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Abstract—We propose a technique for myocardial motion

estimation based on image registration using both B-mode

echocardiographic images and tissue Doppler sequences acquired

interleaved. The velocity field is modeled continuously using

B-splines and the spatiotemporal transform is constrained to

be diffeomorphic. Images before scan conversion are used to

improve the accuracy of the estimation. The similarity measure

includes a model of the speckle pattern distribution of B-mode

images. It also penalizes the disagreement between tissue Doppler

velocities and the estimated velocity field. Registration accuracy

is evaluated and compared to other alternatives using a realistic

synthetic dataset, obtaining mean displacement errors of about

1 mm. Finally, the method is demonstrated on data acquired

from 6 volunteers, both at rest and during exercise. Robustness

is tested against low image quality and fast heart rates during

exercise. Results show that our method provides a robust motion

estimate in these situations.

Index Terms—ultrasound, image registration, tissue Doppler,

echocardiography, motion estimation, multi-modal integration,

TDFFD, FFD.

I. INTRODUCTION

Quantification of cardiac motion and strain has proven to be
helpful for cardiac function assessment, providing information
on how a given pathology affects global and local mechanics
of the myocardium [1], [2], [3]. Among the different imaging
techniques available to quantify cardiac motion, ultrasound
(US) imaging is one of the most used, since it captures a large
range of information (i.e. valve flows, tissue velocities) dynam-
ically and at a reasonable cost. Novel trends in the acquisition
process, as the use of shear waves [4] and ultrafast imaging
through planar waves [5], are believed to lead to significant
improvements in spatiotemporal resolution. These advances
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will also enrich the spectrum of functional information that
can be captured by this modality.

Many approaches for tracking anatomical structures in B-
mode echocardiography were proposed during the last years.
Speckle-tracking-based approaches [6] use block matching
algorithms to track local speckle patterns along US sequences
under the assumption that they are stable between consecutive
frames. These algorithms do not make use of the temporal
information in the whole image sequence and regularizations
are performed in post-processing steps.

Several image registration approaches were explicitly de-
signed as spatiotemporal registration schemes [7], [8], [9]. In
these papers, temporal continuity of displacements is guar-
anteed. However, since displacement at a given time instant
does not functionally depend on the displacement at previous
time instants, the temporal continuity of the recovered velocity
is not guaranteed. To overcome this limitation, a transform
based on the velocity field was proposed in [10], calculating
displacements by integrating velocities at all previous time
instants. To preserve the topology and orientation of the
anatomical structures, the transform was constrained to be
diffeomorphic (smooth, invertible and with smooth inverse)
[11]. An additional regularization term minimizing the com-
pressibility of the myocardium was also added to the cost
function. Other approaches to guide and constrain cardiac
tracking including shape information were proposed in [12],
[13], [14].

Complementary to B-mode echocardiographic images, tis-
sue Doppler Imaging (TDI) is widely used in the clinical
practice. It allows an objective quantification of true tissue
velocities with higher temporal resolution than B-mode and
better signal-to-noise ratio [2]. Estimating a displacement
field from TDI data can be done by temporally integrating
the measured velocities. However, only the projection of the
velocity along the beam direction is available and, due to
the low spatial resolution of TDI, local changes may not
be captured. In addition, the noise present in the images is
accumulated at each integration step, possibly leading to strong
drift artifacts.

Some approaches have been proposed to overcome the
problems of each technique by using both B-mode images
and TDI together for a better quantification of heart motion.
In [15], TDI was used to track heart motion along the beam
direction, while B-mode sequences were used to track in the
direction perpendicular to the beam. These two components
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were estimated separately and no additional regularization
was performed. In [16], an optical flow based registration
method was proposed, modeling the velocity using a spatial
affine model. Registration was performed considering pairs of
frames, so temporal coherence was not guaranteed. Further-
more, the evaluated B-mode and TDI frames had to coincide
in time. Therefore, either temporal interpolation of the B-mode
sequence was necessary or TDI frames had to be discarded,
thus losing temporal resolution. Recently, some authors have
introduced the possibility of estimating tissue velocities in
two directions using transverse oscillation images [17], [18],
although this technique is not yet ready for clinical use.

