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Abstract. The present paper builds upon recent advances in the spa-
tiotemporal alignment of cardiac sequences to construct a statistical at-
las of normal motion. Comparing cardiac sequences requires considering
both the temporal component (changes along the sequences) and the
inter-subject one. The objective here is to understand the changes in
the comparison of myocardial velocities depending on (1) the chosen re-
orientation action (finite strain [local rotation only], local rotation and

isotropic scaling, or full Jacobian matrix using the push-forward) and (2)
the chosen system of coordinates (Lagrangian, Eulerian, or if a compro-
mise between both [e.g. hybrid-Eulerian] is possible). Myocardial veloc-
ities are estimated locally using speckle tracking on echocardiographic
(US) sequences, then aligned to a reference timescale, and finally re-
oriented to the anatomical reference according to the chosen reorienta-
tion framework. The methodology was applied to 2D US sequences in a
4-chamber view from 71 healthy volunteers. Experiments highlight the
limitations of the hybrid-Eulerian scheme, showing that the intra-subject
transformation should be taken into account, and discuss the options to
perform the inter-subject one.

1 Introduction

Despite the large advances realized during the last decade on the understand-
ing of cardiac function, motion and deformation, and the etiologies of cardiac
dyssynchrony, the clinical applicability of myocardial motion and deformation
comparison techniques remains limited. The abundance of publications perform-
ing single-parameter measurements of e.g. dyssynchrony (time-to-peak or time-
to-onset indexes, in a majority) or other clinical and image-based parameters,
including promising and extensively advertised (but deceiving) large-scale multi-
center studies, largely contributed to this [11].

On a technical point-of-view, methods derived from recent advances in com-
putational anatomy [21] and statistical atlases [28] [32] are particularly of inter-
est for performing the above-mentioned comparison: they define (1) a common
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anatomical reference where statistics can be performed and (2) a framework to
transport the studied data (shape or the information defined at each point of
this shape) to this anatomical reference.

The characterization of myocardial motion and deformation patterns requires
a quantitative comparison of cardiac image sequences, i.e. high dimensional and
temporally evolving information. In neuroimaging applications, which represent
a majority of the current applications of computational anatomy, temporal di-
mension of the data stands for longitudinal studies. Challenges in this context
di↵er from cardiac studies, and the focus is on growth processes, with few tem-
poral samples for each subject. For this application, aligning the information to
baseline time t = 0 seems the most relevant choice. In contrast, studying car-
diac function supposes looking at cyclic information with much more temporal
samples for each subject (from 20 to over 100 images per cycle in 2D ultrasound
[US] sequences). Note that longitudinal studies also exist in cardiac applications,
when looking at the evolution of the cardiac function of one subject at di↵erent
stages, e.g. before and after the therapy.

The statistical comparison of cardiac sequences can be performed in the
reference anatomy, either at each temporal instant (Eulerian framework), or at
the time-point initiating the sequences (Lagrangian framework). Both strategies
have been adopted in the literature about statistical atlases built for longitudinal
or temporal data (Eulerian: [5] [10] [13] [16]) or (Lagrangian: [15] [26] [27] [18] [19]
[23]), and require transporting the information along the sequences to the chosen
system of coordinates. This can be directly achieved by means of resampling, if
the transported information is scalar, or by resampling and local reorientation
in case the transported information is vectorial. The Eulerian and Lagrangian

frameworks, numerical approximations apart [4], should lead to similar results,
and the observed di↵erences should only reflect that the comparison between
subjects is done in a di↵erent system of coordinates.

In the present work, we build upon recent methods targeting the spatiotem-
poral alignment of cardiac sequences [24] [25], and raise the two following ques-
tions concerning the reorientation process:

• In neuroimaging applications, intra-sequence transformations have smaller
magnitude than inter-sequence ones. Is this the case for cardiac studies, and is
the inclusion of intra-sequence transformations really necessary?

•What is the influence of the reorientation action on the comparison between
subjects, and which one should be preferred?

We discuss these aspects through the construction of a statistical atlas of
myocardial velocities built from 2D US sequences (4-chamber view) from 71
healthy volunteers, using a framework adapted from [9].

