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Questions

1. Problem statement

(a) What do the axes of the sinogram depicted in Fig. 1 correspond to? Which is ‘view
angle’? Which is ‘radial position’?

Solution: horizontal axis: radial position
vertical axis: view angle

(b) Let Y be the measured sinogram, as depicted in Fig. 1. Give the relationship
between the matrix Y and the vector y defined in Eq. (1).

Solution: y is obtained from Y through vectorization.

(c) What is the dimension of Y?

Solution: Y ∈ RL×M .

(d) We acquire measurements for L = 20 view angles over 180°using a detector that
has M = 89 pixels. The unknown image is 60× 60. Specify the dimensions J and
I defined by Eq. (1).

Solution:

I = 89× 20 = 1780

J = 60× 60 = 3600
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2. We start by investigating the case λ = 0, i.e., L(x) = ‖y −Ax‖22.
(a) Give the gradient of the data fidelity term g(x) = ∇L(x).

Solution: Applying standard matrix differentiation, we get

g(x) = −2A>(y −Ax).

(b) What is the influence of the choice for the step length τ in Eq. (??)? What if it
chosen ‘too small’ or ‘too large’?

Solution: The algorithm will converge slowly to the solution if the step length
is chosen too small, while it may diverge if it is chosen too large. Therefore,
finding a ‘good’ step length is an important practical problem.

(c) We look for the optimal step length that solves minτ L(xk−τgk). Why is this choice
optimal?

Solution: It gives the step length such that the next iteration attains the min-
imum of the cost function along the search direction gk.

(d) Show that minimizing L(xk − τgk) with respect to τ is equivalent to minimizing
L2(τ) = −τg>k gk + τ 2(Agk)

>(Agk). Hint: expand and remove terms independent
of τ . Warning: difficult but good answers will be rewarded.

Solution: We first write

L(xk − τgk) = (y −A(xk − τgk))> (y −A(xk − τgk))
= (y −Axk)

> (y −Axk − τAgk)

− (τgk)
> [A> (y −Axk)− τA>Agk

]
By removing the terms independent of τ , we get:

L2(τ) = −τ (y −Axk)
> (Agk)− τ (gk)

> [A> (y −Axk)− τA>Agk
]
.

Substituting A>(y −Axk) by gk/2, one obtain

L2(τ) = −τ
2

(gk)
> gk −

τ

2
(gk)

> gk + τ 2 (gk)
>A>Agk,

which leads to L2(τ) = −τg>k gk + τ 2(Agk)
>(Agk) as expected.

(e) Compute the gradient of L2(τ).
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Solution: ∇L2(τ) = −g>k gk + 2τ(Agk)
>(Agk)

(f) Show that the optimal step length is τk = (g>k gk)/(2g>k A>Agk). This choice leads
to the so-called steepest descent. Hint: set the derivative of L2 to zero.

Solution: By setting ∇L2(τ) to zero, we obtain 2τ(Agk)
>(Agk) = g>k gk and,

therefore,

τk =
g>k gk

2g>k A>Agk
.

Figure 2: Reconstruction using different choices for the step length. ( ) τ = 1.5; ( ) τ = 1;
( ) τ = 0.1; ( ) Optimal step length. In all cases, we consider 10 gradient descent iterations
and set x(0) = 0.

(g) Complete the caption of Fig. 2 by picking up the step length corresponding to each
of the reconstructed images. Justify your choices.

Solution: (b) τ = 1.5: the largest step as the algorithm diverges.
(d) τ = 1: fast convergence. As in (c), the image has high frequency compo-
nents. However, the range of values is closer to 0 (i.e., the initial guess) than in
(c).
(a) τ = 0.1: slow convergence. Compared to (c) and (d), high-frequency com-
ponents are missing. It has the lowest maximum value (e.g., about 0.45) among
all images.
(c) Optimal step length: the best reconstruction with an improved range of
values compared to (c).



Tdsi AR Page 5 of 8 27th January 2022

3. We now focus on the regularizers defined by Eq. (2). We consider the case where B is
the identity matrix and the potential function φ is chosen among the three candidates:

φ1(x) = x2 (quadratic) (4)

φ2(x) =
√
x2 + ε2 − ε (pseudo Huber) (5)

φ3(x) =
x2

x2 + µ2
(Geman-McClure) (6)

Figure 3: The three regularization potentials considered in this exercise. We set ε = 10−3

and µ ≈ 0.18.

(a) Annotate Fig. 3 to specify which plot corresponds to which potential.

Solution: dashed line (blue): Quadratic φ1.
dotted line (red): Pseudo Huber φ2.
Full line (orange): Geman-McClure φ3.

(b) What kind of images will make the regularization term R small? Discuss the case
of each of the three potential functions.

Solution:

• Quadratic φ1: Pixels with large values contribute significantly more than
pixels with small values. Images with few large values lead to small regu-
larization terms.

• Pseudo Huber φ2: Pixels with large values contribute more than pixels
with small values, but not significantly more. Images with many small
values lead to small regularization terms, but a few very large values may
make it large.
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Figure 4: Regularization term for different potential functions. (a) Original image; (b–d)
potential images, i.e., evaluation of the potential functions at each pixel of the original image;
(e–g) potential derivative images, i.e., evaluation of the potential functions at each pixel of
the original image.

• Geman-McClure φ3: All pixels with large values contribute the same way.
Images with many small values (e.g., many zeros) lead to small regulariza-
tion terms. Images with a few pixels with very large values can also lead
to small regularization terms.

(c) For each of the images (b-d) of Fig. 4, specify the potential it corresponds to?
Justify.