In this paper, we propose a registration framework that
takes into account both B-mode images and tissue Doppler
velocities, acquired interleaved with the same probe, to cal-
culate one single continuous spatiotemporal diffeomorphic
transform. In this case, TDI sequences and B-mode data
are modeled by the same continuous velocity field, so both
data representations coincide in space and no further spatial
alignment is required. Preliminary results showing the interest
of using both modalities together were presented in [19].

The method proposed in the current work extends the one
from [19] by incorporating speckle statistics information to
calculate similarities between consecutive B-mode frames. It
also uses information before scan conversion, thus avoiding the
use of spatially interpolated data. In addition, by using only
recorded information, the number of samples in the images
is lower than after scan-conversion, so less evaluations are
necessary during the optimization process and the algorithm
performs faster. Moreover, it is not necessary to mask the field
of view, since all pixels in the non-scan converted images
contain valuable information.

In [19], 2D B-mode synthetic images were created by
slicing 3D synthetic images, while tissue Doppler data were
generated by directly projecting velocities of ground truth
volumetrical meshes on the beam direction and adding gaus-
sian noise. In this paper, a more robust validation scheme
is proposed, using a realistic US simulator as explained in
Section III.A. The feasibility of using the current method for
clinical cases is also shown. Stress echocardiography aims at
understanding the relation between cardiac function and func-
tional capacity during effort [20], [21]. In this protocol, image
quality and temporal resolution may be low. We demonstrate
the robustness of our method in this clinical setting. Results
obtained with the proposed method were compared to results
using only B-mode images. Our method allows estimating
a realistic motion field in cases where tracking using one
modality fails due to the quality of the data from this protocol.

II. METHODOLOGY

A basic scheme describing the proposed methodology is
shown in Fig. 1. In the following sections, each component in
the registration scheme will be described.

A. The transform

The proposed approach models the velocity field continu-
ously in time and space using B-spline kernels, as proposed
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Fig. 1. Summary of the registration scheme.
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where x = {x, y} are the spatial coordinates of the point
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are the spacings be-
tween control points and p is a vector containing the B-spline
coefficients, which correspond to the velocities associated to
each control point.

To map a point from t = t0 to a time instant t = T , it is
then necessary to integrate the velocity field from t = t0 to
t = T :

't0(x, T ;p) = x+

Z T

t0

v

�
't0(x, t;p), t;p

�
dt. (2)

To compute the integral in Eq. 2, a forward Euler integration
scheme was used. Thus, the transformation was approximated
by:

't0(x, tn;p) = x+

n�1X

k=0

v

�
't0(x, tk;p), tk;p

�
�tk (3)

where �tk = tk+1 � tk.
With this approach, the temporal sampling used to approx-

imate the integration of the velocity field has to be small
enough for a good estimation of the trajectory. In [10], a time
interval of 1/2 the spacing between B-mode frames was found
to be small enough. In our implementation, it was reduced to
1/4 the temporal spacing between consecutive TDI frames
to increase the accuracy when estimating displacements. To
ensure invertibility of the transformation, the determinant of
its spatial Jacobian was constrained to be positive. To achieve
this, if a negative value was detected, the temporal sampling
was divided by a factor of 2 until no negative values were
found [10].

In [19], a 2D+t grid of control points was set on Cartesian
coordinates, as shown in Fig.2(a). In the current approach,
we work with non-scan converted data in polar coordinates to
avoid unnecessary interpolations [22]. Setting a grid in polar
coordinates, such as in Fig.2(b), corresponds to a deformed
grid in Cartesian coordinates, such as in Fig.2(c). As it can be
observed from Fig. 2, the Cartesian spacing between control
points increases with their distance to the transducer placed at
the origin of the field of view.
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(a) (b) (c)

Fig. 2. (a) Grid of control points in Cartesian coordinates as in [19]. (b) Grid
of control points in polar coordinates. (c) Representation of the image in (b)
in Cartesian coordinates.

B. The similarity measure

The similarity measure to be minimized is the following:

M(p) = (1� �)U(p) + �D(p) (4)

where U(p) represents the matching between the registered
B-mode frames, D(p) measures the agreement between the
estimated velocity field and the velocity values provided by
TDI, and � is a term balancing the contribution of U(p)

and D(p). Note that U(p) and D(p) contribute separately
to estimate one single and continuous transform. Therefore,
B-mode and tissue Doppler frames do not need to coincide at
specific discrete locations, so data interpolation is not required
to compensate for different resolutions.

