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Sanchez-Martinez et al. Circ Cardiovasc Imag 2018

ex: heart failure preserved ejection
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Why not using labels?

➔ No labels available
➔ Low relevance of labels
➔ Limits of supervised approaches

➔ Or simply a different point of view?

Which end point for the application?
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➔ Subgroups identification / similar trends Clustering
➔ Detect novelty / unexpected values Outliers detection

➔ Understand the data space (low-dimensional) embedding

➔ Statistical distances Manifold learning

➔ Sampling/generate new cases Reconstruction
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➔ K-means

Parameter = K (number of clusters)

Idea = minimize the within-cluster variance

 (distance to each centroid)
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3. Unsupervised learning

Clustering

➔ K-means

Lloyd’s algorithm: 1. Initialize centroids (e.g. K random samples)
2. Assign each sample to its nearest centroid
3. Update centroids as average of assigned samples

Comments: - converges to local minimum: needs several restarts
- simple cluster boundaries
- not applicable in high dimension: reduce dimensionality first 

8x8 images, K=10
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Clustering

➔ K-means

Lead location from electroanatomical activation maps
Soto-Iglesis et al. IEEE J Transl Eng Health Med 2017
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3. Unsupervised learning

Clustering

➔ Gaussian mixture models

Parameters = weights + mean + covariance of each Gaussian

Idea = samples generated from a mixture of K Gaussian ~ generalization of K-means



3. Unsupervised learning

Clustering

➔ Gaussian mixture models

Algorithm = Expectation-Maximization (EM)
1. Initial random components (e.g. around K-means centroids)
2. Compute probability at each point
3. Maximize likelihood / update parameters



3. Unsupervised learning

Clustering

➔ Gaussian mixture models

24-hour heart rate
time series

histogram Gaussian mixture

Costa et al. Plos One 2012



3. Unsupervised learning

Clustering

➔ Hierarchical clustering

- Agglomerate = 1 cluster for each sample + merging across the hierarchy
- Divise = 1 single cluster + divise across the hierarchy

Metric = Euclidian distance

www.wikipedia.org



3. Unsupervised learning

Clustering

➔ Hierarchical clustering

Studied subjects

C
lin

ic
al

 v
ar

ia
bl

es

Shah et al. Circulation 2015

Phenotyping
ex: heart failure reduced / preserved ejection

Clinical variables
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Omar et al. JACC Imaging 2017
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Outliers detection

➔ Distribution fit + decision function

ex: Mahalanobis distance

Kim et al. J-Stage 2013
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3. Unsupervised learning

Which end point?

➔ Subgroups identification / similar trends Clustering
➔ Detect novelty / unexpected values Outliers detection

➔ Understand the data space (low-dimensional) embedding

➔ Statistical distances Manifold learning

➔ Sampling/generate new cases Encoding/decoding

Key step = data representation
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3. Unsupervised learning

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

Inputs = 
- Single high-dimensional descriptors
- Multiple scalars

...or Multiple high-dimensional descriptors

Output = 
- Low-dimensional representation

What for? = which space to work on?

Distances in low dimension? / Reconstructed cases in high dimension?

1) Embedding

2) Manifold / latent space

3) Reconstruction
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3. Unsupervised learning

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

➔ “Structure” of the data space?

Linear ?

Non-linear !!!

ORL database



3. Unsupervised learning

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

➔ “Structure” of the data space?

Low number of dimensions to encode high dimensional data variations

Tenenbaum et al. Science 2000

Exploitable “latent” space?



3. Unsupervised learning

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

➔ “Structure” of the data space?

Manifold of dimension N = topological space that near each sample resembles 
(is homeomorphic to) a N-dimensional Euclidean space

www.wikipedia.org

ex: - lines and circles (N=1)

- plane, sphere, surfaces (N=2)

- brain images, cardiac shapes (N=?)



3. Unsupervised learning

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

➔ “Structure” of the data space?

Manifold of dimension N

◆ In some cases = known structure

log-exponential mapping
Pennec et al. Int J Comput Vis 2006



3. Unsupervised learning

Diffeomorphic transformations
(registration)ex: Interpolation of tensors (diffusion, strain)

Pennec et al. Int J Comput Vis 2006 Arsigny et al. MICCAI 2006

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

➔ “Structure” of the data space?

