences. Gaussian filtering was performed using
Deriche’s recursive Gaussian filter.42

D. Step IV: Intermediate image generation

We describe here a method to generate artificial CT im-
ages corresponding to intermediate breathing states, taking
into account deformation fields between two inhale/exhale
CT images. The goal of the first step is to generate interme-
diate deformation fields. The second step performs image
warping with Jacobian-based density generation.

1. Intermediate deformation field

Computed vector fields described the start and end posi-
tions of each volume element �voxel� in the source image. To
obtain the intermediate thorax position, we considered the
linear pathway of each particle along its displacement vector,
assuming that each particle displacement is along a straight
line. Let u be the displacement map that deforms image I1

into image I2. Let s� �0,1� denote the intermediate step be-
tween the two images. The intermediate displacement field
corresponded to us=su.

This is an approximation of real movements since we
know that displacements are subject to hysteresis:43 the in-
halation pathway is different from the exhalation pathway. In
Ref. 43, hysteresis was observed �on tumors� in 50% of cases
�10 of 20 patients� and the amplitude was lower than 3 mm,
except for one patient with 5 mm amplitude. According to
the data presented in Ref. 43, we computed the ratio between
hysteresis and displacement �see Table III�. Results sug-
gested that the major part of the displacement is not con-
cerned with hysteresis �particularly for large displacements�
and that lower parts of the lung show less hysteresis than
upper parts, although this does not imply that displacement is
close to a straight line�. Non-straight-line displacement and
the effect of hysteresis should not be neglected in the future,

particularly for upper parts of the lung.
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2. Jacobian-based intermediate voxel density
generation „JBDG…

For a given intermediate displacement field us computed
between two images I1 and I2, simple image warping would
not take into account the density change due to the variation
in air volume. Generating intermediate lung densities is pos-
sible by interpolating start and end densities. For that, we
need to know the inverse of the deformation �when inversion
is possible� or the two deformation fields between I1 and I2,
using alternatively each image as a reference. We also pro-
posed to compute local lung densities according to local vol-
ume change due to the deformation.

Let � denote a deformation field computed between im-
ages I1 �reference� and I2. Reverse mapping makes it pos-
sible to warp intensities of image I2 and obtain an I1-like
image.39 Note that � was computed from I1 to I2, but it was
I2, which was deformed by �implicitly� the inverse of the
deformation. Let v2 denote an initial volume in I2 with initial
density �2, and v1 denote the final volume obtained after
deformation. We are looking for final density �1, expressed
in Hounsfield units, HU1=1000���1−�w� / ��w−�a�� with �w

the water density and �a the air density �inferred by an esti-
mation of the Hounsfield units of air and water on the
images27�. A local volume change due to the deformation
could be approximated from the determinant of the Jacobian
of the deformation field:44 v2 /v1�det����=det��u+Id�
�with Id the identity matrix�. The only difference between
two lung states is the volume of air. Irrespective of the mass
of air �because �a is close to 0�, the masses of the two vol-
umes v1 and v2 are identical: �1v1=�2v2. Thus, we have �1

=�2�v2 /v1�. In Hounsfield units, we get �with �a=0 and �w

=1�

HU1 = det�����1000 + HU2� − 1000. �5�

Finally, the warped image can be computed by reverse map-
ping of ��I2� values, converted according to Eq. �5�.

3. Temporal sequence

The intermediate states do not form a temporal sequence

TABLE III. Ratio between hysteresis and displacement �in mm� determined
as in Ref. 43. The last column indicates the location of the measured point.

Patient Magnitude of 3-D displacement Hysteresis norm Ratio Lobe

20 24.7 1.0 4% Lower
9a 13.6 2.0 15% Lower
10 12.2 2.0 16% Lower
19 12.6 3.0 24% Middle
12 6.0 2.0 33% Upper
8 12.0 5.0 42% Upper
1 4.2 2.1 49% Upper
11 3.3 1.8 54% Upper
2 2.9 1.8 63% Upper
15 3.4 2.5 73% Upper
9b 4.8 3.6 75% Upper
because index s does not refer to a temporal dimension but to