In [19], a mean squared error approach was used for U(p),
where each frame was compared to a reference frame. Assum-
ing that speckle patterns can be represented as a multiplicative
Rayleigh distributed noise, and that they are preserved among
consecutive frames, a similarity term based on [23] was used
in the current approach, similar to [24]:

U(p) =

NX

n=1

X

x2⌦In�1

ln(e2�
n
n�1(x;p)

+ 1)��

n
n�1(x;p) (5)

where N + 1 is the number of B-mode frames, ⌦In�1 is
the spatial domain of In�1 and �

n
n�1(x;p) = In�1(x) �

In

�
'tn�1(x, tn;p)

�
.

When using a traditional B-spline based registration ap-
proach with Cartesian images (as shown in Fig.2(a)), all
samples contribute equally to find the optimal velocity value
at each control point. In this case, the magnitude of the
displacement error at one pixel is independent from its lo-
cation. When working with images in polar coordinates as
shown in Fig.2(b), the Cartesian space represented by each
sample is not homogeneous and increases with its distance
to the transducer, as seen in Fig.2(c). An error of one pixel
far from the transducer is larger in Cartesian units (in the
physical space) than an error of one pixel close to it. Thus, it
is necessary to compensate for this difference.

The relation between a displacement error of a sample at
two different locations is proportional to the relation between
the Cartesian space between samples at these locations in
the direction perpendicular to the beam. Since this space
is a function of the distance between the samples and the
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Fig. 3. Representation of wU (x) in scan converted (a) and non-scan converted
format (b)

transducer, an approach weighting each sample contribution
depending on its distance to the transducer is proposed:
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where wU (x) represents the weight applied to each sample
in the B-mode images. The weighting function we proposed
was:

wU (x) =
l(x)

L

=

↵d(x)

L

(7)

where l(x) is the length of the arch perpendicular to the beam
at position x, L is the number of US beams, ↵ is the angle
of the whole field of view in radians and d(x) is the distance
between x and the origin of the field of view, as represented
in Fig. 3. In the implementation, wU (x) was normalized so
that

P
wU (x) = 1.

Since TDI only measures tissue velocity along the beam
direction, the estimated velocity field was projected on this
direction and compared to the velocity values provided by
TDI:

D(p)=
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P
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wD(x)

⇣
b

�
't0(x, tm;p)

�
·

v

�
't0(x, tm;p), tm;p

�
� Vm(x)

⌘2
(8)

where wD(x) is the weight function applied to each sample
in the TDI data similar to wU (x) in Eq.7, b('t0(x, tm;p)) is
a unitary vector in the beam direction, Vm(x) is the velocity
value provided by TDI at location x and frame at time t =

tm, M + 1 is the number of tissue Doppler frames, and ⌦V0

corresponds to the spatial domain of the first TDI frame.
Finally, to find the minimum of the proposed similarity

metric, the L-BFGS-B (Limited memory Broyden-Fletcher-
Goldfarb-Shannon with simple Bounds) [25] optimizer was
chosen, which is a limited memory quasi-Newton algorithm
for solving large nonlinear optimization problems with simple
bounds on the variables.
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Fig. 4. Schematic of the pipeline for the simulation of cardiac ultrasound
sequences in [26].

III. EXPERIMENTS

For the validation of the proposed method, a realistic syn-
thetic dataset including simulations of healthy and pathologic
hearts was used. First, the method was evaluated and compared
to other alternatives. Afterwards, the method was applied to 6
real cases to show that it is able to estimate a realistic motion
field in situations where the use of one single modality is
challenging.

For all the experiments a grid of 6 B-spline control points in
each spatial dimension was used. In [10], it was demonstrated
that increasing the number of temporal control points resulted
in higher accuracy, and that taking more temporal control
points than the number of frames would oversample the
velocity field. In the current work, we set the number of
temporal control points equal to the number of B-mode frames.
In our dataset, the patient with the least number of B-mode
frames at rest had 25 frames. Therefore, we constrained the
maximum number of temporal control points to 25 for a fair
analysis between patients.