Manifold of dimension N

◆ In some cases = known structure

Vector space Manifold



3. Unsupervised learning

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

➔ “Structure” of the data space?

Manifold of dimension N

◆ In some cases = known structure
◆ Otherwise = learn it from data !



3. Unsupervised learning

1. Assumption = data lies on / close to a manifold
2. Few samples (on the manifold) available
3. Neighborhood graph = approximation of the manifold
4. Dimensionality reduction = spectral decomposition of…?

Atasoy & Mateus MICCAI tutorial 2011

1 2 3 4

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

➔ “Structure” of the data space?

Manifold of dimension N

◆ In some cases = known structure
◆ Otherwise = learn it from data !



3. Unsupervised learning

Representation learning

Idea = better represent the data space - lower dimensional space
- unsupervised

Inputs = 
- Single high-dimensional descriptors
- Multiple scalars

...or Multiple high-dimensional descriptors

Output = 
- Low-dimensional representation

1) Embedding

2) Manifold / latent space
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3. Unsupervised learning

(low-dimensional) embedding: linear

➔ PCA = Principal Component Analysis

Idea = principal directions of variance ➔ diagonalize the covariance matrix

http://www.nlpca.org

Linear change 
of basis



3. Unsupervised learning

(low-dimensional) embedding: linear

➔ ICA = Independent Component Analysis

Idea = Independent, non-Gaussian variables
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(low-dimensional) embedding: linear

To go further... Nb descriptors Maximizes...

Principal Component Analysis PCA 1 Variance

Partial Least Squares PLS 2+ Covariance Wold et al. Chemo 1984

Canonical Correlation Analysis CCA 2+ Correlation Hotelling Biometr 1936

Descriptor 1

Descriptor 2
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3. Unsupervised learning

(low-dimensional) embedding: linear

Descriptor 1

Descriptor 2

To go further... Nb descriptors Maximizes...

Principal Component Analysis PCA 1 Variance

Partial Least Squares PLS 2+ Covariance Wold et al. Chemo 1984

Canonical Correlation Analysis CCA 2+ Correlation Hotelling Biometr 1936

CCA PLSPCA
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Atlas of “normal” motion
(PCA on myocardial velocities)

Variations in pathological shapes
(PCA on velocity fields from registration)

McLeod et al. MCBB 2013
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➔ Isomap Tenenbaum et al. Science 2002

Idea = approximate geodesic distances / shortest path along the graph

Tenenbaum et al. Science  2002 Input space



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Isomap Tenenbaum et al. Science 2002

Idea = approximate geodesic distances / shortest path along the graph

Tenenbaum et al. Science  2002 Input space Output space



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Isomap Tenenbaum et al. Science 2002

Parameter = number of neighbors K to build the graph

Input space Ground truth 
embedding

Estimated embeddingsDuchateau et al. Med Image Anal  2012
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(low-dimensional) embedding: linear non-linear

➔ Isomap

Duchateau et al. Med Image Anal  2012

ex: disease evolution
(cardiac velocity patterns)

Gerber et al. Med Image Anal  2010

ex: preprocessing for
regression (brain images)
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➔ Laplacian eigenmaps Belkin & Niyogi Neur Comput 2003

Idea = diagonalize the graph Laplacian

Graph Laplacian

Constraint:

www.wikipedia.org



(low-dimensional) embedding: linear non-linear

➔ Laplacian eigenmaps Belkin & Niyogi Neur Comput 2003

Idea = diagonalize the graph Laplacian

3. Unsupervised learning

- Close inputs ➔ ➔ close outputs
- Far inputs ➔ ➔ minor influence

Graph Laplacian

Constraint:

Parameter = kernel bandwidth



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Laplacian eigenmaps

Atasoy et al. Nat Comm 2016

Rectangular metal plates

Shaped metal plates

Learnt embedding:
ex: connectome harmonics

Xu et al. Appl Optics 1983

Imaged vibrations (interferometry)
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3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Laplacian eigenmaps

Beware ! meaningful variations not always ordered as dimensions (1,2,3,…)

➔ Careful interpretation vs. the spread of the data space (Nadler et al. 2008)

ex: Spiral with varying height vs. length

Balanced heigth / length

High length vs. length



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

Probability of moving from sample i to sample j in t steps

Liu et al. CVIU 2012

To go further... Works on...

