Simulations in Radiation Therapy and medical physics

David Sarrut

University of Lyon

CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, France

Planning et objectifs

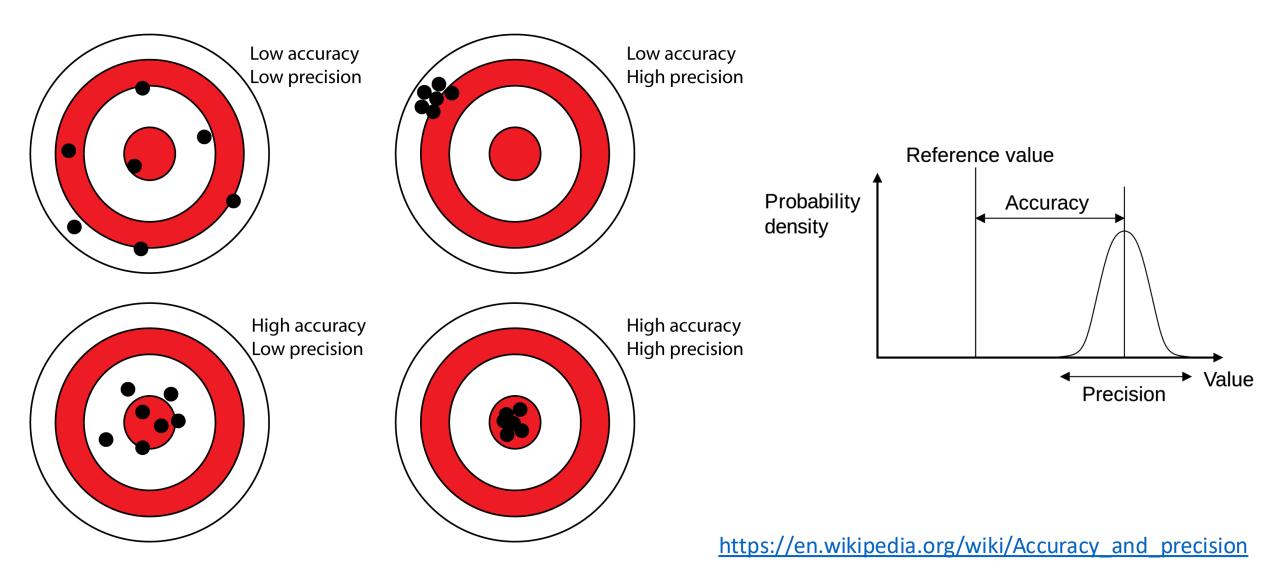
- DQPRM 2^{ème} année promo 2024-2026
- Simulations Monte-Carlo en radiothérapie (TC 1.5)
- 28 Janvier 2025
 - 10h 12h: cours, salle A1
 - 13h30 16h30: TD salle info (146-148)
- 29 Janvier 2025
 - 9h 12h et 13h30 16h30 : TD salle info (146-148)
- Introduction GATE et prise en main

DQPRM 2025 - PDF

https://128.pl/ONclf

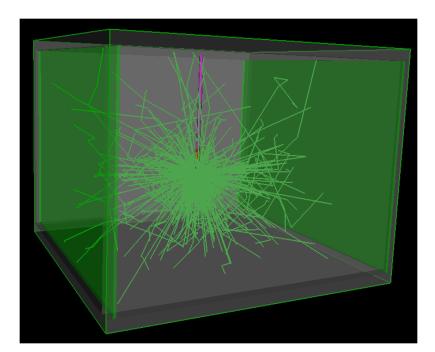
Simulations in Medical Physics

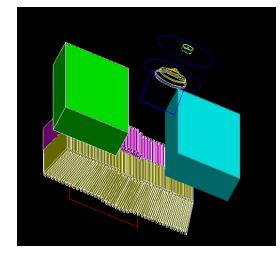
- What ? Numerical model, computer
- Why? To predict, to analyse, to reduce the nb of measurements
- When ? 100% treatment, 100% design imaging systems
- Who? MedPhys in clinic, industrial, research
- Where ? Hospital, labs, industry ; RT and NM ; maybe Radiology
- How ? Design simulation. Run. Analyse. Redo

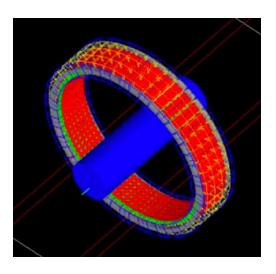

Simulations

- Analytical approach (determinist)
- Monte-Carlo approach (stochastic)
- Hybrid approach