611 Sarrut et al.: Simulation of 4D CT images 611
an intermediate position. To relate index s to a temporal de-
formation �indexed by t�, we used the airflow signal avail-
able from the ABC device, denoted Flowair�t�, that gives in-
haled air volume as a function of time. For a given s, we
computed the corresponding lung air volume, denoted by
Volair�us�=Vs, from the generated intermediate image. Then,
the intermediate image was associated with time t such that
Flowair�t�−Flowair�ref�=Vs−Vref, with Flowair�ref� and Vref

the air flow and volume corresponding to image I1. The per-
centage of air volume inside the regional lung was computed
as in Ref. 27 �Eq. �6��, where the relation between Houn-
sfield units and densities of air and water is considered linear.
For any temporal breathing signal, it was thus possible to
associate each intermediate step s with a time step t,

%air = 1 −
HU − HUair

HUwater − HUair
. �6�

V. EXPERIMENTS AND RESULTS

A. Experimental setup

Several registrations were performed in order to compare
and evaluate the methods: with and without APLDM, with
Gaussian or linear elastic regularization. Trilinear interpola-
tion was used throughout the different steps. The number of
iterations for Gaussian regularization was empirically set to
3000 �after convergence� in order to compare results. Linear
elastic regularization was performed after Gaussian regular-
ization using 1000 supplementary iterations because conver-
gence using Gaussian is faster at the first steps of the
registration.40 Results obtained when using linear elastic
from the first iteration were similar to those obtained using
Gaussian, then linear elastic regularization, but this required
substantially more iterations. Maximum vector displacement
�, Eq. �1�, was set to 1.0 voxel. The variance of Gaussian
regularization was �=1.0. For linear elastic, � was set to 0.5,
� to 0.1, and 	 to 0.6.

Registrations were performed according to the same ref-
erence �breath-hold at maximal lung volume, BH3–BH1,
BH2–BH1, BH3–BH2� for four different patients. The regis-
trations correspond to different magnitudes of deformation:
BH3–BH1 and BH2–BH1 were large deformations �lung
volume increase by, respectively, 162% and 151%; larger
displacements of about 30 mm�, whereas BH3–BH2 were
small deformations �108%�. We did not study registration
consistency; interested readers can refer to Refs. 40 and 20.
Images and computed vector fields were sampled at 2.5
�2.5�2.5 mm3, leading to an image size of about 200
�200�120 voxels �4.8 million voxels�. We obtained a total
of 48 deformation fields.

B. Validation with expert landmarks

1. Material and method

Anatomical landmarks inside the lungs were manually se-
lected and labeled in each image by four experts �a lung
specialist, a physician, and two physicists�. For each patient,

the first expert determined a reference set of landmarks in
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each image, with the following instructions: each landmark
should be undoubtedly identifiable and labeled with a de-
scriptive name, allowing other experts to find it; the land-
marks should be spread as uniformly as possible throughout
the lungs �in left/right lung, upper/lower, and central/
peripheral part of the lungs�. Between 14 and 25 image
points were selected, corresponding to the carina, calcified
nodules, culmen-lingula junction, division branch of pulmo-
nary artery, apical pulmonary vein of upper lobe, for in-
stance.

These landmarks were then located in the two other im-
ages by all the experts. Let pi

e denote a landmark location in
image Ii, selected by expert e. The four locations of the point
were averaged to define a pseudoground truth landmark de-
noted by qi=

1
4�epi

e. In order to evaluate the variability asso-
ciated with the manual identification of anatomical land-
marks by observers, we computed the mean and the standard
deviation of the distances between all qi and all pi

e. Let I1

and I2 be two images to be registered. For each q1 in refer-
ence image I1, we computed its location r2 in I2 using the
displacement field u computed between I1 and I2: r2=q1

+u�q1�. Distances d2 between the reference landmark q2 and
the estimated landmark r2 were then computed: d2

=	�q2−r2�2.

2. Precision of manual landmark selection

The task of manually selecting landmarks was time con-
suming and was considered tedious by experts. The selection
of landmarks in end-expiration images was also considered
more difficult because of tissue thickening. Interobserver
variability, characterized by the mean and standard deviation
of all distances between all qi and all pi

e, was 2.3�1.2� mm or
1.6�0.9� voxels. Distances di are displayed in Table IV. An
example of landmark positions is shown in Fig. 3.

