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Natural vs Reconstructed Image
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Inverse Problem

Measurements m are taken on the boundary ∂S

The (unknown) image f is defined on S

How to estimate f ? I.e., how to invert m = A(f ) given A?
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Medical Imaging

Figure: ( ) positron emission tomography ( ) photoacoustic imaging ( )
magnetic resonance ( ) ultrasonography ( ) radiography ( ) computed
radiography
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Main reconstruction approaches

I. Analytical methods

Model the imaging process and invert it algebraically

find H such that f = H(m) (1)

II. Optimisation-based methods

Build a cost function from prior knowledge about the solution and
the measurements. Then, minimize it (algebraically or numerically)

find and minimize C such that C(f ;m) is small (2)
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Main reconstruction approaches

III. Data-driven methods

“Learn” to reconstruct

learn Hω such that f = Hω(m) (3)
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Organisation

6 CM-TD
https://github.com/nducros/image-reconstruction

2 TP salle Labex (TP 5GE)

Évaluation : CR de TP + devoir surveillé (= QCM + Exo). Annales
: https:
//moodle.insa-lyon.fr/course/section.php?id=13460

Emploi du temps
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B-mode Ultrasound Imaging
Computed Tomography

Pioneers

Figure: Paul Langevin (left), Robert William Boyle (right)

Paul Langevin

French physicist

First patents on ultrasonic
submarine detection in 1916.

Robert W Boyle

Canadian physicist

First working prototype of
active sonar in 1917.
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Recent echographic images

Figure: Nuchal translucency ultrasound, breast ultrasound, arterial Doppler.
https://radiopaedia.org/
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Image formation overview

original wave

reflected wave

Object

distance r

Basics

Ultrasonography consists in recording echos

Contrast is due to changes in the tissue acoustic properties
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Inverse problem

Measured data

{mn(t)} : set of signals measured after excitation along x = x0

n ∈ {−N , . . . ,N }: index of the transducer element centered at xn

To be recovered

f (x0, z ): reflectors along x = x0
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B-mode Ultrasound Imaging
Computed Tomography

Inverse problem

Space is time!

f̂n(x0, z ) = G(z )mn(t = τn(z )), with τn(z ) = τ exci(z ) + τ echon (z )

τ exci is the source-reflector propagation time and τ echon the
propagation time from the reflector to the n-th element

G is a gain that compensates for attenuation (and angular energy
dispersion)
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Inverse problem

Exercise

Calculate the delays τ exci(z ) and τ echon (z )

Solution

τ exci(z ) = z
c , assuming focusing (see slides 92–93)

τ echon (z ) = 1
c

√
(x0 − xn)2 + z 2
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Inverse problem

Some thoughts

Are the reflectivity maps f̂n(x0, z ) estimated from different signals
mn the same?

Which one to choose?
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Dynamic focusing

Philosophy

Dynamic focusing answers the previous two questions

How ?
1. Aligning (temporally) all the signals from the same echo being
recorded at different positions xn
2. Averaging the aligned signals
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Delay-and-Sum Algorithm

Governing equation

Along a given beam direction, we define

m(t) =
1

2N + 1

N∑
n=−N

mn(t −∆τn)

where ∆τn are appropriate delays that align the signals
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Delay-and-Sum Algorithm

Exercise 1

Calculate the delays ∆τn to align the signal mn with the signal v0
recorded at x0

Solution 1

∆τn =
z

c

1−

√
1 +

(
xn − x0

z

)2

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Delay-and-Sum Algorithm

Exercise 2

How to estimate the reflectivity map f (x0, z ) from the delay-and-
sum signal m?

Derive an expression of the reflectivity map f (x0, z ) as a function of
the raw signals mn

Solution 2

Remember that: i) time is space and ii) all signals were aligned with

m0: f̂ (x0, z ) = G(z ) v

(
2z

c

)
f̂ (x0, z ) = G(z )

1

2N + 1

N∑
n=−N

mn

(
1

c

(
z +

√
z 2 + (xn − x0)2

))
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Wilhelm Röntgen

Figure: Mr. Röntgen (left), Mrs Röntgen (au centre), a colleague (right)

ID card

German physicist.

Pioneering work on X-rays in 1895.