- Validation : compare to measurements
- Calibration: commissioning, parameters
- Parameters: tradeoff precision-speed
- Uncertainties: precision, accuracy




Precision/accuracy - précision/exactitude

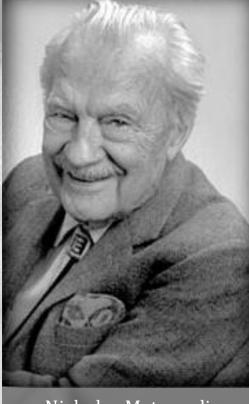

Monte-Carlo in Medical Physics

- Simulate particles path, interactions, energy loss
- Monte-Carlo considered as a <u>reference</u> method

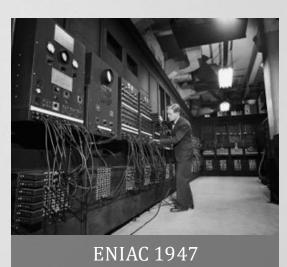
Radiation Therapy

Nuclear Medicine

Particles tracking


Robert Oppenheimer

Nuclear physics Monte Carlo simulations



Edward Teller

Metropolis, Nicholas; Stanislaw Ulam (**1949**). <u>"The Monte Carlo method"</u>. Journal of the American Statistical Association. 44 (247): 335-341 <u>doi:10.1080/01621459.1949.10483310</u>

Monte-Carlo

- History : WW2, Manhattan Project, casinos
- What ?

A class of computational algorithms that rely on repeated stochastic sampling to compute results.

• Why?

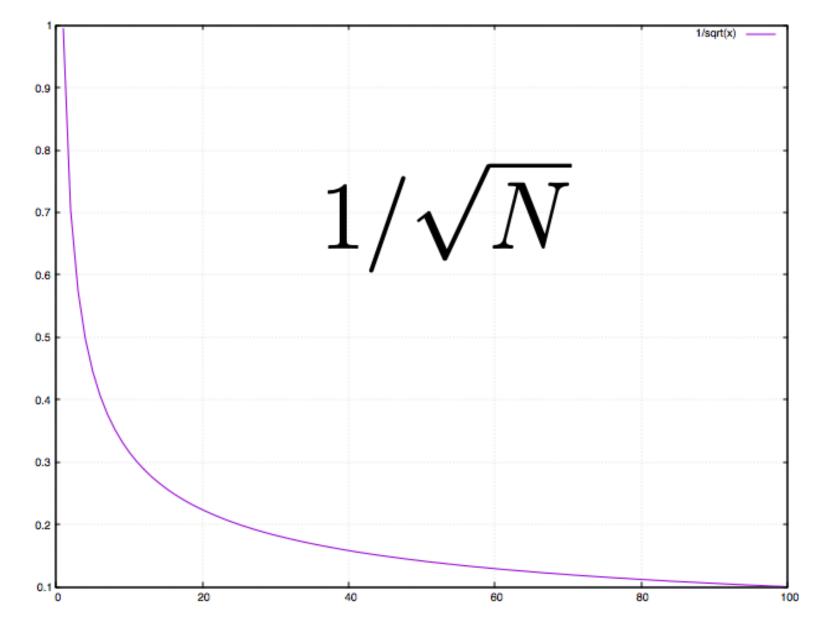
When the problem is *many-dimensional* and approximations that factor the problem into products of lower dimensional problems are inaccurate. A less important reason is that if one has a *complicated geometry*, a MC algorithm may be simpler than other choices.

• Drawback ?

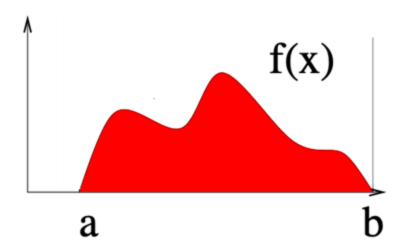
There is a statistical error. Sometimes there is a tradeoff between statistical error and systematic error and one needs to find the best compromise. Could be slow to converge.