3. Jacobian of the deformation field

We also computed the percentage of points with a nega-
tive Jacobian in each deformation field. A negative Jacobian
means that the deformation is locally noninvertible and is an
indicator of the locally bad estimation of the deformation.44

Table V shows the mean percentage of volume elements with
a negative Jacobian and indicates whether differences be-
tween methods were or not statistically significant.

4. Conclusion

Both criteria �the distance between landmarks, negative
Jacobian� lead to two similar conclusions: �1� deformable
registration performed better with APLDM than without, and
�2� the difference between Gaussian and linear elastic regu-
larization was not statistically significant. Registrations with
APLDM provided superior accuracy, with 2.7�1.1� mm mean
and standard deviation for Gaussian and large deformation,
versus 6.3�3.8� mm without APLDM. The difference was
statistically significant for large deformations �BH3–BH1
and BH2–BH1, p=0.001� and not significant for small defor-

mations �BH3–BH2�. This accuracy was similar to the inter-
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expert variability �2.3 mm�. Gaussian and linear elastic regu-
larizations led to similar results �differences were not
statistically significant�. APLDM led to significantly fewer
points with negative Jacobian values �p�0.002�. Gaussian
regularization led to fewer points with negative Jacobian val-
ues than linear elastic regularization, but this result was not
statistically significant.

For five landmarks �over 60 points�, distances di were
larger than 10 mm �maximum was 15 mm�, clearly indicat-
ing that the deformable field was badly estimated locally.
This was probably due to the high differences between lung
densities in parts of the lung due to the increased air volume
and to the presence of emphysema bubbles. Further work is
needed to investigate these situations and to automatically
detect and correct them. Images warping with deformation
fields generated with or without APLDM achieved compa-
rable visual results, except in some lung locations, provided
that the mode of intensity scaling was carefully selected �see

TABLE IV. Mean of distances between reference and estimated landmark p
deformable registration: with and without A Priori Lung Density Modificat
methods. Distances are expressed in millimeters in the left table and in voxel
in initial images�.

Distances are in millimeters

Initial
distance Without APLDM APLDM

G LE G

BH3–BH1
P1 16.5 7.6 7.6 2.1
P2 15.1 10.2 9.0 3.7
P3 23.8 8.4 8.6 4.2
P4 17.6 11.7 8.8 3.6
Mean
Stdev

18.2 9.5 8.5 3.4

3.8 1.8 0.6 0.9
BH2–BH1

P1 16.2 7.4 7.2 2.0
P2 11.0 6.2 5.7 1.6
P3 20.6 5.5 6.5 4.4
P4 13.8 11.5 8.6 3.7
Mean
Stdev

15.4 7.6 7.0 2.9

4.1 2.7 1.2 1.3
BH3–BH2

P1 5.8 2.2 2.3 2.2
P2 4.8 1.7 1.9 1.8
P3 6.8 1.8 1.8 1.7
P4 5.2 1.9 1.8 1.8
Mean
Stdev

5.6 1.9 2.0 1.9

0.9 0.2 0.2 0.2
Total

Mean
Stdev

13.1 6.3 5.8 2.7

6.4 3.8 3.0 1.1
ositions for the initial pairs of images �column “initial distance”� and for each
ion �APLDM� method, with Gaussian �G�, or linear elastic �LE� regularization
s in the right table �computed according to the anisotropic resolution of the voxel

Distances are in voxels

Initial
distance Without APLDM APLDM

LE G LE G LE

2.2 16.0 6.4 6.1 2.1 2.0
3.5 5.4 7.2 6.4 2.3 2.3
5.0 22.7 7.0 6.7 3.6 3.7
4.2 13.2 11.6 8.3 3.0 3.6
3.7 14.3 8.0 6.9 2.7 2.9

1.2 7.2 2.4 1.0 0.7 0.9

1.9 13.3 6.2 5.9 1.7 1.6
1.8 5.1 5.0 4.6 1.3 1.3
4.8 20.5 4.8 6.0 3.3 3.5
4.6 11.7 11.3 8.4 3.3 4.2
3.3 12.7 6.8 6.2 2.4 2.7

1.6 6.3 3.1 1.6 1.1 1.4

2.3 3.7 1.6 1.6 1.6 1.6
2.0 1.3 1.3 1.5 1.2 1.4
1.8 3.1 1.0 1.0 1.1 1.1
1.8 2.4 1.4 1.2 1.2 1.1
2.0 2.6 1.3 1.3 1.3 1.3

