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Questions

1. Problem statement

(a) What do the axes of the sinogram depicted in Fig. 1 correspond to? Which is ‘view
angle’? Which is ‘radial position’?

Solution: horizontal axis: radial position
vertical axis: view angle

(b) Let Y be the measured sinogram, as depicted in Fig. 1. Give the relationship
between the matriz Y and the vector y defined in Eq. (1).

Solution: y is obtained from Y through vectorization.

(c) What is the dimension of Y7

Solution: Y € REXM,

(d) We acquire measurements for L = 20 view angles over 180°using a detector that
has M = 89 pixels. The unknown image is 60 x 60. Specify the dimensions J and
I defined by Eq. (1).

Solution:

I =89 x20=1780
J =60 x 60 = 3600
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2. We start by investigating the case A = 0, i.e., £(x) = ||y — Ax]|3.
(a) Give the gradient of the data fidelity term g(x) = VL(x).

Solution: Applying standard matrix differentiation, we get

g(x) = —QAT(y — Ax).

(b) What is the influence of the choice for the step length 7 in Eq. (??)? What if it

chosen ‘too small’ or ‘too large’?

Solution: The algorithm will converge slowly to the solution if the step length
is chosen too small, while it may diverge if it is chosen too large. Therefore,
finding a ‘good’ step length is an important practical problem.

(c) We look for the optimal step length that solves min, £(xj —7gx). Why is this choice

optimal?

Solution: It gives the step length such that the next iteration attains the min-
imum of the cost function along the search direction gy.

(d) Show that minimizing L£(x; — 78x) with respect to 7 is equivalent to minimizing
Lo(T) = —7gl gr + 72(Agr) " (Agy). Hint: expand and remove terms independent

of 7. Warning: difficult but good answers will be rewarded.

Solution: We first write
L(xp —7gr) = (y — Alxp — 781)) | (y — Alxy, — 78%))
=(y— Axk)T (y — Axy — TAgy)
— (Tgk)T [AT (y — Axy) — TATAgk]
By removing the terms independent of 7, we get:

Lo(t) = —7(y — Axy) (Agr) —7(gr) [AT (y — Axy) — TATAgy] .
Substituting AT (y — Axy) by gi/2, one obtain

T T
LoT) = D) (gk)T Y (gk)T gr+ 7 (gk:>T ATAg,

which leads to Lo(7) = —7g] gr + 72(Agi) " (Agy) as expected.

(e) Compute the gradient of Lo(7).
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Solution: VLy(7) = —g/l g + 27(Agi) " (Agy)

(f) Show that the optimal step length is 7, = (g, gx)/(2g] AT Agy.). This choice leads
to the so-called steepest descent. Hint: set the derivative of Ly to zero.

Solution: By setting V.Ly(7) to zero, we obtain 27(Agy) ' (Agy) = g, g and,

therefore,
- ngk
2g] AT Ag;,
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Figure 2: Reconstruction using different choices for the step length. ( )7 =1.5; ( )7 = 1;
( )7 =0.1; ( ) Optimal step length. In all cases, we consider 10 gradient descent iterations
and set x(¥ = 0.

(g) Complete the caption of Fig. 2 by picking up the step length corresponding to each
of the reconstructed images. Justify your choices.

Solution: (b) 7 = 1.5: the largest step as the algorithm diverges.

(d) 7 = 1: fast convergence. As in (c), the image has high frequency compo-
nents. However, the range of values is closer to 0 (i.e., the initial guess) than in
(c).

(a) 7 = 0.1: slow convergence. Compared to (c¢) and (d), high-frequency com-
ponents are missing. It has the lowest maximum value (e.g., about 0.45) among
all images.

(¢) Optimal step length: the best reconstruction with an improved range of
values compared to (c).
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3. We now focus on the regularizers defined by Eq. (2). We consider the case where B is
the identity matrix and the potential function ¢ is chosen among the three candidates:

o1 (z) = 2 (quadratic) (4)
) =Vt + e —¢€ seudo Huber
Po() = Va? + ¢ (pseudo Huber) (5)
2
T
¢3(x) = m (Geman-McClure) (6)
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Figure 3: The three regularization potentials considered in this exercise. We set ¢ = 1073
and p ~ 0.18.

(a) Annotate Fig. 3 to specify which plot corresponds to which potential.

Solution: dashed line (blue): Quadratic ¢;.
dotted line (red): Pseudo Huber ¢,.
Full line (orange): Geman-McClure ¢s.

(b) What kind of images will make the regularization term R small? Discuss the case
of each of the three potential functions.

Solution:

e Quadratic ¢1: Pixels with large values contribute significantly more than
pixels with small values. Images with few large values lead to small regu-
larization terms.

e Pseudo Huber ¢,: Pixels with large values contribute more than pixels
with small values, but not significantly more. Images with many small
values lead to small regularization terms, but a few very large values may
make it large.
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Figure 4: Regularization term for different potential functions. (a) Original image; (b—d)
potential images, i.e., evaluation of the potential functions at each pixel of the original image;

(e—g) potential derivative images, i.e., evaluation of the potential functions at each pixel of
the original image.

e Geman-McClure ¢3: All pixels with large values contribute the same way.
Images with many small values (e.g., many zeros) lead to small regulariza-

tion terms. Images with a few pixels with very large values can also lead
to small regularization terms.

(c¢) For each of the images (b-d) of Fig. 4, specify the potential it corresponds to?
Justify.