2 Methods

2.1 Intra-sequence registration

The myocardial wall is tracked along a given 2D US sequence using a speckle
tracking [20] algorithm from commercial software (Echopac software v.110.1.2,
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GE Healthcare, Milwaukee, WI, USA), which propagates a segmentation of the
myocardium along the whole sequence (Fig. 1). In our protocol, the myocardial
wall is manually segmented at end-systole using a control-point-based delineation
of the endocardium (starting from the mitral valve level and first covering the
septum) and the choice of a wall-thickness, as required by the software interface.

The output of the speckle tracking software is the discrete position of the
centerline of the myocardium along the whole sequence, in cartesian coordinates,
and is used as input for the algorithms we developed to compute myocardial
velocities. In our implementation, drift compensation is used to guarantee cyclic
motion, and no additional spatiotemporal smoothness is added than the one
inherent to the speckle tracking algorithm. Radial and longitudinal directions
are computed locally from the discrete centerline of the myocardium (Fig. 1).

Myocardial displacements are computed at each point of the centerline, as
the di↵erence of its position at times 0 and t. Eulerian myocardial velocities
are obtained from the temporal derivative of the displacements. This is possible
under the assumption that the displacements between consecutive frames are
small, as justified in [9]. In the following, we denote v

k(x, t) the velocities for
subject k at the observed spatiotemporal location (x, t).

Choice of speckle tracking against image-based registration. The con-
cept of the speckle tracking algorithm is similar to the tracking achieved through
image registration along cardiac sequences, with the specificity of computing im-
age similarities locally (tracking local speckle pattern). Although few details are
given by the manufacturer regarding its implementation, we believe the algo-
rithm to follow the principles given in [2] [1] [17]. It has the advantage of being
fast (around 2� 3 s per cardiac sequence), and widely used in the clinical com-
munity, which is the reason why we chose to use it. Note that further validation
is actively required by the clinical international associations [22].

However, the choice of using this tracking technique conditions the reori-
entation process described in this paper. Registration-based methods provide a
dense transformation, the local Jacobian of which can be used in the reorientation
process (push-forward action [30], which includes both radial and longitudinal
components of the intra- and inter-subject mappings). In contrast, the current
version of the speckle tracking software only provides the position of the center-
line of the myocardium, and simpler reorientation actions should be considered
(finite strain [local rotation only], and local rotation and isotropic scaling). The
reorientation process is detailed further in this paper (Sec. 2.3).

2.2 Temporal alignment

Myocardial velocities are temporally aligned to a common timescale using piecewise-
linear warping of the timescale based on the timing of the following physiological
events [9]:

• The onset of the QRS complex, directly identified on the ECG curve.
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Fig. 1: Left: Radial and longitudinal myocardial velocities at mid inferoseptal (red)
and anterolateral (blue) levels. Average ± standard deviation over the set of healthy
volunteers. Eulerian scheme, first choice of reorientation action (local rotation only),
see Sec. 2.3 and 2.3 for details. Right: Myocardial segmentation (end-systole) used for
the speckle tracking algorithm. Note that only the position of the myocardial centerline
is available with the current version of the software (Sec. 2.1)

• The opening and closure of the aortic and mitral valves (AVO, AVC, MVO
and MVC) determined using continuous wave Doppler imaging on the corre-
sponding valve.

2.3 Spatial alignment

Resampling. For all the choices of reorientation action and system of coordi-
nates (see below for details), prior resampling is required.

Cubic spline interpolation is used to have an approximation of the velocities
on a continuous timescale, as these are initially defined at the discrete tempo-
ral samples of each sequence. The choice of the temporal interpolation technique
clearly influences the accuracy of the atlas computations [8], and more elaborated
methods could be used for this (in particular, compliant with the di↵eomorphic
framework, namely the definition of displacements as the flow of time-dependent
velocity fields [e.g. di↵eomorphic-compliant spline interpolation [29] [31], or tem-
poral di↵eomorphic free-form-deformation [7], [6]]), but we preferred a simpler
(and faster) scheme for the work presented in this paper.

Cubic spline interpolation is also used to have a continuous approximation of
the velocities along the whole centerline of the myocardium, as these are initially
defined at the discrete locations provided by the speckle tracking algorithm, the
number of which being di↵erent for each sequence.

Reorientation action. Spatial normalization consists in locally reorienting the
computed velocity fields v

k(x, t), initially defined with respect to the anatomy
of subject k, to a reference anatomy, using:

P (v) = A('k!ref (x, t)) · v, (1)
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where v = v

k(x, t), 'k!ref (x, t) is the estimated mapping to the reference, and
A('k!ref (x, t)) is the chosen reorientation action (2D matrix). The reference is
selected using the group-wise normalized mutual information metric [14].