A. Generation of synthetic data

Synthetic B-mode and TDI data were generated using a
modification of the pipeline described in [26] and summarized
in Fig. 4. A realistic 3D volumetric tetrahedral mesh (as
shown in Fig. 5(a)) was built from the segmentation of a
Magnetic Resonance Image (MRI) acquisition on an healthy
patient. The SOFA (Simulation Open Framework Architecture)
[27] simulation framework, which is targeted at real-time
simulation, was then used to apply the Bestel-Clement-Sorine
electromechanical model [28] to the 3D heart geometry to
simulate one cardiac cycle, starting from end of diastole at a
frame rate of 90 Hz.

By modifying the value of the mechanical parameters of the
model at a segmental level, several degrees of ischemia can
be simulated. In particular, the same 9 cases considered in
[26] were included in the present study: one normal case; two
cases with ischemia (one mild and one severe) in the proximal
region of the left anterior descending artery (LADprox); two
cases with ischemia (one mild and one severe) in the distal
region of the left anterior descending artery (LADdist); two
cases with ischemia (one mild and one severe) in the region
of the right coronary artery (RCA); two cases with ischemia
(one mild and one severe) in the region of the left circumflex
coronary artery (LCX).

The output meshes from the electromechanical simulation
were used to displace a cloud of point scatterers mimicking the
acoustic tissue response of the myocardium. From each scatter
map, US radiofrequency lines were generated by convolving
the cloud of scatter points with the point spread function (PSF)
of the imaging system. Note that scatterers do not move during
the simulation of a single frame, so the acquisition is supposed
to be instantaneous. As in [26], COLE [29] was adopted as a
fast US simulation environment due to its high computational
efficiency. From each time variant scatter map, a cine B-mode
sequence and a TDI sequence were generated. In particular,
2D apical four chamber views were considered in this study.
For both modalities, the simulated system implemented a 1D
phased array with 64 elements, each element of width �/2,
height 14 mm and a kerf of �/10. The simulated probe had a
center frequency (f0) of 4 MHz, a -6 dB relative bandwidth
of 65% and a sampling frequency of 50 MHz. The scan angle
was 75 degrees, scan depth was 14 cm and the focus was
positioned at 7 cm. Note that all the settings of the synthetic
system were chosen to be the closest to the real setup used in
the in-vivo evaluation (see Table II and Table III).

1) Simulation of B-mode images: One mesh out of three
from the electromechanical simulation was considered leading
to an imaging frame rate of 30 Hz. From the associated scatter
map, 100 radiofrequency lines were acquired by uniformly
sweeping through the scan angle. As such, after envelope
detection, log-compression and scan conversion, a set of B-
mode images were obtained (pixel size = 0.34x0.34 mm

2).
Fig. 4(b) and Fig. 4(c) show an example of point scatterers
and simulated B-mode image.

2) Simulation of TDI: All meshes from the electromechan-
ical simulation were considered, leading to a frame rate of
90 Hz. For each frame, 20 scan lines were considered by
uniformly sweeping through the scan angle. For each scan
line, a set of four radiofrequency lines were simulated with
a pulse repetition frequency (PRF) of 2 KHz. This led to a
Nyquist velocity of ⇠19 cm/s, given:

vNyq =

c · PRF

4f0
(9)

where c is the sound speed in the tissue (⇠1540 m/s) and f0

is the center frequency. Tissue motion between two succes-
sive firings in the same direction was simulated by linearly
interpolating the position of the scattering centers in the
considered frame and the following one. For each scan line
and each depth, the tissue velocity was computed from the
corresponding package of four signals by means of a standard
phase shift based estimator [30]. After color rendering of the
computed velocity and scan conversion, TDI images, as the
ones of Fig. 5 (b)(c), were obtained.

B. Selection of the weighting parameter �

Before registering an echocardiographic image sequence
using the proposed method, it is first necessary to set a value
for the parameter � that balances the contribution of each
term in the similarity measure. A high value of � gives more
importance to D(p), while a low value gives more importance
to U(p).

Preprint version accepted to appear in IEEE Transactions on Medical Imaging. 
Final version of this paper available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6837493



5

60

-30

0

30

(a) (b) (c)

Fig. 5. A simulated US frame together with the wireframe of the mesh from
the electromechanical model is represented in (a). Example of TDI images for
early systole and early diastole are shown in (b) and (c), respectively. Colors
represent the velocity in mm/s, which is considered positive when directed
towards the transducer.