First recipient of the Nobel Price in Physisc in 1901.
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Nowadays

Figure: Chest radiography, left coronary artery (interventional cardiology),
mammogram, thorax CT scan. https://radiopaedia.org/.
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Image formation overview

Contrast is related to the X-ray attenuation of the tissues
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Beer-Lambert law

µ is the linear attenuation coefficient

n = n0 exp (−µL)

25 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

B-mode Ultrasound Imaging
Computed Tomography

Beer-Lambert law

µ is the linear attenuation coefficient

n = n0 exp (−µL)

25 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

B-mode Ultrasound Imaging
Computed Tomography

Beer-Lambert law

n = n0
∏
i

exp (−µiℓ) = n0 exp (−
∑
i

µiℓ)
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Beer-Lambert law

Remember

n = n0 exp (−
∫ L

0
µ(ℓ) dℓ)
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Forward problem

CT principle

Radiographs are acquired under multiple view angles

Post processing all the radiographs allows the object to be
recovered, which is called image reconstruction

28 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

B-mode Ultrasound Imaging
Computed Tomography

Forward problem

Measured data

Line integrals (projections) of the attenuation coefficient (see slide
39): ln(n0/n) = m =

∫
L f dℓ

The line path L depends on the acquisition geometry

Parallel geometry here (in practice fan beam, cone beam, etc)
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Forward problem

Measured data

Let L(r , θ) be the line path parametrized by (r , θ) as depicted above

Let m(r , θ) be the line integral along L(r , θ)
The set of line integrals for (r , θ) ∈ R× [0, π[ is referred to as
sinogram
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Forward problem

Exercise 1

Compute the Radon transform of the images below
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Forward problem

Solution 1

We obtain
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Forward problem

Exercise 2

Give the equation of L(r , θ) in the polar coordinate system (ur ,uθ)

Derive the equation of L(r , θ) in the Cartesian coordinate system
(u1,u2)

Derive the equation of m(r , θ) as a function of f

Solution 2

L(r , θ) : ℓ = rur + ℓuθ, ℓ ∈ R
L(r , θ) : ℓ = (r cos θ − ℓ sin θ)u1 + (r sin θ + ℓ cos θ)u2, ℓ ∈ R

m(r , θ) =

∫
R
f (r cos θ − ℓ sin θ, r sin θ + ℓ cos θ) dℓ
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Inverse Problem

Measured data

Sinogram m(r , θ)

To be recovered

Attenuation map f (x1, x2)
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Inverse Problem

Exercise

Compute the inverse Radon transform of the following images (guess
the results first)
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Projection-Slice Theorem

Theorem (a.k.a. Fourier slice theorem)

m̂θ(ξ) = f̂ (ξ cos θ, ξ sin θ)

Where

m̂θ(ξ) =

∫
R
m(r , θ) exp(−j2πξr) dr is a 1-D Fourier transform

(with respect to r only)

f̂ (ξ1, ξ2) =

∫∫
R2

f (x1, x2) exp (−j2π(ξ1x1 + ξ2x2)) dx1 dx2 is a 2-D

Fourier transform

37 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

B-mode Ultrasound Imaging
Computed Tomography

Projection-Slice Theorem

Theorem (a.k.a. Fourier slice theorem)

m̂θ(ξ) = f̂ (ξ cos θ, ξ sin θ)

Where

m̂θ(ξ) =

∫
R
m(r , θ) exp(−j2πξr) dr is a 1-D Fourier transform

(with respect to r only)

f̂ (ξ1, ξ2) =

∫∫
R2

f (x1, x2) exp (−j2π(ξ1x1 + ξ2x2)) dx1 dx2 is a 2-D

Fourier transform

37 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

B-mode Ultrasound Imaging
Computed Tomography

Projection-Slice Theorem

Theorem (a.k.a. Fourier slice theorem)

m̂θ(ξ) = f̂ (ξ cos θ, ξ sin θ)

Where

m̂θ(ξ) =

∫
R
m(r , θ) exp(−j2πξr) dr is a 1-D Fourier transform

(with respect to r only)

f̂ (ξ1, ξ2) =

∫∫
R2

f (x1, x2) exp (−j2π(ξ1x1 + ξ2x2)) dx1 dx2 is a 2-D

Fourier transform

37 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

B-mode Ultrasound Imaging
Computed Tomography

Projection-Slice Theorem

The Fourier domain is sampled on a polar grid

Interpolation is required to recover f by inverse Fourier
transformation
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Projection-Slice Theorem