As introduced at the end of Sec. 2.1, several choices of reorientation action
are possible:

• Finite strain: the simplest option considers reorientation as local rotation
only, and A('k!ref (x, t)) is therefore a rotation matrix. In general, the rotation
part of the local deformation is obtained by taking the polar decomposition of the
Jacobian matrix, hence the name finite strain reorientation coined in di↵usion
tensor (DTI) registration. In our case, we do not have access to the Jacobian
matrix but we can easily estimate the rotation directly from the motion of the
neighboring centerline points.

• The previous case does not take into account that the heart size and shape
may di↵er between subjects. A second reorientation option would therefore con-
sist in local rotation and isotropic scaling, adding to the above-mentioned rota-
tion matrix a local scaling factor. In general, this factor can be chosen to be
the mean scaling of the Jacobian matrix along each direction. Here, this fac-
tor is estimated from the spacing between the centerline points neighboring the
location (x, t) in the anatomy of subject k and the reference one. It would cor-
respond to the longitudinal-longitudinal component of D'k!ref (x, t) (D being
the Jacobian operator), if the transform 'k!ref (x, t) was available over at least
a neighborhood of the myocardial centerline.

• Push-forward : the last option estimates the whole Jacobian of 'k!ref (x, t),
therefore setting A('k!ref (x, t)) = D'k!ref (x, t). This is generally achieved in
the literature by means of registration techniques (e.g. the pipeline our present
work is based upon used image-based registration [9]). This does not apply in
our case, as discussed at the end of Sec. 2.1, as the myocardial centerline is
the only output from the speckle tracking algorithm. A partial alternative could
consist in estimating a smooth transformation from the set of landmarks defining
the centerline (for which the correspondence is known), using the landmark-
case option of the algorithm of [12] (according to the implementation available
online at http://www.mi.parisdescartes.fr/~glaunes/matchine.zip) . Note that
the accuracy of this process is highly conditioned by the smoothness imposed to
the estimated transformations.

Which system of coordinates? As mentioned in the introduction, we can
distinguish between comparing the data in the reference anatomy at time t = 0
or t 6= 0, according to the following two schemes:

• Lagrangian framework (mapping to the reference at time t = 0):

'k!ref (x, t) = 'k!ref (., 0) � 'k
t!0(x), (2)

where 'k
t!0 is the transformation between times 0 and t within the sequence of

subject k.
• Eulerian framework (mapping to the reference at time t 6= 0):

'k!ref (x, t) = 'ref
0!t � 'k!ref (., 0) � 'k

t!0(x). (3)
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When using the full Jacobian with the push-forward, we would therefore have:

D('k!ref (x, t)) = D2 ·D3 (Lagrangian scheme),

or D('k!ref (x, t)) = D1 ·D2 ·D3 (Eulerian scheme),

with
D1 = D

�
'ref
0!t

��
'k!ref (., 0) � 'k

t!0(x)
�

D2 = D

�
'k!ref (., 0)

��
'k
t!0(x)

�

D3 = D

�
'k
t!0

��
x

�
.

(4)

Now, taking another reorientation action A('k!ref (x, t)), we could decide
to use A(D1 ·D2 ·D3) or A(D1) ·A(D2) ·A(D3), or possibly neglect the rotation
along the time sequence, which means approximating A(D1) and A(D3) by the
identity matrix, i.e. taking A(D1 · D2 · D3) ⇡ A(D2). We denote this scheme
the hybrid-Eulerian framework. Note that a hybrid-Lagrangian framework is also
possible.

2.4 Statistical comparison

Due to the assumption made about small displacements (Sec. 2.1), classical
statistics can be computed directly on the aligned velocity fields. At a given
location (x, t), the average v̄ and covariance matrix ⌃v of the velocities from a
population of K sequences are defined as:

v̄ =
1

K

KX

k=1

v

k and ⌃v =
1

K � 1
V

t ·V, (5)

where V

t = [(v1 � v̄)| . . . |(vK � v̄)].