0.2 1.1 0.2 0.3 0.2 0.3

3.0 9.9 5.4 4.8 2.1 2.3

1.3 7.4 3.7 2.8 0.9 1.1
Fig. 4�. However, we observed that the deformation fields
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FIG. 3. Slices from BH3 �inhale, on the left� and BH1 �exhale, on the right�.
Examples of �pseudoground truth� landmarks selected by experts are marked
with a white cross. Black positions were obtained by applying a deformable

field to the white positions within images on the left.
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themselves were different �see Fig. 5�: discontinuities existed
without APLDM and disappeared when using it. The mean
�standard deviation� of norms of the vector field differences
was about 9.1�5.2� mm �or 3.6�2.0� voxels�. Differences
were mostly located in the lung periphery.

C. Artificially generated intermediate image

1. Materials and methods

Our goal was to evaluate artificially generated intermedi-
ate images. We used a 4-D CT dataset acquired using a pro-
tocol similar to the one described in Ref. 10. This 4-D
dataset was composed of ten 3-D CT images acquired at
different phases of the respiratory cycle, from the end of
normal inspiration to the end of normal expiration. All 3-D
CT images were taken with the following resolution: 512
�512�88, with a voxel size of 0.97�0.97�2.5 mm3.
They were downsampled to an isotropic voxel size of
2 .53 mm3. From the two extrema 3-D images �denoted II for
end-inspiration and IE for end-expiration�, we generated two
initial deformation fields �with APLDM�, denoted by �IE and
�EI, taking alternatively each image as a reference. Accord-
ing to the method described in Sec. IV D, we generated in-
termediate vector fields and intermediate images. Vector

TABLE V. Mean percentage of negative Jacobian �averaged on all patients�.
A comparison between pairs of methods: with/without APLDM, G/LE. The
last column indicates whether the differences were statistically significant or
not �paired t tests�.

BH3–BH1 BH2–BH1 BH3–BH2 Mean Signific.

With APLDM 2.4% 1.4% 0.3% 1.4% Yes
Without APLDM 4.4% 3.0% 0.4% 2.6% p�0.002
Gaussian 3.2% 1.9% 0.3% 1.8%
Linear elastic 3.7% 2.4% 0.4% 2.2% no
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fields were evaluated by a using expert-selected landmarks
and images were evaluated by a voxel-based comparison
with 3-D images available in the reference 4-D dataset.

�a� Intermediate vector fields. A physician selected 25
landmark points �a similar protocol as in Sec. V B� in four
images: IE, II, and two intermediate images denoted by I1

and I2, corresponding to intermediate lung volumes �lung
volumes for IE, I1, I2, and II were, respectively, 4315, 4692,
5004, and 5181 cm3�. Let p be a landmark and pE, p1, p2,
and pI its positions in images IE, I1, I2, and II.

We first computed the shortest distance, denoted by li,
between pi �with i= 
1,2�� and the line segment defined by pI

and pE. Low values of li indicated that the displacement of
the landmark was close to a straight line �as we assumed in
Sec. IV D 1�. Our assumption not only implies that the land-
marks were close to the pE to pI line, with each pi�pI

+ki�pE−pI�, but also that the factor ki was the same for all
points �see Fig. 6�. Landmarks pI were then warped accord-
ing to the intermediate vector field, and we compared the
new warped positions pi

* to the reference positions pi.
�b� Intermediate warped images. Intermediate deforma-

tion fields �s were computed such that warped images have
approximately the same lung volume as the intermediate im-
ages. We used the sum of absolute differences �SAD� as a
quality measure between warped Ii

* and reference Ii images:
SAD�Ii

* , Ii�=�x�� � Ii
*�x�− Ii�x��, with � the overlapping re-

gion of the lung areas. Points with a negative Jacobian �less
than 1.3%� were removed from the SAD computation. We
tested three methods to generate intermediate images: with
or without JBDG, and by combining two vector fields by
linear interpolation between images warped with �IE and
with �EI �see Sec. IV D 2�.

2. Results

Distances between landmarks in image I1 and landmarks
in other images �IE, I1, and I2� are displayed in Table VI.