TABLE I
SUMMARY OF THE METHODS COMPARED WITH THE SYNTHETIC DATA.

Method Image format B-mode similarity

M1 Non-scan converted (Fig. 2(b)) US-specific (Eq. 6)
M2 Scan converted (Fig. 2(a)) US-specific (Eq. 6)
M3 Non-scan converted (Fig. 2(b)) Mean squared error [19]
M4 Scan converted (Fig. 2(a)) Mean squared error [19]

To choose an adequate value of �, two main aspects have
been considered: (i) the confidence on the value provided
by each term, and (ii) the way each term converges to its
minimum. The former was considered to be equivalent to the
confidence on the data provided by each modality. The latter
was related to the slope of the function that is minimized
during the optimization. Thus, an adequate value of � would
balance the magnitude of the slope of both terms. Considering
these two aspects, we set � as:

� = �r (10)

where � is the ratio between the confidence on the tissue
Doppler data and the B-mode images, and r is the ratio
between the slope of the two terms in the similarity measure.
In our experiments, the confidence ratio was set to 1, thus
assuming the same quality for TDI and B-mode images. r was
approximated as the magnitude of the initial derivative (with
respect to the transformation parameters) of U(p) divided by
the derivative of D(p).

C. Validation

The proposed method was applied to the previously de-
scribed synthetic dataset to evaluate its accuracy in terms of
displacement. The possible combinations between the simi-
larity measure in [19] and the one from Eq. 6, and between
using Cartesian and polar data were tested, as summarized in
Table 1. Fig. 6 shows the mean error and the standard deviation
of the displacements calculated from the first frame for all the
synthetic patients during one cardiac cycle implementing these
different alternatives.

Results from Fig. 6 show that using both non-scan converted
images and a similarity measure including speckle distribution
statistics gives better performance in average than the other
three alternatives evaluated, reducing the mean error of the
displacements estimated with methods M2, M3 and M4 by
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Fig. 6. Mean errors (circles) and standard deviations (lines) calculated for the
9 synthetic datasets during one cardiac cycle with the methods summarized
in Table 1.
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Fig. 7. Mean errors (circles) and standard deviations (lines) calculated for
the 9 synthetic patients during one cardiac cycle with method M1 (red) and
using only B-mode images (blue).

35%, 48% and 10%, respectively. Mean differences between
the proposed method (M1) and methods M2 and M3 were
found to be statistically significant with p < 0.05 using a
Student’s t-test. Mean differences between methods M1 and
M4 were not found to be statistically significant, obtaining a
p-value of 0.15.

Fig. 7 compares displacement error results obtained with M1
with respect to the results obtained taking into account only the
B-mode images, using Eq. 6. The results show that integrating
B-mode images and tissue Doppler velocities results in a more
accurate estimation of the displacement field, thus agreeing
with the results from [19]. Differences between the mean
displacement error obtained by integrating B-mode and TDI
data, and the error obtained using only B-mode were found to
be statistically significant for p < 0.05.

D. Clinical data

The method presented was also applied to a set of US
images acquired from 6 volunteers (age 30 ± 5.5, males)
with a Vivid-Q system (GE Healthcare Milwaukee, WI)

Preprint version accepted to appear in IEEE Transactions on Medical Imaging. 
Final version of this paper available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6837493



6

t = 0% t = 17% t = 33% t = 50% t = 66% t = 83%

Fig. 8. The top row shows a set of landmarks placed on the left ventricle and displaced according to the transformation calculated using only B-mode
(yellow), and using both B-mode and TDI together (red) at different times of the cardiac cycle for one example patient at rest. The bottom row shows the
corresponding B-mode images.

TABLE II
COMPARISON BETWEEN B-MODE IMAGE INFORMATION FOR REAL CASES

AT REST, DURING EXERCISE AND FOR SYNTHETIC DATA.

Rest Exercise Synthetic

Frames/cycle 39± 9 14± 2 27
Frame rate (Hz) 35± 9 34± 7 30
Beams 92.3± 9.4 85.7± 18.9 100
Samples/beam 577± 47.9 584.2± 64.9 248
Angle (�) 70± 7 65± 14.1 75
Depth (mm) 133± 11 135± 15 140

TABLE III
COMPARISON BETWEEN TISSUE DOPPLER IMAGE INFORMATION FOR
REAL CASES AT REST, DURING EXERCISE AND FOR SYNTHETIC DATA.