Sketch of the proof

From the definition of m̂θ(ξ) find the appropriate change of variables

Remember to compute the determinant of the Jacobian

Exercise

Demonstrate the projection-slice theorem
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Filtered Back-Projection

FBP formula

The image f is given by

f (x1, x2) =

∫ π

0

mfilt
θ (x1 cos θ + x2 sin θ) dθ (3)

where

m̂filt
θ (ξ) = |ξ| m̂θ(ξ) (4)

Meaning

Equation (3) is a sum of ’back projection’ of mfilt
θ over different view

angles

Equation (4) tells how to filter the projections mθ
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Filtered Back-Projection

Back-projection

x1 cos θ + x2 sin θ = x · ur = r is the equation of a (straight) line

The line is denoted by L(r , θ) on slide 30
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Filtered Back-Projection
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Back-projection

Summing back-projections almost recover the image

The unfiltered back-projection image is blurred
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Filtering the projections (measurements)

Back-projection now recovers the image perfectly!
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Filtered Back-Projection

Sketch of the proof of the FBP formula

Write f as a function of f̂

Use the projection-slice theorem

Exercise

Derive the filtered back-projection formula
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Figure: FBP reconstructions. (Left) ground truth, (middle) ramp filter, (right)
ramp filter with Hann window.

Filtered back-projection

Perfect recovery from noiseless data...

... but high-frequency noise is amplified by the ramp filter

In practice, m̂filt
θ (ξ) = |ξ| m̂θ(ξ)ĥ(ξ) where ĥ(ξ) is a low-pass filter
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Discretisation

Real world is discrete

Finite number of detector pixels

Finite number of view angles

Dimensions of the reconstructed image are finite

Two approaches

Analytical is ’solve-and-discretize’

Algebraic is ’discretize-and-solve’
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In the case of CT

Discretization of variables

r ∈ {rj}, j ∈ {1, . . . , J}
θ ∈ {θk}, k ∈ {1, . . . ,K}
x = (x1, x2) ∈ {xi}, i ∈
{1, . . . , I = I1 × I2}
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In the case of CT

Discretization of functions

Attenuation image:
f (x ) =

∑
i fibi(x )

Projection at angle θk :
mk (r) =

∑
j mk ,j bj (r)

Where bi(x ) and bj (r) are
some basis functions

Examples of basis functions

Sampling: bj (r) = δ(r − rj )

Indicator: bj (r) = rect(r − rj )

Gaussians, splines, etc
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In the case of CT

Linear forward problem

m = Af

where

Attenuation vector f ∈ RI×1

defined as f = [f1, . . . , fI ]
⊤

Forward mapping A ∈ RKJ×I

Projection vector m ∈ RKJ×1

defined as
m = [m⊤

1 , . . . ,m⊤
K ]⊤, with

mk = [mk ,1, . . . ,mk ,J ]
⊤
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In the case of CT

Sketch of the proof

Start from mk (r) =∫
R2 f (x )δ(r − x · ur ) dx

Show that
mk ,j =

∫
R2 f (x )bj ,k (x ) dx

Hence mk ,j =
∑

i r(k ,j ),i fi

r(k ,j ),i indicates the
contribution of pixel i to
measurement at angle k and
position j
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In the case of CT

Exercise

Following the sketch of the
proof, derive an expression for
r(k ,j ),i

Solution

r(k ,j ),i =
∫
R2 bi(x )bj ,k (x ) dx ,

with bj ,k (x ) = bj (x · ur (θk ))
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In the case of CT

Interpretation of rh,i

We define h = (k , j )

For bi = bj = δ, rh,i indicates
if the center of pixel i is
intersected by ray h = (k , j )

For bi = rect and bj = δ, it is
the length of ray h through
pixel i

for bi = bj = rect, it is the area
of ray h over pixel i
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In the case of CT

Exercise

Construct the discrete forward operator corresponding to the Radon
transform of a I1 × I2 = 32× 32 image computed under J = 40
view angles over [0, π) using a linear detector of K = 45 pixels.
Hint: You can call the radon function from skimage.
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In the case of CT

0 5 10 15 20 25 30
x1 (in pixels)