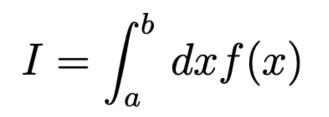
[Cyrus J. Umrigar]

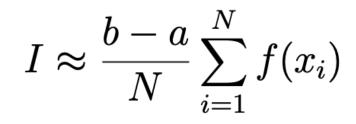
Monte-Carlo estimation

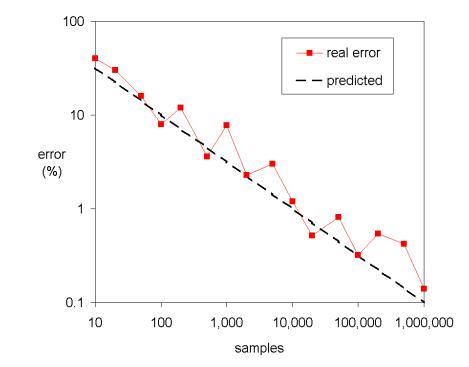

Base A

Area = πr^2


0.6 0.4 0.8 0.2 0.4 0.6 1.0


 $n = 3000 \, (\pi \approx 3.16667)$


... chaque chiffre significatif supplémentaire, nécessite un coût de simulation 100 fois supérieur.

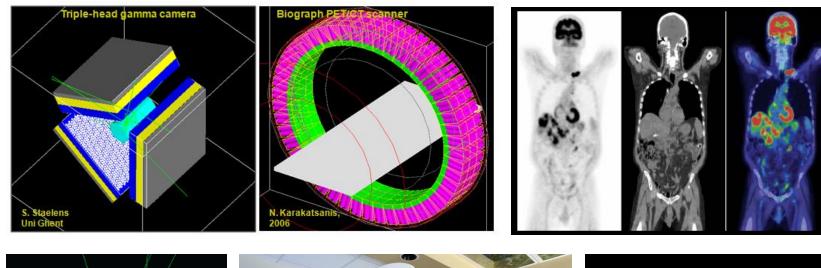


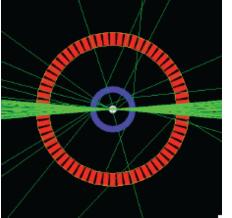
Monte-Carlo

Error: $\propto 1/\sqrt{N}$

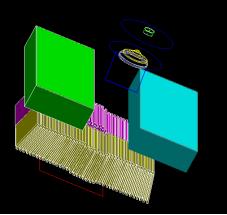
Error: central limit theorem independent of the dimension

Monte-Carlo simulations

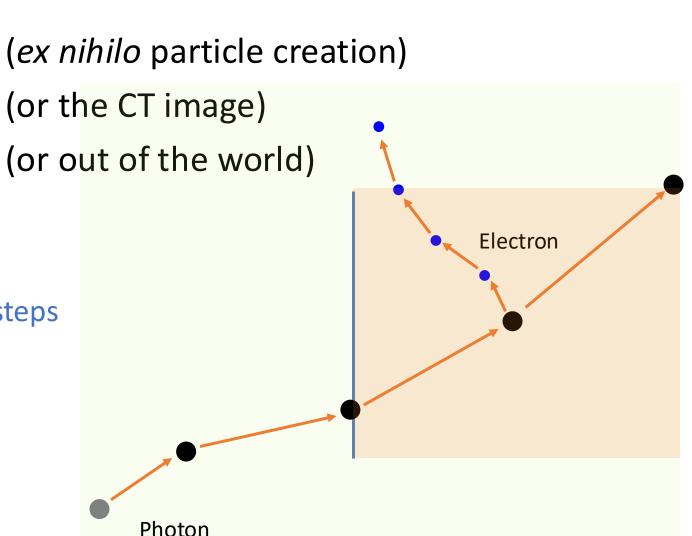

- Requirement : system and physical processes can be modelled from known probability density functions (pdfs)
- Random sampling of the pdfs
- Notions :
 - Random number generator (seed, period)
 - Sampling techniques ; cumulated pdf ; importance sampling
 - Statistical uncertainties / errors ; stopping criteria
 - Variance reduction technique
 - Convergence rate (speed, efficiency)