FIG. 4. A comparison between the ref-
erence image �BH3� and warped im-
ages ��−�BH1�� obtained from defor-
mation fields with and without the
APLDM method. Images are dis-
played with a grey scale that enhances
the intensities in the lungs. The dis-
played slice was selected to focus on
the differences between the two meth-
ods: white arrows indicate regions
with visible differences.
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Only four of 50 intermediate point positions have distances
greater than 4 mm. Distances l and factors k are also indi-
cated �see Sec. V C 1. The mean of SAD rates between arti-
ficial images I1

* and I2
* and reference images I1 and I2 are

displayed in Table VII.

3. Conclusion

The accuracy of the initial deformation �between II and
IE� was 2.1�1.4� mm, which was similar to the one reported
above �Sec. V B�. Distances li were small �1.3 mm�, indicat-
ing that the straight-line assumption was globally valid.
However, the relatively high standard deviation of the k2

factor �0.3� suggested that, even if landmarks seem to follow
a straight-line path, a single k cannot be used for all voxels.
For example, it should be possible to compute a parameter k
for each voxel according to an a priori displacement speed
derived from a physiological study. For intermediate images,
the accuracy was of the same order as for the initial registra-
tion �2.6�1.7� mm�. The JBDG method only slightly im-
proved image warping. Better results were obtained by using
linear interpolation between warped images with �IE and
with �EI, but this requires the computation of two vector
fields. This will be investigated in the future. Figure 7 illus-
trates artificial intermediate images.

FIG. 5. Deformation fields superimposed on an axial slice. Deformations
represent lung contraction between inhale and exhale images. The left field
was computed without APLDM and right field with APLDM. For display
purpose, displacement vectors are shown every 6 mm.

FIG. 6. pE, p1, and pI positions of landmark p are shown. l denotes the
distance between p1 and the line segment defined by pI and pE. Factor k is
the ratio between segment length �b=	�pE−pI�2� and distance a from pI to

the projection of p1 on the segment.
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VI. DISCUSSION

Overall accuracy was clearly better with APLDM than
without �2.7 vs 6.3 mm�. However, we have only performed
a global validation by averaging landmark distances. Valida-
tion on landmark positions does not necessarily imply that
the deformation is correct everywhere inside the volume.
Further validation should be performed to locally study de-
formation. Moreover, intensity-based deformation registra-
tion is sensitive to image quality: acquisition artifacts may
induce locally imprecise or wrong deformation.

Interpolation of vector fields relied on assumptions that
were not strictly satisfied such as straight line displacement
or the absence of hysteresis. Displacements around the heart
region were not taken into account. Nevertheless, the model
simulated the major part of the displacement as the distance
between landmarks and straight-line path was small
�1.3 mm�. Intermediate density generation was found to be
slightly better with JBDG than without. Bilinear interpola-
tion using two vector fields led to better results, but required
twice as much time. We used 4-D CT acquired data because
we wanted to compare a synthetic 4-D image with an ac-
quired one. It allows a test of the proposed method with
realistic deformation amplitudes. However, the differences
between a static breath-hold image and a corresponding im-
age �with the same lung volume� extracted from a dynamic
4-D dataset, are not well known �e.g., hysteresis, 4-D recon-
struction�. It would be interesting to compare breath-hold
images and 4-D CT images of the same patient.

No particular effort has been made regarding computation
times. Preprocessing took about 2–3 min, APLDM was
quasi-instantaneous, and intermediate image generation took
a few seconds. The computation time of deformable registra-
tions depends on the resolution of images and on the defor-
mation amplitude, i.e., the number of iterations required to

TABLE VI. The first two lines display the means �and standard deviation� of
distances between landmarks in image II and landmarks in images IE, I1, and
I2, before and after registration. Distances are expressed in millimeters. The
last two lines display the mean of distances l and of factors k.

Distances in mm IE I1 I2

before registration 10.6�5.5� 7.8�4.6� 4.4�3.4�
after registration 2.1�1.4� 2.6�2.0� 2.7�1.5�
Mean of distance l 0 1.5�1.4� 1.2�0.8�
Mean of factor k 1 0.7�0.2� 0.4�0.3�

TABLE VII. The column “before registration” displays the SAD �sum of
absolute differences� computed between Ii �with i=1,2� and IE. Other col-
umns display the SAD between Ii and artificial Ii

* computed without JBDG
�Jacobian-Based Density Generation�, with JBDG, and with linear interpo-
lation �LI�. SAD is expressed in Hounsfield units.