Rest Exercise Synthetic

Frames/cycle 105± 28 45± 7 79
Frame rate (Hz) 116± 28 107± 22 90
Beams 14± 3.1 15.3± 2.7 20
Samples/beam 190.5± 180.4 194.7± 21.4 248
Angle (�) 69± 8.4 60.5± 12.4 72
Depth (mm) 133± 11 135± 15 140
Nyquist vel. (cm/s) 18.1± 3 31.6± 1.5 19
PRF (Hz) 1125± 191 1958.3± 93.2 2000

and a GE Healthcare M4S probe (1.7/3.4 MHz frequency).
For each case, both B-mode and tissue Doppler images of
the left ventricle were acquired at rest. Afterwards, stress
echocardiography was performed with an ergometric bicycle
and images were acquired at maximum effort. Table II and
Table III show the mean values and standard deviation for
the different parameters of the acquired B-mode and tissue
Doppler images, respectively. Finally, our method integrating
both B-mode and TDI information for motion estimation was
applied to the acquired images and results were compared to
the ones obtained by using only B-mode images.

Fig. 8 shows the result of tracking a set of landmarks placed
on the left ventricle along one cardiac cycle using only B-mode
images (yellow), and integrating both B-mode and TDI (red)
with the proposed method, for one patient at rest. As it can
be observed, most of the differences between both methods
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Fig. 9. Schematic describing a spatiotemporal map. (a) shows a curved
line placed along the myocardium in a B-mode image and (b) shows
the corresponding spatiotemporal map. The vertical axis represents spatial
locations along the myocardium and the horizontal axis represents time in the
cardiac cycle extracted between consecutive R-peaks in the ECG. The dotted
vertical line indicates end systole. ED and ES stand for end diastole and end
systole, respectively.
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B-mode and TDI together (middle row) and the difference between both
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Fig. 11. Mean difference between displacements estimated using only B-mode
and using both B-mode and TDI at rest.
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Fig. 12. The top row shows a set of landmarks placed on the left ventricle and displaced according to the transformation calculated using only B-mode
(yellow), and using both B-mode and TDI together (red) at different times of the cardiac cycle during exercise for the patient in Fig. 8. Green circles indicate
where tracking using B-mode only has problems due to image quality. The bottom row shows the corresponding B-mode images.
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Fig. 13. Displacements estimated using only B-mode images (top row), using
B-mode and TDI together (middle row) and the difference between both
approaches (bottom row) for one patient during exercise.

lay on the lateral wall. Fig. 10 shows the displacements
calculated using the two methods in both longitudinal and
transversal directions. Spatiotemporal color maps were used
to visualize the results. An illustration to understand this kind
of map is shown in Fig. 9. The vertical axis represents spatial
locations along the myocardium (which has been unfolded
inspired from anatomical M-mode echocardiographic images)
and the horizontal axis represents time in the cardiac cycle.
Positive longitudinal displacement was defined from apex to
base, while positive transversal displacement was defined from
lateral wall to septum. One can see that the difference between
the displacements estimated with the two methods is larger at
the base of the lateral wall.

Fig. 11 shows the mean displacement differences between
the two methods for the 6 patients analyzed at rest. Results
show that the displacement estimated at end systole using only
B-mode images is lower, in average, than the displacement
estimated with the proposed method, and with maximum
difference located at the base of the ventricle. These results
are in line with the results obtained for the patient shown in
Fig. 10.

Fig. 12 shows the result of tracking a set of landmarks
placed on the left ventricle with the two methods for the
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Fig. 14. Mean difference between displacements estimated using only B-mode
and using both B-mode and TDI during exercise.

patient presented in Fig. 8, using the data acquired during
exercise. Fig. 13 also shows the displacements calculated
during exercise for this patient. As it can be observed, displace-
ment differences between the two approaches are increased
with respect to the results obtained at rest. Moreover, the
displacement pattern estimated using only B-mode images in
Fig. 13 does not look physiologically realistic.