Solution: Quadratic φ1: The potential image is darker than the original image.
Pseudo Huber φ2: The potential image is the same as the original image.
Geman-McClure φ3: All pixels with values above 0.2 are set to one. The poten-
tial image is brighter than the original image.
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4. We finally investigate the case λ > 0. The regularization parameter λ sets a compro-
mise between the data fidelity term ‖y −Ax‖22 and the regularization term R. Among
solutions with a small data fidelity, it selects one with a small regularization term.

(a) Show that the gradient of L is given by ∇L(x) = −2A>(y −Ax) + λ∇R(x).

Solution: By linearity and using 2(a), ∇L(x) = −2A>(y −Ax) + λ∇R(x).

(b) Show that the gradient of R only depends on the derivative of the potential in each
pixel.

Solution: By definition we compute ∂
∂xj
R(x) = ∂

∂xj

∑
n φ(xn) =

∑
n

∂
∂xj
φ(xn) =

φ′(xj). Therefore

∇R =

φ
′(x1)

...
φ′(xJ)



(c) For each of the images (e-g) of Fig. 4, specify the potential derivative it corresponds
to? Justify.

Solution: Quadratic φ1: The gradient is given by the image values.
Pseudo Huber φ2: The gradient almost one everywhere as all pixels are positive.
Geman-McClure φ3: The gradient is small where the image takes large values.

(d) For each potential type, what pixels are most modified by a gradient descent update?

Solution: We look at the gradient of the regularizer.
Quadratic φ1: The gradient is large where the image takes large values.
Pseudo Huber φ2: The gradient is almost one everywhere as all pixels are posi-
tive.
Geman-McClure φ3: The gradient is large where the image takes small values.

(e) Complete the caption of Fig. 5 to indicate the potential leading to each image.
Justify.

Solution: (a) Quadratic φ1; many small values in the background
(c) Pseudo Huber φ2; fewer small values in the background
(a) Geman-McClure φ3: solution with many zeros
(d) Total variation: solution with flat regions.
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Figure 5: Reconstruction for different potential functions. ( ) Quadratic φ1; ( ) Pseudo
Huber φ2; ( ) Geman-McClure φ3; ( ) Total variation, i.e., φ = φ2 and B is the gradient. We
consider 20 gradient descent iterations and set x(0) = 0.

(f) Conclude on the choice of the regularizer term. Which is best? What are its pros
and cons?

Solution: The Geman-McClure potential is better than the Pseudo Huber po-
tential at sparcifying the solution. However, some pixel are set to zero while
they take small values in the original image.
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QCM (4 points)

N.B. : Une seule bonne réponse est possible.

1. Une onde acoustique passant d’un matériau piezo-électrique d’impédance acoustique
Z = 15, à la peau d’impédance acoustique Z = 1.5, est

© En grande partie transmise

© En grande partie réfléchie

© Transmise à plus de 50%

© Réfléchie à plus de 50%

2. Quelle résolution spatiale peut-on obtenir avec une sonde de 10 MHz dans les tissus
biologiques ? On rappelle que la vitesse de propagation des ultrasons dans l’eau est de
1540 m/s.

© Environ 1 cm.

© Environ 0.1 mm

© Environ 10 µm

© Exactement 1.54 mm

3. On souhaite focaliser des ondes ultrasonores au point (x, z) = (0, 5) cm (cf. figure 1).
Quel retard appliquer à l’élément situé en x = 0 pour que l’onde émise par cet élément
arrive en même temps que l’onde émise par un élément situé en x = 700 µm ? On
supposera une vitesse de propagation des ultrasons de 1540 m/s.

© 3.2 ns

© 32 µs

© 65 µs

© Aucun retard n’est nécessaire
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Figure 1 – Géométrie du problème de la question 3.

4. Une onde ultrasonore traverse de part en part un milieu d’atténuation 1 dB/cm/MHz.
Ce milieu a pour profondeur 3 cm et l’onde ultrasonore est émise à une fréquence de 7
MHz. De combien est atténué le signal après avoir traversé le milieu ?

© 42 dB

© 21 dB

© 7 dB

© On ne peut pas savoir

5. Comment appelle t-on l’ensemble des mesures en tomography par rayons X ?

© Une image reconstruite.

© Une carte d’attenuation.

© Un sinogramme.

© Une radiographie.

© Le bruit de Poisson.

6. On dispose d’un algorithme de reconstruction par rétroprojection filtrée. Comment ré-
duire le temps d’acquisition ?

© En augmentant le nombre d’angles de vue acquis.

© En diminuant le nombre de pixels du détecteur.

© En augmentant le nombre de pixels du détecteur.

© En diminuant le nombre d’angles de vue acquis.

© En utilisant un algorithme de reconstruction rapide.
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Exercice (16 points)

The goal of this exercise is to solve a reconstruction problem by minimizing

L(x) = ‖y −Ax‖22 + λR(x), (1)

where y ∈ RI×1 represents the measurement vector, A ∈ RI×J the discrete Radon transform,
x ∈ RJ×1 the attenuation (unknown) image, λ is the regularization parameter and R a
regularization term. In particular, we will consider regularizers given by

R(x) =
∑
n

φ([Bx]n), (2)

where φ is a nonlinear function and B ∈ RN×J is a linear operator (matrix).
To minimize Eq. (1), we implement a gradient descent with the update rule

xk+1 = xk − τgk, x(0) = 0, (3)

where τ is the step length and gk is the gradient of the cost function L.

Figure 1: The problem is to reconstruct the unknow image x∗ from the measured sinogram
Ax∗ + noise.
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