Laplacian eigenmaps Graph Laplacian L = D-W Belkin & Niyogi Neur Comput 2003

Diffusion maps Normalized Laplacian P Coifmain & Lafon Appl Comput Harm 2006

Coifman & Lafon Appl Comput Harm 2006

t=8

t=64



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

To go further... Works on...

Laplacian eigenmaps Graph Laplacian L = D-W Belkin & Niyogi Neur Comput 2003

Diffusion maps Normalized Laplacian P Coifmain & Lafon Appl Comput Harm 2006

Coifman & Lafon Appl Comput Harm 2006

Why? Robustness to non-uniform density of the samples
(critical in real-life applications !!!)

Input data Samples density Embedding
(graph Laplacian)

Embedding
(new kernel)



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

To go further... Works on...

Laplacian eigenmaps Graph Laplacian L = D-W Belkin & Niyogi Neur Comput 2003

Diffusion maps Normalized Laplacian P Coifmain & Lafon Appl Comput Harm 2006

Piella Sensors 2014

ex: Preprocessing for robust 
multimodal registration

Multimodal images

Diffusion maps output



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ … and many other algorithms !

van der Maaten et al. 2009

Depends on:
● Your knowledge on data
● Your objectives (distance=?)
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(low-dimensional) embedding: linear non-linear

➔ Unified framework? 



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Unified framework? 

Atasoy & Mateus MICCAI tutorial 2011



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Unified framework Yan et al. IEEE PAMI 2007

(cf. Laplacian eigenmaps…)
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➔ Unified framework Yan et al. IEEE PAMI 2007

Under the constraint: Supervised Unsupervised

Coifman & Lafon Appl Comput Harm 2006
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3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Back to our pipeline...

Inputs = 
- Single high-dimensional descriptors
- Multiple scalars

...or Multiple high-dimensional descriptors

Output = 
- Low-dimensional representation

1) Embedding

2) Manifold / latent space

3) Reconstruction???
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(low-dimensional) embedding: linear non-linear

➔ Reconstruction
Analytical formula exists? 

ex: PCA = linear change of basis



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Reconstruction
Analytical formula exists? 

… in many cases, no !
= out-of-sample extension problem

> Possibility = kernel interpolation:



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Reconstruction

ex: variability in myocardial infarcts
Di Folco et al. CNIV 2019

Linear average
Linear average
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(low-dimensional) embedding: linear non-linear

➔ Autoencoders (unsupervised learning as supervised learning)

LeCun et al. PhD 1987
Hinton & Zemel NIPS 1994



3. Unsupervised learning

(low-dimensional) embedding: linear non-linear

➔ Autoencoders (unsupervised learning as supervised learning)

‘

Simultaneously learn, in a supervised manner
● an encoder that maps the input into a shorter code
● a decoder that maps back a code into an input

Self supervision = minimize the reconstruction error

LeCun et al. PhD 1987
Hinton & Zemel NIPS 1994



3. Unsupervised learning

Extensions and other approaches

● Denoising Autoencoders, Variational Autoencoders (VAE), Conditional VAE, …
● Generative Adversarial Networks (GAN),

○ CGAN, WGAN, …, “gan zoo”
○ VAE-GAN, CVAE-GAN, …

● Self supervised learning

(low-dimensional) embedding: linear non-linear

➔ Autoencoders (unsupervised learning as supervised learning)

LeCun et al. PhD 1987
Hinton & Zemel NIPS 1994



Summary

➔ Unsupervised learning, depends on:
◆ Your data problem: labels / no labels, ...
◆ Your initial question: clustering, outliers, …

➔ Learning a representation is key, depends on:
◆ Linear / non-linear
◆ Objectives:

3. Unsupervised learning

Embedding space Reconstruction

Manifold learning Meaningful distances between input samples
~ Euclidean distance between output coordinates

Interpolation?

Auto-encoders Limited statistical meaningi Optimized encoding/decoding



Summary

➔ Validation not straightforward:
◆ No labels !
◆ vs. method’s way of working? (ex: short-circuit)
◆ vs. application’s objectives? (ex: risk analysis, knowledge discovery)

➔ Still under-used vs. supervised learning
◆ Promising for medical problems !
◆ Rising semi-supervised learning...

3. Unsupervised learning