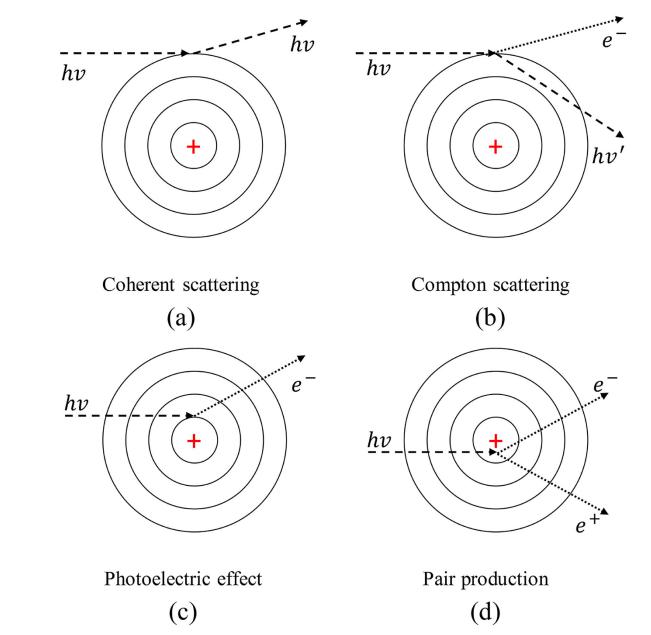
Applications


Nuclear and radiation imaging modalities

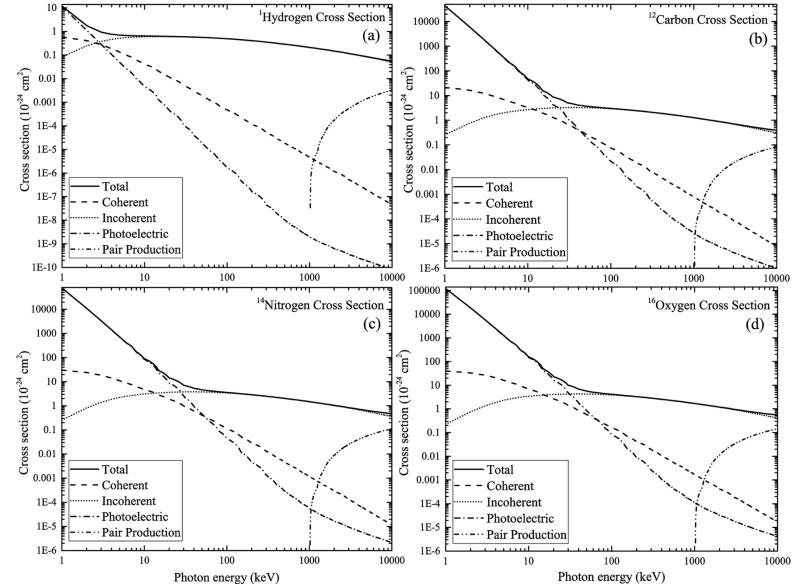
- PET
- SPECT
- Compton Camera
- Prompt gamma
- Proton Rad/CT
- CT
 - Cone Beam
 - Spectral CT
 - Dual Energy
 - Phase Contrast



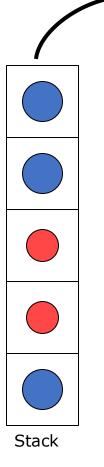
Particles tracking


Particles tracking

- From the « *source* »
- Through the « *phantom* »
- To the « *detector* »
- Track all particles individually
 - Tracking path, decomposed in steps
 - Several physical processes
 - Probability distributions


Physical processes

- Example for photon
 - Scattering (Rayleigh, Compton)
 - Photoelectric
 - Pair production
 - Photonuclear ...


Physical processes

- Cross section
 - Interaction probability
 - wrt material
 - wrt energy
- For all particles
- For all processes
- Large database needed

MC engine - Tracking loop (simplified)

Start with particles from source

pr ele

photons electrons

- Un-stack a particle p
 - Consider properties of p (E, position, direction, time ...)
 - Consider current material composition at position
 - Sample random distance to next interactions
 - Given a set of possible physical processes
 - Given the properties & material
 - Transport p to this interaction point
 - Check not exiting the current material
 - Check not exiting the "world"
 - Model the selected interaction
 - If absorption: end
 - If new particle: insert in the stack
 - Change properties, generate secondary particles (stack)
 - Next step
- Next particle

Monte Carlo engine

Particle management

Geometrical elements in the simulation scene

Physical processes database

> Pseudo-Random number generator

Tracking loop

Difficulty & Challenges

- Computation time: Variance Reduction Technique
- Tradeoff: speed complexity accuracy

- Validation against experiments (uncertainties)
- Access to industrial data
- Input models (physics, biological ...)
- Multi-scale aspects
- Multi-disciplinary: physics, mathematic, biology, medicine, computer sciences