0

5

10

15

20

25

30

x 2
 (i

n 
pi

xe
ls)

Image

0 50 100 150
Projection angle  (in deg)

0

5

10

15

20

25

30

35

40

45

Pr
oj

ec
tio

n 
po

sit
io

n 
r (

in
 p

ix
el

s)

Sinogram

0 500 1000
Image pixel x

0

200

400

600

800

1000

1200

1400

1600

Pr
oj

ec
tio

n 
ra

y 
(r,

)

A

Figure: Discrete forward problem. (Left) attenuation image. (Middle)
corresponding sinogram. (Right) discrete Radon transform A. Here,
K × J = 40× 45 = 1800 and I = 32× 32 = 1024.
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Reconstruction

Recover f measuring m

Basically, f = A−1m

However...

A is huge. A ∈ RH×I , with H = KJ . Typically
H × I = 256 · 360× 2562, which requires 45 GiB for full storage.

Infinity of solutions (few angles available)

No solution (in the presence of noise, i.e., m = Af + η)
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Algebraic reconstruction

Iterative reconstruction

f (n+1) = f (n) + u(n)

n is the iteration number

f (n) is the attenuation image at iteration n

u(n) is the update at iteration n

Update can also be multiplicative

Standard iterative reconstruction algorithms

Algebraic reconstruction technique (ART)

Simultaneous Iterative Reconstructive Technique (SIRT)

Simultaneous Algebraic Reconstruction Technique (SART)

...
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Figure: Illustration in 2D (I = H = 2), where r⊤
h is the h-th row of A. Note

that rh is normal to Dh .

59 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Discretisation
Algebraic reconstruction
Data fidelity
Regularisation

ART algorithm

Figure: Illustration in 2D (I = H = 2), where r⊤
h is the h-th row of A. Note

that rh is normal to Dh .

59 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Discretisation
Algebraic reconstruction
Data fidelity
Regularisation

ART algorithm

Figure: Illustration in 2D (I = H = 2), where r⊤
h is the h-th row of A. Note

that rh is normal to Dh .

59 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Discretisation
Algebraic reconstruction
Data fidelity
Regularisation

ART algorithm

Figure: Illustration in 2D (I = H = 2), where r⊤
h is the h-th row of A. Note

that rh is normal to Dh .

59 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Discretisation
Algebraic reconstruction
Data fidelity
Regularisation

ART algorithm

Figure: Illustration in 2D (I = H = 2), where r⊤
h is the h-th row of A. Note

that rh is normal to Dh .

59 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Discretisation
Algebraic reconstruction
Data fidelity
Regularisation

ART algorithm

Figure: Illustration in 2D (I = H = 2), where r⊤
h is the h-th row of A. Note

that rh is normal to Dh .

59 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Discretisation
Algebraic reconstruction
Data fidelity
Regularisation

ART algorithm

Update equation

We have

f (h) = f (h−1) − r⊤
h f (h−1) −mh

r⊤
h rh

rh

The h-th equation is satisfied: r⊤
h f (h) = mh

Implementation

One iteration of ART corresponds to a sequence of h = H updates.

A few iterations are typically required before convergence.

There are variants that depend on the order the measurements are
processed (e.g., random-ART) or the way image is updated (e.g.,
simultaneous ART)
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40× 45 = 1800 and
I = 32× 32 = 1024.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40× 45 = 1800 and
I = 32× 32 = 1024.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40× 45 = 1800 and
I = 32× 32 = 1024.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40× 45 = 1800 and
I = 32× 32 = 1024.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40× 45 = 1800 and
I = 32× 32 = 1024.
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Data fidelity optimisation

Reconstruction as optimization problem

Look for small data misfits/residuals, i.e. m −Af ≈ 0

Minimize the cost/objective function

C(f ) = ∥m −Af ∥

where ∥ · ∥ is some norm (e.g., L2 or L1)
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Analytical solution

A minimizer of the least-squares cost function C(f ) = ∥m −Af ∥2,
satisfies

∇C = 0

Therefore, it is a solution of the system

A⊤Af = A⊤m

When A⊤A is invertible, the least-squares solution is given by

fls = (A⊤A)−1A⊤m

It is also known as the pseudo-inverse solution.
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Exercise

Derive an expression for the gradient of C(f ) = ∥m −Af ∥2

(Clue: First notice that ∥f ∥2 = f ⊤f ; second, derive its gradient;
finally generalize to the remaining terms in C(f ).)

