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We have read with interest the study from Kuznetsova et al. published recently in Circulation:
Cardiovascular Imaging, which provides additional evidence on the superiority of peak global
longitudinal strain (GLS) over ejection fraction and traditional cardiovascular risk factors [1].
The authors notably analyzed a large population of 791 subjects, using commercial 2D
speckle-tracking tools in a single 4-chamber view. They show higher prognostic value of GLS
after adjusting for conventional risk factors, as well as LV mass index and TDI e’ velocity. Of
additional interest, the study reports that the risk for cardiovascular events increases with the
number of LV abnormalities (low GLS, diastolic dysfunction, and hypertrophy), and confirms
GLS as a complementary parameter for patient assessment and follow-up.

Global strain and EF actually reflect similar information on cardiac function: the total
deformation at end-ejection. Nonetheless, the contractility of the subendocardial fibers is
more vulnerable to cardiac dysfunction, such that impaired longitudinal deformation is
generally the initial manifestation as a result of the transmural fiber arrangement [2]. This
impairment is initially compensated by increased circumferential deformation to maintain
sufficient stroke volume. Thus, as confirmed in the study from Kuznetsova et al., the strain
components (assessed independently) naturally represent more selective markers of cardiac
dysfunction, with higher potential for prognosis [3,4].

The study from Kuznetsova et al. relies on peak GLS, although distinction is made between
the endocardial, midwall and epicardial layers (with roughly similar observations). For the
scope of the study ---investigating trends between LV wall deformation and prognosis---
relying on global strain is relevant enough, given the large population and adjustments for
potential confounding factors. Nonetheless, the reported GLS values and the proposed cut-
offs should be considered with caution.

Indeed, strain measurements are reliable within a +5-10% margin (around +1-2% in absolute
terms) [5,6]. Although now standardized in commercial software, the analysis depends on
many factors, among which endocardial delineation, image quality, frame rate, and platform-
specific algorithms. Thus, the cut-off values reported for the prognostic ability of strain data
should be regarded as indicative of a trend, but not as an unquestionable guideline to assess
an individual patient. Besides, peaks are challenging to identify on multiple-peaked curves or
in zones with very low deformation.

A more comprehensive look at the echocardiographic images is therefore required to
complement indicative trends on large populations and better understand individual
behaviors. The temporal evolution along the cycle brings complementary information on the
respective timings of each segment, to relate with the timings of cardiac activation and
filling/emptying. Local strain alterations can be complemented with prior knowledge on the
patient and the pathology, and data at complementary locations. Besides, spatiotemporal
pattern visualization facilitates the detection of artifacts in lower imaging quality regions
(mitral ring, apex, anterior wall), improving the reproducibility of measurements at these
locations. Actually, academic researchers are now able to go beyond single cut-offs on these
data and analyze the whole spatiotemporal patterns [7-12]. Statistical tools from
computational anatomy reveal the relevant trends in these patterns, and quantify the
distance between individuals and these modeled trends ---similar to the concepts of z-
scores and statistical parametrical mapping, widely used to reveal abnormalities in
neuroimaging studies.
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Thus, in order to become truly useful in an |nd|V|duaI, there is room for a more refined
understanding of population trends, as a continuation of the analysis of global descriptors as
in Kuznetsova et al. and related studies [3,4]. Situating the individual against the normal
range and known etiologies of cardiac dysfunction can serve to highlight abnormalities of
importance and better understand patient evolution with follow-up or therapy [13]. In the near
future, the quantitative analysis of cardiac function should therefore go beyond simple
quantltatlve descriptors such as EF and global strain. It should combine the advantages of (i)
trend analysis on large populations, via simple descriptors and correction for confounding
factors, and (ii) individual analysis that integrates both prior knowledge about the
pathophysmlogy and information from multiple sources [14]. Advanced statistical and
machine learning methods already exist to get an overall picture of multiple relevant
descriptors on each individual [15,16], although they still need to be confirmed in larger
populations. Besides, efficient ways to integrate the knowledge from the experienced clinical
observer still need to be explored.

In summary, GLS can be robust and informative enough when dealing with larger cohorts,
homogeneous patient groups, and tightly controlled images analysis by experienced
operators. In this sense, it should replace EF in clinical trials evaluating prognosis.
Nonetheless, for routine clinical practice on individuals, a stronger critical view is required,
which integrates the reproducibility of measurements, the repeatability of observations in
individuals and the small differences in cut-offs between groups with strongly different
prognosis. Repeated assessment through the use of complementary tools, imaging
modalities, and clinical information remains essential.
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