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Exercice: Maximum likelihood reconstruction (16 points)

The goal of this exercise is to recover the attenuation image x ∈ RJ×1 from the noisy
measurements

y = N (Ax) , (1)

where y ∈ RI×1 represents the measurement vector, A ∈ RI×J is the discrete Radon trans-
form, and N is the noise degradation resulting from the acquisition process. To do so, statis-
tical methods consider that y is a random vector and exploit the knowledge of its probability
density p(y;θ), where θ represents the parameters to be estimated (i.e., reconstructed).

(a) Image x (b) Clean sinogram Ax (c) Noisy sinogram y

Figure 1: The problem is to reconstruct the unknown image x from the noisy sinogram
N (Ax).

Maximum likelihood Maximum likelihood reconstructs the image by maximising the neg-
ative log likelihood, i.e.,

x ∈ argmax
θ

ℓ(θ) (2)

where the negative log likelihood is given by ℓ(θ) = − ln p(y;θ). Note that this is a function
of θ, given the (noisy) measurements y.



Tdsi AR Page 2 of 9 24th January 2025

Notations We denote the i-th entry of the vector x by xi and its ℓ2-norm by ∥x∥. We
denote the entry corresponding to the i-th row and j-th column of the matrix A by Ai,j. Let
∇L be the gradient of a function L : RI → R

∇L =


∂

∂x1
L
...

∂
∂xI

L


Distributions A random variable Y that follows a Gaussian distribution G(µ, σ2) has prob-
ability density

p(y;µ, σ2) =
1√
2πσ2

exp

[
−(y − µ)2

2σ2

]
, y ∈ R, (3)

where µ ∈ R is the expectation and σ2 ∈ R+ is the variance.
A random variable Y that follows a Poisson distribution P(µ) has probability

p(y;µ) =
µy exp (−µ)

y!
(4)

to take the value y ∈ N, where µ ∈ N is the expectation (and also the variance).
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Questions

1. Problem statement

(a) What do the axes of the sinogram depicted in Fig. 1 correspond to? Which one is
the ‘view angle’? Which one is ‘radial position’?

Solution: horizontal axis: radial position
vertical axis: view angle

(b) Let Y be the sinogram, as depicted in Fig. 1. Give the relationship between the
image Y and the vector y defined in Eq. (1).

Solution: y is obtained from Y through vectorization.

(c) We acquire measurements for 100 view angles over 180°using a detector that has
182 pixels. What is the dimension of Y?

Solution: Y ∈ R100×182.

(d) The unknown image is 128×128. Specify the dimensions I and J defined by Eq. (1).

Solution:

I = 100× 182 = 18200

J = 128× 128 = 16384
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2. We start by investigating the case where each of the component of the measurement
vector are independent identically distributed (i.i.d.) Gaussian variables, i.e.,

yi = G
(
µi = a⊤

i x, σ
2
)
, 1 ≤ i ≤ I, (5)

where ai ∈ RJ represents the i-th row of A and σ2 characterises the acquisition device.

(a) Give the expression of the likelihood of the image x given only the i-th component
of the measurement vector is available. Note: We assume that ai and σ are known.

Solution: From the definition

ℓ(x) = − ln p(yi;x) = − ln

(
1√
2πσ2

exp

[
−(yi − a⊤

i x)
2

2σ2

])
, (6)

= lnC +
(yi − a⊤

i x)
2

2σ2
(7)

where C =
√
2πσ2 is a constant independent of x.

(b) Assuming i.i.d variables, what is the joint probability p(y;θ) = p(y1, . . . , yI ;θ) that
the measurements take value y?

Solution:

p(y1, . . . , yI ;θ) =
∏
i

p(yi;θ) = CI exp

(
−
∑
i

(yi − a⊤
i x)

2

√
2πσ2

)
(8)

(c) Show that the negative log-likelihood of the image x given the full measurement
vector y is given by ℓ(x) = I lnC + 1

2σ2∥y −Ax∥2, with C =
√
2πσ2.