Before reg. Without JBDG With JBDG LI

I1 129 84 82 76
I2 187 89 87 83
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converge. Using a 2.8 Ghz PC with a 1 Gb RAM running
Linux operating system, the computation time is about 1.5 s
for one million voxels and for one iteration. For example, the
registration of a whole thorax �about 45000 cm3 took 3 min
with 53 mm3 voxel size and 1000 iterations �medium defor-
mation�, or 1 h for 33 mm3 voxel size and 4000 iterations �a
very large deformation�.

It should be stressed that the straight-line approach is a
first step in building a 4-D model of the thorax. Further mod-
els will include more detailed motion parameters, such as
lung hysteresis, temporal regularization, physiological infor-
mation. However, it is important that the model remains
driven by the patient’s images in order to be adapted to each
patient’s characteristics. Compared to 4-D acquisition, build-
ing a 4-D model based on only two CT acquisitions can
lower the imaging dose. Moreover, using such a model
should help reduce image motion artifacts still present in
current 4-D acquisitions.18

The advantages of a using 4-D model, which not only
includes a 4-D image but also provides a motion description,
are the following. Organs and target contours can be auto-
matically propagated at any given respiratory instant: draw-
ing contours on several 3-D images is time consuming; our
model would provide the users with initial contours that must
be corrected only locally if needed. This approach still needs
to be validated.

The 4-D model can also be used to estimate a 3-D dose

map, taking into account respiratory motion. The respiratory
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cycle is split into several instants, and a dose deposition cal-
culation is performed on each instant using the same irradia-
tion beam parameters. Then, the 3-D dose maps are merged
into a single spatial reference by using the displacement map
and temporal information of the 4-D model. It results in a
4-D map of the estimated dose deposition while the patient
moves.

Some studies use the probability density function �PDF�
of tumor presence to help define adequate margins.45

Whereas the straight-line model remains a first-order ap-
proximation of real motion, a PDF can be automatically
computed from the 4-D model for each voxel within a given
region of interest, according to its own displacement ampli-
tude and direction. The resulting PDF of a given region
could be different from what would be obtained by using a
single PDF for all voxels, with two extreme positions �end
inhale, end exhale�. Moreover, the 4-D model can help simu-
late any type of irregular breathing pattern �by choosing a
given 1-D respiratory signal with irregularities in both am-
plitude and frequency� in order to generate an artificial 4-D
image. The resulting 4-D image can be used, for example, to
evaluate the robustness of a margin definition technique re-
quiring regular breathing. We have already used this model
to simulate free-breathing CT acquisitions using cone beam
or helical CT for studying image-based respiratory signal

14

FIG. 7. A comparison between a refer-
ence image �I1� and an artifical image
�I1

*�. I1
* was obtained by warping the

initial image �IE� using the JBDG
method. The three images on the right
are displayed with a grey scale that en-
hance the intensities in the lungs.
extraction methods.
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VII. CONCLUSION

We have presented a method to compute a deformation
field between inhale and exhale breath-hold CT images, tak-
ing into account changes of lung density. We have validated
this approach by using landmarks manually selected by phy-
sicians. Global accuracy was better with APLDM than with-
out �2.7 vs 6.3 mm� and close to the interobserver variability
�2.3 mm�. The number of points with a negative Jacobian
was also statistically significantly lower. Linear elastic and
Gaussian regularizations led to comparable results.

We also propose a method to create artificial intermediate
CT images in order to simulate a 4-D CT model of the tho-
rax. The model comprises the 4-D CT image, individual vol-
ume element displacement and deformation. The accuracy of
intermediate vector fields was 2.6 mm. Jacobian-based lung
density generation led to slightly better results than simple
warping. Linear interpolation of two inverse deformation
fields improved image resemblance.

Work is ongoing to enhance the performance of the
APLDM method by alternating APLDM and deformable reg-
istration. We also aim at taking into account hysteresis and
incorporating physiological information �such as lung com-
pliance� into the model. We finally plan to use this 4-D
model to help detect and remove 4-D acquisition artifacts by
comparing 4-D acquisitions and simulated images.
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