3 Experiments and results

3.1 Echocardiographic data

Two-dimensional echocardiographic (2D US) image sequences from 71 healthy
volunteers were acquired in an apical 4-chamber view using a GE Vivid 7 echo-
graphic system (GE Healthcare, Milwaukee, WI, USA). Enrollment criteria were
that the subjects had no history of cardiac disease and a normal echocardio-
graphic exam. All of them showed a QRS duration < 120 ms, and their baseline
characteristics matched the values found in the literature for a population of
patients with normal cardiac function. Images were acquired during breath-hold
to minimize the influence of respiratory motion. Resolution was optimized dur-
ing the acquisition, and corresponded to a frame rate of 71± 15 fps (heart rate
being of 66± 12) and a pixel size of 0.25⇥ 0.25 mm2.

The research complied with the Declaration of Helsinki and the study proto-
col was accepted by our local ethics committee. Written informed consent was
obtained from all subjects.
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Fig. 2: Spatiotemporal maps used for the comparison of the reorientation frameworks.
Eulerian scheme, first choice of reorientation action (local rotation only).

3.2 Which reorientation action and which system of coordinates?

In the following, we compare the three reorientation frameworks described in
Sec. 2.3. Di↵erences between the results obtained for each framework are rep-
resented by means of color-coded maps, in which the horizontal axis is time
(one cardiac cycle, vertical dashed lines indicating the timing of the physio-
logical events listed in Sec. 2.2, in the following order: onset of QRS, MVC,
AVO, AVC, MVO, onset of QRS), and the vertical axis is the position along
the myocardium (horizontal dashed lines indicating the separation between the
myocardial segments). A similar display was used in [9] to represent myocardial
motion abnormalities at each location in time and space. In the present paper,
three di↵erent maps are represented: average radial and longitudinal velocities,
and the norm of the local covariance matrix.

Local rotation only. We first computed the above-mentioned maps for the first
option of reorientation action (local rotation only). Fig. 2 represents the maps
for the Eulerian scheme, which will be used as reference for the comparison
of the di↵erent reorientation frameworks. We can observe that the septal and
lateral walls have similar motion (horizontal symmetry of the maps), reflecting
the synchronicity in the cardiac contraction for the healthy volunteers. Lower
velocities are observed near the apical level.

Very high variability is observed at the extremities of both septal and lateral
walls (bottom and top rows of the map representing the norm of the covariance),
reflecting the di�culty of tracking the basal myocardium, also a↵ected by the
presence of the mitral valve. A similar amount of variability is observed for the
basal and mid anterolateral segments at early-diastole, reflecting the problem of
properly imaging the lateral wall through the inaccuracies of the speckle tracking
algorithm at this level (closeness of the lateral wall with the border of the field-
of-view of 2D US images).

Apart from these regions with abnormally high variability, the highest vari-
ability is observed at early-systole, early-diastole and end-diastole, as assessed
by the norm of the covariance. These correspond to zones where the myocardial
acceleration is higher.

This a pre-print version.
The final document is available at http://www.springerlink.com



8 N. Duchateau et al.

Radial velocity (mm/s) Longitudinal velocity (mm/s) norm(covariance)

La
gr

an
gi

an
 v

s. 
Eu

le
ria

n
H

yb
rid

 v
s. 

Eu
le

ria
n

−500

0

500

−10

0

10

−5

0

5

−500

0

500

−10

0

10

−5

0

5

Fig. 3: Comparison of the Lagrangian and hybrid-Eulerian frameworks to the Eulerian
one (voxel-wise di↵erence of the velocity and norm of the covariance maps). First choice
of reorientation action (local rotation only).

The comparison of the Lagrangian and hybrid-Eulerian frameworks to the
Eulerian one is illustrated in Fig. 3, which represents the voxel-wise di↵erence
of the velocity and norm of the covariance maps for these frameworks.

As the reorientation action consists of local rotation only, one would expect
radial/longitudinal velocities to remain radial/longitudinal with the Lagrangian

and Eulerian frameworks. Little di↵erence is observed in the velocity maps,
reflecting numerical artifacts, probably introduced by the resampling performed
prior to the spatiotemporal alignment process. The variability of the velocities
is almost not a↵ected, as assessed by the norm of the covariance map.