Solution:

ℓ(x) = − ln p(y;x) = I lnC +
1

2σ2

∑
i

(yi − a⊤
i x)

2 (9)

= I lnC +
1

2σ2
∥y −Ax∥2 (10)

(d) By differentiation of the likelihood, derive the expression of the maximum likelihood
solution (i.e., the solution of Eq. (2)).
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Solution:

∇ℓ(x) = ∇ 1

2σ2
∥y −Ax∥2 = − 1

2σ2
A⊤(y −Ax) (11)

By setting the derivative to zero, we have

0 = A⊤(y −Ax) ⇔ A⊤Ax = A⊤y (12)

Assuming A⊤A is invertible, the solution is given by

x = (A⊤A)−1Ay (13)

(e) How is this solution also referred to as?

Solution: It is often referred to as the pseudoinverse solution.
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3. We now consider the case where each of the component of the measurement vector are
i.i.d. Poisson variables, i.e.,

yi = P
(
µi = a⊤

i x
)
, 1 ≤ i ≤ I, (14)

(a) Give the expression of the likelihood of the image x given only the i-th component
of the measurement vector is available. Note: We assume that ai is known.

Solution: From the definition

ℓ(x) = − ln p(yi;x) = − ln

(
(a⊤

i x)
yi exp (−a⊤

i x)

yi!

)
,

= C + a⊤
i x− ln(a⊤

i x)
yi

= C + a⊤
i x− yi ln a

⊤
i x

where C = ln yi! is a constant independent of x.

(b) Show that the negative log-likelihood of the image x given the full measurement
vector y is given by ℓ(x) = IC +

∑
i a

⊤
i x− yi ln(a

⊤
i x), with C = ln yi!.

Solution:

ℓ(x) = − ln p(y;x) = −
∑
i

ln p(yi;x)

=
∑
i

C + a⊤
i x− yi ln a

⊤
i x

= IC +
∑
i

a⊤
i x− ln(a⊤

i x)
yi

= IC +
∑
i

a⊤
i x− yi ln(a

⊤
i x)

(c) Show that the derivative of the negative log-likelihood can be written ∇ℓ(x) =∑
i ∇(a⊤

i x)−∇(yi ln(a
⊤
i x)).

Solution:

∇ℓ(x) = ∇

[
IC +

∑
i

a⊤
i x− yi ln(a

⊤
i x)

]
=
∑
i

∇(a⊤
i x)−∇(yi ln(a

⊤
i x))

(d) Show that ∇(a⊤
i x) = ai
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Solution:

∂

∂xj

(a⊤
i x) =

∂

∂xj

∑
k

(ai,kxk) = ai,j

(e) Show that ∇(yi ln(a
⊤
i x)) = yi

1
a⊤
i x

ai

Solution:

∂

∂xj

yi ln(a
⊤
i x) = yi

1

a⊤
i x

∂

∂xj

(
a⊤
i x
)

= yi
1

a⊤
i x

ai,j

(f) Show that the derivative of the negative log-likelihood can be written A⊤1−A⊤ y
Ax

,
where vector division applies component-wise.

Solution:

∇ℓ(x) =
∑
i

∇(a⊤
i x)−∇(yi ln(a

⊤
i x)) =

∑
i

ai − ai
yi
a⊤
i x

= A⊤1−
∑
i

A⊤ yi
a⊤
i x

= A⊤1−A⊤ y

Ax

(g) How the maximum likelihood solution can be obtained from the gradient derived in
the previous question? Discuss the pros and cons.

Solution: By gradient descent. This is a simple approach but the gradient is
not defined in 0.
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4. To find the points of a function F that satisfy F(x) = x, one can consider the fixed-point
iteration x(k+1) = F(x(k)). Such solutions are called fixed-points.

(a) In the case of Gaussian noise, show that x = A⊤y
A⊤Ax

⊙ x, where ⊙ represents the
component-wise product of two vectors.