Monte Carlo simulations evolution

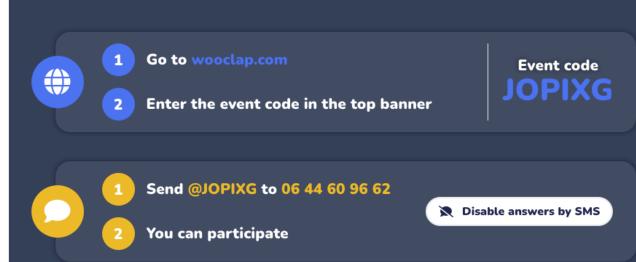
- Around 60+ years evolution
 - More accurate physical databases
 - More generic codes (MCNPX, EGSNRC, Penelope, Geant4, Gate)
 - Faster algorithms
 - Use of powerful computing infrastructures (cluster, GPU)
- However
 - Increasing need for detailed and accurate physical processing (TOF, SiPM, CZT, etc)
 - Still long simulations times
 - Generic vs Specific codes
 - IA ?

INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 51 (2006) R287–R301		Physics in Medicine and Biology	
		doi:10.1088/0031-9155/51/13/R17	
	REVIEW		
Fifty yea physics [*]	rs of Monte Carlo	simulations for medical	
	D W O Rogers		
	Physics Department, Carleton Universi	ity, Ottawa, Ontario K1S 5B6, Canada	
	E-mail: drogers@physics.carleton.ca		
	Received 23 February 2006, in Published 20 June 2006	final form 3 May 2006	
	Online at stacks.iop.org/PMB/5	51/R287	
	Abstract		
	last 50 years with a doubling of	become ubiquitous in medical physics over the of papers on the subject every 5 years between and 2000 when the numbers levelled off. While	

recognizing the many other roles that Monte Carlo techniques have played in medical physics, this review emphasizes techniques for electron-photon

transport simulations. The broad range of codes available is mentioned but

Available MC codes


- Industrial software : in TPS
- Multi-purpose, research : MCNPX, EGS-nrc, Penelope, Geant4, GATE, Fluka, ...

• Characteristics ?

- Available physics : particles, models, energy limits, models, database tables
- Description of various geometrical shapes (voxels etc)
- Description of various source types
- Available types of observable (dose)
- Variance reduction techniques
- Possibility to evolve
- Validation reputation
- Ease of use
- Community, documentation
- Code language,
- Open-source

			TWO WAY P	ower			
	6,55						
Euro	MRC	M-	M+	÷			
Natl	7	8	9	×			
MATE SET	4	5	6	E			
C	1	2	3	+			
AC	0	·	=				

Geant4 & GATE

Geant4

- Geant4 is a toolkit
- Developed by CERN & international community
- Since 1999 ; about 2 releases/year ; now version 11.3 (December 2023)
- Features :

"Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits."

- LHC : Higgs boson, high energy physics
- Large user community
- Open-source
- Usage
 - Code your simulation in C++
 - Use classes, functions provided by Geant4
 - Compile your code, obtain a executable
 - Run it

Geant4

- Web site
 - Download code
 - Installation guide
 - User guide
 - Developer guide
 - Mailing list
- Workshop, formation

[Agostinelli et al, NIM-A 2003]

Nuclear Instruments and Methods in Physics Research A 506 (2003) 250-303

Available online at www.sciencedirect.com

SCIENCE DIRECT.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

www.elsevier.com/locate/nima

A METHODS

CrossMark

GEANT4—a simulation toolkit

S. Agostinelli^{ae}, J. Allison^{as,*}, K. Amako^e, J. Apostolakis^a, H. Araujo^{aj}, P. Arce^{l,m,x,a}, M. Asai^{g,ai}, D. Axen^{i,t}, S. Banerjee^{bi,l}, G. Barrand^{an}, F. Behner^l, I. Bellagamba^c I. Boudreau^{bd} I. Broglia^{ar} A. Brunengo^c H. Burkbardt^a

[Alisson et al, NIM-A 2016]