The mean displacement differences between the two ap-
proaches were finally calculated using the data acquired during
exercise for the 6 patients analyzed, as shown in Fig. 14. It
is possible to see that the magnitude of the mean difference
is increased when compared to the differences from the data
acquired at rest. In addition, most of these differences are
located at the base of the lateral wall.

IV. DISCUSSION

The proposed method was validated using a synthetic
dataset and compared with the alternatives shown in Table
1. Results in Fig. 6 show that the proposed method (M1)
performs better, in average, than the other tested alternatives.
Furthermore, M1 uses non-scan converted images, so the
registration process is computationally less expensive because
the number of samples in the images before scan conversion is
lower. In addition, it is not necessary to mask the field of view,
since all samples in the images provide valuable information.

From the results in Fig. 6, one can conclude that, among
the generated synthetic cases, M4 performs better in those
cases where ischemia is simulated close to the Left Anterior
Descending (LAD) artery and the Left Circumflex (LCX). The
2D simulated images include the areas in the septum and
lateral wall that are more affected by the ischemia in the LAD
and LCX regions, respectively. Since local motion in ischemic
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regions is reduced, local changes between consecutive frames
are also reduced. Method M4 uses a similarity measure that
compares all frames with a reference frame, so its performance
varies depending on how similar each frame is to the refer-
ence. Therefore, in those cases where motion is reduced, the
performance of M4 may improve, producing slightly better
results than M1 in ”LADdist-severe” and ”LCX-mild” cases.
Method M2 likely fails because it applies a speckle statistics-
based measure to Cartesian B-mode images. This kind of
metric uses the Rayleigh distribution to model the speckle.
However, when working with Cartesian images, many pixels
in the image contain interpolated information, resulting in a
speckle pattern whose properties may differ from the Rayleigh
statistics. Finally, M3 performs worse than the others. The
similarity measure used by this method compares each frame,
in non-scan converted format, to a reference frame using a
mean squared error-based approach. In this case, if the tissue
structures imaged in the reference frame fall completely or
partially out of the US lines, since there is no interpolation,
this information will be completely lost. Thus, M3 could fall
into a local minimum during the optimization process, not
being able to recover an accurate displacement field.

The proposed method was also applied to 6 healthy volun-
teers, acquiring images both at rest and during exercise. Since
the quantitative parameters extracted from echocardiographic
sequences [3] are highly conditioned by the accuracy of
the tracking, clinical studies targetting a better understanding
of cardiac function during exercise may benefit from the
improvements of the proposed method. These protocols are
currently receiving more attention to understand the cardiac
function contribution to the functional capacity during effort
and to prevent from any potentially high-risk impairment [20],
[21].

Results from Fig. 11 show the differences between dis-
placements estimated using only B-mode and integrating both
B-mode and TDI at rest. As it can be seen, the magnitude
of the difference in longitudinal displacements is low in
average, being higher in the lateral wall with a maximum of
2.5 mm at end systole. Transversal displacement differences
are lower than in the case of longitudinal displacements as
expected, since TDI only gives information in the longitudinal
direction. Most of the differences in the transversal direction
are accumulated at the base and differences may occur as
a consequence of different estimations in the longitudinal
direction. Fig. 8 and Fig. 10 show the displacements estimated
for one example case using only B-mode and using both B-
mode and TDI. These results are in line with the average
results previously discussed.

Displacements were also estimated for the same 6 volun-
teers during exercise. In this situation, the quality of the B-
mode images acquired is worse due to the difficulty of the
acquisition, as it can be observed in Fig. 12. This, added to
the reduced number of frames because of higher heart rates,
makes displacement estimation using only B-mode images
challenging. In the present study, the number of frames during
exercise is reduced to 41% of the number of frames acquired at
rest. Results from Fig. 14 show larger differences between the
displacements estimated using only B-mode and using both

B-mode and TDI together when compared with the results
obtained at rest. These larger differences are more visible at
the base of the lateral wall, with a maximum error of about
6 mm at end systole. The basal level (mitral annulus) and
the lateral wall are subject to lower image quality (border
of the echocardiographic window, reflections, and position
of the valve with respect to the myocardium). Green circles
in Fig. 12 indicate a region where tracking using B-mode
only is prone to large errors. Our method might also lead
to inaccuracies in such challenging cases (radial motion tends
to be overestimated at the apical lateral level). However, due
to the use of TDI data, these artifacts are more localized and
along the radial direction only. The example case displayed
in Fig. 13 also shows large differences in the estimation of
displacements in the lateral wall, in line with the average
results.