Solution: Quadratic ¢1: The potential image is darker than the original image.
Pseudo Huber ¢,: The potential image is the same as the original image.
Geman-McClure ¢3: All pixels with values above 0.2 are set to one. The poten-
tial image is brighter than the original image.
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4. We finally investigate the case A > 0. The regularization parameter A sets a compro-
mise between the data fidelity term ||y — Ax]||2 and the regularization term R. Among
solutions with a small data fidelity, it selects one with a small regularization term.

(a) Show that the gradient of £ is given by VL(x) = —2AT(y — Ax) + A\VR(x).

Solution: By linearity and using 2(a), VL(x) = —2A" (y — Ax) + A\VR(x).

(b) Show that the gradient of R only depends on the derivative of the potential in each
pixel.

Solution: By definition we compute 8%jR(X) = 8%1- Yo Olan) =", a%jgb(xn) =
¢'(z;). Therefore

¢' (1)

VR = :
¢'(x)

(c) For each of the images (e-g) of Fig. 4, specify the potential derivative it corresponds
to? Justify.

Solution: Quadratic ¢;: The gradient is given by the image values.
Pseudo Huber ¢9: The gradient almost one everywhere as all pixels are positive.
Geman-McClure ¢3: The gradient is small where the image takes large values.

(d) For each potential type, what pixels are most modified by a gradient descent update?

Solution: We look at the gradient of the regularizer.

Quadratic ¢1: The gradient is large where the image takes large values.
Pseudo Huber ¢5: The gradient is almost one everywhere as all pixels are posi-
tive.

Geman-McClure ¢3: The gradient is large where the image takes small values.

(e) Complete the caption of Fig. 5 to indicate the potential leading to each image.
Justify.

Solution: (a) Quadratic ¢;; many small values in the background
(c) Pseudo Huber ¢o; fewer small values in the background

(a) Geman-McClure ¢5: solution with many zeros

(d) Total variation: solution with flat regions.
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Figure 5: Reconstruction for different potential functions. ( ) Quadratic ¢;; () Pseudo
Huber ¢; () Geman-McClure ¢3; () Total variation, i.e., ¢ = ¢5 and B is the gradient. We
consider 20 gradient descent iterations and set x(¥ = 0.

(f) Conclude on the choice of the regularizer term. Which is best? What are its pros
and cons?

Solution: The Geman-McClure potential is better than the Pseudo Huber po-
tential at sparcifying the solution. However, some pixel are set to zero while
they take small values in the original image.
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N.B. : Une seule bonne réponse est possible.

1. Une onde acoustique passant d’un matériau piezo-électrique d’impédance acoustique
Z =15, a la peau d’'impédance acoustique Z = 1.5, est
(O En grande partie transmise
(O En grande partie réfléchie
(O Transmise a plus de 50%
(O Réfléchie a plus de 50%

2. Quelle résolution spatiale peut-on obtenir avec une sonde de 10 MHz dans les tissus
biologiques 7 On rappelle que la vitesse de propagation des ultrasons dans l'eau est de
1540 m/s.

(O Environ 1 cm.

(O Environ 0.1 mm

(O Environ 10 pm

(O Exactement 1.54 mm

3. On souhaite focaliser des ondes ultrasonores au point (z,z) = (0,5) cm (cf. figure 1).
Quel retard appliquer a 1’élément situé en x = 0 pour que 'onde émise par cet élément
arrive en méme temps que l'onde émise par un élément situé en x = 700 um? On
supposera une vitesse de propagation des ultrasons de 1540 m/s.

O 32 nmns
O 32 ps

O 65 us
(O Aucun retard n’est nécessaire
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FIGURE 1 — Géométrie du probleme de la question 3.

4. Une onde ultrasonore traverse de part en part un milieu d’atténuation 1 dB/cm/MHz.
Ce milieu a pour profondeur 3 cm et I'onde ultrasonore est émise a une fréquence de 7
MHz. De combien est atténué le signal apres avoir traversé le milieu ?

O 42 dB
O 21 dB
O 7dB

(O On ne peut pas savoir

5. Comment appelle t-on '’ensemble des mesures en tomography par rayons X7
(O Une image reconstruite.

(O Une carte d’attenuation.
(O Un sinogramme.

(O Une radiographie.

(O Le bruit de Poisson.

6. On dispose d'un algorithme de reconstruction par rétroprojection filtrée. Comment ré-
duire le temps d’acquisition ?
(O En augmentant le nombre d’angles de vue acquis.
(O En diminuant le nombre de pixels du détecteur.
(O En augmentant le nombre de pixels du détecteur.
(O En diminuant le nombre d’angles de vue acquis.

(O En utilisant un algorithme de reconstruction rapide.
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Exercice (16 points)

The goal of this exercise is to solve a reconstruction problem by minimizing
L(x) = [ly — Ax|[; + AR(x), (1)

where y € R?*! represents the measurement vector, A € R?*7 the discrete Radon transform,
x € R7*! the attenuation (unknown) image, A is the regularization parameter and R a
regularization term. In particular, we will consider regularizers given by

R(x) = o([Bxla), (2)

where ¢ is a nonlinear function and B € RV*7 is a linear operator (matrix).
To minimize Eq. (1), we implement a gradient descent with the update rule

Xk+1 = X — T8k, x(0) = 0, (3)

where 7 is the step length and gy is the gradient of the cost function L.

(b) measured sinogram

(a) unknow image

Figure 1: The problem is to reconstruct the unknow image x* from the measured sinogram
Ax* + noise.
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