Nuclear Instruments and Methods in Physics Research A

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nima

Recent developments in GEANT4

J. Allison ^{a,b}, K. Amako ^{c,a}, J. Apostolakis ^d, P. Arce ^e, M. Asai ^f, T. Aso ^g, E. Bagli ^h, A. Bagulya ⁱ, S. Banerjee ^j, G. Barrand ^k, B.R. Beck ¹, A.G. Bogdanov ^m, D. Brandt ⁿ, J.M.C. Brown ^o, H. Burkhardt ^d, Ph. Canal ^j, D. Cano-Ott ^p, S. Chauvie ^q, K. Cho ^r, G.A.P. Cirrone ^s, G. Cooperman ^t, M.A. Cortés-Giraldo ^u, G. Cosmo ^d, G. Cuttone ^s, G. Depaola ^x, L. Desorgher ^{bt}, X. Dong ^t, A. Dotti ^f, V.D. Elvira ^j, G. Folger ^d, Z. Francis ^v, A. Galoyan ^w, L. Garnier ^{k,1},

M. Gaver^d, K.L. Genser^j, V.M. Grichine^{i,d}, S. Guatelli^{y,z}, P. Guève^{aa}, P. Gumplinger^{ab}

Create a simulation with G4

- Geant4 simulation
- Need C++ code
 - Main.cpp
 - +3 files (classes)
 - Compile to get executable file
- Powerful, but can be tedious
- Not easy to re-use among users

Listing 1 Simplest example of main()¶

```
#include "G4RunManager.hh"
#include "G4UImanager.hh"
```

```
#include "ExG4DetectorConstruction01.hh"
#include "ExG4PhysicsList00.hh"
#include "ExG4ActionInitialization01.hh"
```

int main()

```
// construct the default run manager
G4RunManager* runManager = new G4RunManager;
```

// set mandatory initialization classes

```
runManager->SetUserInitialization(new ExG4DetectorConstruction01);
runManager->SetUserInitialization(new ExG4PhysicsList00);
runManager->SetUserInitialization(new ExG4ActionInitialization01);
```

```
// initialize G4 kernel
runManager->Initialize();
```

```
// get the pointer to the UI manager and set verbosities
G4UImanager* UI = G4UImanager::GetUIpointer();
UI->ApplyCommand("/run/verbose 1");
UI->ApplyCommand("/event/verbose 1");
UI->ApplyCommand("/tracking/verbose 1");
```

```
// start a run
int numberOfEvent = 3;
runManager->BeamOn(numberOfEvent);
```

```
// job termination
delete runManager;
return 0;
```


Geant4 Application for Emission Tomography, Transmission Tomography, Radiotherapy

- GATE is a Geant4 application
 - Written in C++
 - Using the Geant4 toolkit
 - Provide extension to the Geant4 macro language
- Applications
 - PET, SPECT, CT imaging
 - Dosimetry radiation therapy, hadrontherapy, molecular radiotherapy, brachytherapy,
 - Detector design, optimisation of acquisition protocol, assessment of quantification methods, etc ...

GATE: a brief history

- Initial idea around 2001 (C. Morel, I. Buvat et al)
- First release in 2004 (S. Jan): TEP, SPECT
- Increase range of application since Gate 6 (2010): radiation therapy, particle therapy
- About 1-2 releases/year
- Now: **GATE 10**

- More than 100 peer-reviewed GATE-related papers produced by members of the collaboration
 - Best paper citation price in PMB 2004
 - Best paper citation price in PMB 2011

GATE: reference papers

INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY Phys. Med. Biol. 49 (2004) 4543-4561 PII: S0031-9155(04)80763-2

GATE: a simulation toolkit for PET and SPECT

S Jan¹, G Santin^{2,24}, D Strul^{2,25}, S Staelens³, K Assié⁴, D Autret⁵, S Avner⁶, R Barbier⁷, M Bardiès⁵, P M Bloomfield⁸, D Brasse⁶, V Breton⁹, P Bruyndonckx¹⁰, I Buvat⁴, A F Chatziioannou¹¹, Y Choi¹², Y H Chung¹², C Comtat¹, D Donnarieix^{9,13}, L Ferrer⁵, S J Glick¹⁴, C J Groiselle¹⁴, D Guez¹⁵, P-F Honore¹⁵, S Kerhoas-Cavata¹⁵, A S Kirov¹⁶, V Kohli¹¹, M Koole³, M Krieguer¹⁰, D J van der Laan¹⁷, F Lamare¹⁸, G Largeron⁷, C Lartizien¹⁹, D Lazaro⁹, M C Maas¹⁷, L Maigne⁹, F Mayet²⁰, F Melot²⁰, C Merheb¹⁵, E Pennacchio⁷, J Perez²¹, U Pietrzyk²¹, F R Rannou^{11,22}, M Rey², D R Schaart¹⁷, C R Schmidtlein¹⁶, L Simon^{2,26}, T Y Song¹², J-M Vieira², D Visvikis¹⁸, R Van de Walle³, E Wieërs^{10,23} and C Morel²