Solution: First order optimality imposes ∇ℓ(x) = 0, leading to

(A⊤Ax−A⊤y)⊙ x = 0

A⊤Ax⊙ x = A⊤y ⊙ x

x =
A⊤y

A⊤Ax
⊙ x

(b) Derive an iteration that is hoped to converge to ML solution in the case of Gaussian
noise. Hint: This is a multiplicative update.

Solution:

x(k+1) =
A⊤y

A⊤Ax(k)
⊙ x(k)

(c) In the case of Poisson noise, show that x = 1
A⊤1

⊙A⊤ y
Ax

⊙ x

Solution: First order optimality imposes ∇ℓ(x) = 0, leading to

(A⊤1−A⊤ y

Ax
)⊙ x = 0

A⊤1⊙ x = A⊤ y

Ax
⊙ x

x =
1

A⊤1
⊙A⊤ y

Ax
⊙ x

(d) Derive an iteration that is hoped to converge to ML solution in the case of Poisson
noise. Hint: This is a multiplicative update.

Solution:

x(k+1) =
x(k)

A⊤1
⊙A⊤ y

Ax(k)
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Concluding remark Provided that the entries of A are positive, the multiplicative up-
dates derived in this section guarantee that the solution remains positive (see Figure 2).

To enforce the positivity of the solution, i.e., to solve

x ∈ argmax
x>0

ℓ(x), (15)

one can also consider the parameterisation x = exp (z), where exponentiation applies
component-wise. Using the chain rule, the gradient of the likelihood with respect to z is
given by ∇xℓ(x)⊙ x.

(a) Sinogram (Gaussian noise) (b) FBP (c) ML solution

(d) Sinogram (Poisson noise) (e) FBP (f) ML solution

Figure 2: Reconstruction under Gaussian and Poisson noise using filtered back projection
(FBP) and maximum likelihood (ML). The code used to compute the solution is available
at https://github.com/nducros/image-reconstruction.

https://github.com/nducros/image-reconstruction
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QCM (4 points)

N.B. : Une seule bonne réponse est possible.

1. Le signal mesuré par un détecteur de rayons X est proportionnel

⃝ à la texture et la forme de l’objet

⃝ à l’atténuation de l’objet

⃝ au nombre de photons incidents sur l’objet

⃝ à l’angle de vue optimal

2. En rayons X, la correction ”flat field” permet de

⃝ compenser les défauts du détecteur

⃝ réduire le bruit aléatoire du détecteur

⃝ s’affranchir des rayons X réfléchis sur des parois extérieures

⃝ s’affranchir du courant d’obscurité du détecteur

3. Comment réduire le temps d’une acquisition tomographique ?

⃝ En augmentant le nombre d’angles de vue.

⃝ En diminuant le nombre de pixels du détecteur.

⃝ En augmentant le nombre de pixels du détecteur.

⃝ En diminuant le nombre d’angles de vue.

⃝ En utilisant un algorithme de reconstruction rapide.

4. Quelle résolution spatiale peut-on atteindre avec une sonde de 6 MHz dans les tissus
biologiques ? Rappel : la vitesse de propagation des ultrasons dans l’eau est de 1540
m/s.

⃝ Précisément 6 µm.

⃝ Environ 250 µm.

⃝ Environ 3.9 mm.
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⃝ On ne peut pas savoir.

5. La tomographie par rayons X consiste à reconstruire l’image de l’ . . . . . . d’un objet à
partir d’un ensemble de . . . . . . acquises pour . . . . . .

⃝ amplitude / prédictions / pour le même angle de vue.

⃝ amplitude / projections / pour 180 angles de vue.

⃝ atténuation / prédictions / pour 360 angles de vue.

⃝ atténuation / projections / différents angles de vue bien choisis.

⃝ atténuation / prédictions / pour 180 angles de vue.

⃝ amplitude / projections / différents angles de vue bien choisis.

6. En tomographie par ultrasons, le gel est utilisé pour

⃝ ne pas abimer la sonde

⃝ protéger la peau des effets délétères des ultrasons

⃝ pour limiter les ruptures d’impédance acoustique

⃝ nettoyer les impuretés à la surface de la peau
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