The hybrid-Eulerian framework is an approximation of the Eulerian one,
which neglects the temporal (intra-subject) reorientation but not the inter-
subject one. The observed changes should reflect the bias on the rotation compo-
nent introduced by this approximation. Major changes are visible for the systolic
and early-diastole periods, while few influence on the variability of the veloci-
ties is observed (bottom row of Fig. 3). This temporal interval corresponds to
the part of the cycle of the major changes in the local orientation of the heart
shape, indicating that this representation probably reflects correctly the bias on
the rotation component.

Local rotation and isotropic scaling. The highest changes between the
di↵erent choices of reorientation action (local rotation only and local rotation

and isotropic scaling) are expected near end-systole and early-diastole, where the
heart volume is the smallest along the cycle, and the di↵erence to the beginning of
the cycle is the highest. These changes reflect that the two reorientation actions
di↵er by a scaling factor. This is actually observed in Fig. 4, major di↵erences
being visible for the longitudinal velocities, of higher magnitude in comparison
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Fig. 4: Comparison of the local rotation and isotropic scaling and local rotation only

reorientation actions for the Eulerian framework (voxel-wise di↵erence of the velocity
and norm of the covariance maps).
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Fig. 5: Comparison of the Lagrangian and hybrid-Eulerian frameworks to the Eulerian
one (voxel-wise di↵erence of the velocity and norm of the covariance maps). Second
choice of reorientation action (local rotation and isotropic scaling).

to the radial ones. Note that this dissymmetry is also visible on the norm of the
covariance map.

The first row of Fig. 5 indicates that the Lagrangian and Eulerian frameworks
mainly di↵er in the spatiotemporal regions of highest velocities. The sign of the
di↵erence in velocities is the opposite of the sign of the velocities, highest changes
being observed near end-systole and early-diastole (as assessed by the norm of
the covariance map). This is actually conform to what we could expect: these
frameworks either bring the data to time t = 0 or t 6= 0, and di↵erences in the
scaling of velocities (as the reorientation action choice here is the local rotation

and isotropic scaling) will be the highest where the heart volume is the smallest
along the cycle, and the di↵erence to the beginning of the cycle is the highest.

The second row of Fig. 5 reflects the bias introduced by the use of the hybrid-
Eulerian scheme with respect to the Eulerian one. The di↵erence pattern is very
similar to the one observed between the Lagrangian and the Eulerian schemes,
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10 N. Duchateau et al.

but here di↵erences reflect the error of neglecting the intra-subject transform,
and not just that the comparison is made in another system of coordinates.

4 Discussion and conclusion

In the present paper, we discussed the changes induced by the choice of a specific
reorientation framework (Lagrangian, Eulerian, or a compromise between both
[hybrid-Eulerian]) for the comparison of cardiac image sequences. Experiments
allowed understanding the di↵erences between each of these frameworks and
their consequences on the comparison of myocardial velocities.

The experiments first confirmed that both choices of Eulerian or Lagrangian
reorientation frameworks are possible, non-expected di↵erences between both
coming from the numerical errors inherent to the spatiotemporal resampling of
the myocardial velocities prior to the reorientation process.

Then, they also showed the limitations of an approximation of the Eulerian
framework (denoted hybrid-Eulerian here), which would reorient the Eulerian

velocities according to the same transform mapping subject k to the reference
at time t = 0. This introduces non-negligible artifacts, showing that the intra-
subject transformation certainly needs to be taken into account for cardiac ap-
plications. Note however that this depends on the algorithm used to track the
sequences along time: the propagation of numerical errors may be higher when
getting closer to the end of the cycle, and in particular higher than the bias
introduced by the hybrid-Eulerian scheme, which in this case could still be a
reasonable option.

Finally, the experiments discussed the choice of a reorientation action, show-
ing the di↵erences introduced by the presence of a local scaling factor against a
local rotation only action. However, the choice of a reorientation action is still an
open question for cardiac studies (even in the case we had access to the whole
Jacobian of the mapping to the reference to perform push-forward). In particu-
lar, we currently do not know if the local information (motion and deformation)
should be rescaled or not, as the cardiac function does not only depend on the
heart size and shape [3]: should the myocardial velocities of patients with normal
cardiac motion and deformation, but dilated or hypertrophic heart, be rescaled
and how? Note that in the present paper, the reorientation action is the same
for the intra- and inter-subject transforms, but this choice should probably be
revised to provide elements of response to this last question. A study computing
the influence of the chosen reorientation action on other statistics, e.g. a distance
between individuals and the healthy population [9], would certainly complement
the discussion of the present paper.
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