Phys Med Biol 2004 Phys Med Biol 2011 Medical physics 2014 Phys Med Biol 2021 Phys Med Biol 2022

A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

David Sarrut^{a)}

Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, France

Manuel Bardiès

Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France

Nicolas Boussion INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest, France

Nicolas Eroud

Phys. Med. Biol. 66 (2021) 10TR03 https://doi.org/10.1088/1361-6560/abf276 Physics in Medicine & Biology IPEM Institute of Physics and Engineering in Medicine TOPICAL REVIEW Advanced Monte Carlo simulations of emission tomography imaging systems with GATE David Sarrut^{1,*}, Mateusz Bała², Manuel Bardiès³, Julien Bert⁴, Maxime Chauvin⁵,

Phys. Med. Biol. 56 (2011) 881-901

IOP PUBLISHING

PHYSICS IN MEDICINE AND BIOLOGY

doi:10.1088/0031-9155/56/4/001

GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy

S Jan¹, D Benoit², E Becheva¹, T Carlier^{3,4}, F Cassol⁵. P Descourt⁶. T Frisson⁷, L Grevillot⁷, L Guigues⁷, L Maigne⁸, C Morel⁵, Y Perrot⁸, N Rehfeld², D Sarrut⁷, D R Schaart⁹, S Stute², U Pietrzyk¹⁰, D Visvikis⁶, N Zahra⁷ and I Buvat²

IOP Publishing

CrossMark

RECEIVED 9 December 2020

OPEN ACCESS

REVISED

Konstantinos Chatzipapas⁶, Mathieu Dupont⁷, Ane Etxebeste¹, Louise M Fanchon⁸, Sébastien Jan⁹, 3 March 2021 Gunjan Kaval^{5,10}, Assen S Kirov⁸, Paweł Kowalski¹¹, Wojciech Krzemien¹¹, Joey Labour¹⁰, ACCEPTED FOR PUBLICATIO Mirjam Lenz^{12,13}, George Loudos⁶, Brahim Mehadji⁷, Laurent Ménard^{14,15}, Christian Morel⁷¹⁰, 26 March 2021 Panagiotis Papadimitroulas⁶, Magdalena Rafecas¹⁶, Julien Salvadori¹⁷, Daniel Seiter¹⁸, PUBLISHED 14 May 2021 Mariele Stockhoff¹⁹, Etienne Testa²⁰, Carlotta Trigila²¹, Uwe Pietrzyk¹³, Stefaan Vandenberghe¹⁹, Marc-Antoine Verdier^{14,15}, Dimitris Visvikis⁴, Karl Ziemons¹², Milan Zvolský¹⁶ and Emilie Roncali²¹

Original content from this Université de Lvon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lvon, Université Lvon 1, Lvon, France work may be used under Jagiellonian University, Kraków, Poland

the terms of the Creative Cancer Research Institute of Montpellier, U1194 INSERM/ICM/Montpellier University, 208 Av des Apothicaires, F-34298 Montpellier Commons Attribution 4.0

GATE: a collaboration

- OpenGate Collaboration
 - About 22 labs, worldwide (40% in France)
 - Spoken person : Lydia Maigne
 - Technical coordinator : David Sarrut
- Organize the development of GATE
 - Meetings, projects, teaching etc
 - Developers : open-source
 - Funding
- GATE is a collaboration before being a software

http://www.opengatecollaboration.org

gate-users@lists.opengatecollaboration.org

https://opengate.readthedocs.io

GATE: limitations

- Too few numbers of developers
- Documentation to be improved
- Macro vs C++
- Visualisation not perfect (Geant4)
- Support

GATE: limitations

- Too few numbers of developers
- Documentation to be improved
- Macro vs C++ Python vs C++
- Visualisation not perfect (Geant4)
- Support

Use of Gate

Gate : **imaging** and **dosimetry** in medical physics

Published studies:

- TEP, SPECT
- RT photon, low and high energy
- X-ray imaging
- RT hadron proton, carbon, helium
- RT internal dosimetry (all isotopes)
- Hadron-PET, prompt-gamma, vertex imaging