One limitation of the current work may be the number of
real cases included. However, our primary objective was to
show the feasibility and the added value of our approach as
compared to the ones considering one single modality. Ap-
plication to a larger number of subjects within a specifically-
designed clinical study is left for further works.

V. CONCLUSIONS

A method to integrate B-mode images and TDI velocities in
one single registration framework has been proposed. Unlike
other methods to integrate these two modalities [15], [16],
[31], B-mode and TDI samples are evaluated separately and
they do not have to coincide in time, so temporal/spatial inter-
polation is not needed to calculate one single and continuous
transform.

The improvements of using both modalities together instead
of a singe modality were demonstrated. Results from valida-
tion with synthetic data showed that using speckle statistics
information and data before scan conversion outperforms the
results obtained by using a more classical pixel intensity-based
measure to compare scan-converted frames. Experiments with
real cases also showed that integrating both modalities gives a
realistic motion estimation in cases where using only B-mode
images is challenging.

Future work includes the extension to clinical protocols
including fast motion, such as LBBB-related patterns and
athletes undergoing exercise.

ACKNOWLEDGEMENTS

This research was partially funded by the Spanish Ministry
of Economy and Competitiveness (TIN2012-35874) and the
Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. 611823. The work of A. R. Porras was sup-
ported by the Spanish Government with a FPU grant. The work
of M. Alessandrini was supported by the Research Foundation
Flanders (FWO).

REFERENCES

[1] C. Petitjean, N. Rougon, and P. Cluzel, “Assessment of myocardial
function: a review of quantification methods and results using tagged
MRI.,” J Cardiovasc Magn Reson, vol. 7, no. 2, pp. 501–516, 2005.

Preprint version accepted to appear in IEEE Transactions on Medical Imaging. 
Final version of this paper available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6837493



9

[2] G. Sutherland, L. Hatle, P. Claus, J. D’hooge, and B. Bijnens, Doppler
myocardial imaging-a textbook. BSWK Bvba, 2006.

[3] B. Bijnens, M. Cikes, C. Butakoff, M. Sitges, and F. Crispi, “Myocardial
motion and deformation: What does it tell us and how does it relate to
function?,” Fetal Diagn Ther, vol. 32, no. 1-2, pp. 5–16, 2012.

[4] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y.
Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology
of medical diagnostics.,” Ultrasound Med Biol, vol. 24, pp. 1419–1435,
Nov 1998.

[5] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent
plane-wave compounding for very high frame rate ultrasonography and
transient elastography.,” IEEE Trans Ultrason Ferroelectr Freq Control,
vol. 56, pp. 489–506, Mar 2009.

[6] R. Jasaityte, B. Heyde, and J. D’hooge, “Current state of three-
dimensional myocardial strain estimation using echocardiography.,” J
Am Soc Echocardiogr, vol. 26, pp. 15–28, Jan 2013.

[7] M. J. Ledesma-Carbayo, J. Kybic, M. Desco, A. Santos, M. Shling,
P. Hunziker, and M. Unser, “Spatio-temporal nonrigid registration for
ultrasound cardiac motion estimation.,” IEEE Trans Med Imaging,
vol. 24, pp. 1113–1126, Sep 2005.

[8] C. T. Metz, S. Klein, M. Schaap, T. van Walsum, and W. J. Niessen,
“Nonrigid registration of dynamic medical imaging data using nd + t
B-splines and a groupwise optimization approach.,” Med Image Anal,
vol. 15, pp. 238–249, Apr 2011.

[9] M. Yigitsoy, C. Wachinger, and N. Navab, “Temporal groupwise regis-
tration for motion modeling,” in Inf Process Med Imaging, vol. 6801 of
LNCS, pp. 648–659, Springer Berlin Heidelberg, 2011.

[10] M. De Craene, G. Piella, O. Camara, N. Duchateau, E. Silva, A. Doltra,
J. D’hooge, J. Brugada, M. Sitges, and A. F. Frangi, “Temporal dif-
feomorphic free-form deformation: Application to motion and strain
estimation from 3D echocardiography,” Med Image Anal, vol. 16, no. 2,
pp. 427 – 450, 2012.
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