Solution

We first write

∥m −Af ∥2 = (m −Af )⊤(m −Af )

= m⊤m −m⊤Af − (Af )⊤m + (Af )⊤Af

= m⊤m − 2m⊤Af + (Af )⊤Af

∇C(n) = 0− 2(m⊤A)⊤ + 2A⊤Af (n) = −2A⊤(m −Af (n))
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Gradient descent

Iterative algorithm

f (n+1) = f (n) − γ∇C(n)

∇C(n) is the gradient of the cost function at f (n)

γ is the step length

γ is chosen small enough to guarantee convergence but large enough
to converge in few iterations
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. nx = ny = 64, nθ = 36, ∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.

68 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Discretisation
Algebraic reconstruction
Data fidelity
Regularisation

Gradient descent (noisy data)

0

200

400

600

0

200

400

-400

-200

0

200

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. nx = ny = 64, nθ = 36,
∆θ = 5˚, γ = 0.5.
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Regularisation

Cost function

In the case where A is poorly conditioned, we can minimize the
regularized cost function

C(f ) = ∥m −Af ∥2 + αR(f )

α is the regularization parameter

R : RN 7→ R is the regularizer

A ’good’ regularizer is small for acceptable images but large
otherwise
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Tikhonov regularisation

Analytical solution

A standard choice is R(f ) = ∥Lf ∥2, with typical L including the
identity or differential operators (e.g., discrete gradient or Laplacian).

By setting the gradient of the cost function to zero, we obtain

frls = (A⊤A+ αL⊤L)−1A⊤m

It is also known as the Tikhonov solution.
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Exercise

Derive the expression of the minimizer of
C(f ) = ∥m −Af ∥2 + α∥Lf ∥2

Solution

∇
(
∥m −Af ∥2

)
= −2A⊤(m −Af )

∇
(
α∥Lf ∥2

)
= 2αL⊤Lf

∇
(
∥m −Af ∥2

)
+∇

(
α∥Lf ∥2

)
= 0 leads to the solution
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Philosophy

Data-driven methods

“Learn” to reconstruct, i.e.,

find and train Hω such that Hω(m = A(f )) ≈ f (3)
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3. Learning-Based Methods

 Optimization- vs learning-based methods

3

N = 64 × 64 image 

M = 333 measurements

N / M ≈ 8% 

+2.5 dB 

(wrt pinv)

+3.5 dB 

(wrt pinv)

(pinv)

[N. Ducros et al., IEEE 

ISBI, 2019]
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3. Learning-Based Methods

 Our dream is to find

… able to reconstruct well any image, i.e., something like

… Often intractable

 We have to reduce the dimension of the solution space
 E.g.,

Minimum mean 

square error 

(MMSE) estimator

Linear MMSE 

estimator

4
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3. Learning-Based Methods 5

 Linear MMSE

Covariance of 

measurements
Covariance between 

measurements and 

unknowns

measurement

u
n

k
n

o
w

n

slope 

covariance
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3. Learning-Based Methods

 Learning approaches only reduce the dimension of the solution 

space to a family of non linear mappings

 Training phase

o Image-measurement pairs

o Loss (e.g., MSE)

o Optimization machinery (i.e., PyTorch or TensorFlow)

 Reconstruction phase

STL-10 dataset 

D.P. Kingma and J.L Ba, 

ICRL, 2015 (> 215k citations)
A. Paszke et al., NEURIPS, 

2019 (> 22k citations)

6
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73. Learning-Based Methods

 Pros
 Reconstruction performance

o Empirically excellent (i.e., almost 

always outperform optimization-based 

approaches)

 Computation times

o Training phase is slow, i.e., several 

hours or days

o Inference is fast, i.e., tens or hundreds 

of milliseconds

 Cons

 No reconstruction guarantees 

(mathematicians don’t like it)

 Black box (radiologists don’t like it)

 Practical issue

o How to choose the model?

[B. Zhu et al., Nature Letters, 

2018] (> 1.5k citations)

“Automap” 

(> 6.109 param)
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3.1. Post-Processing

 Two-step methods

where          is an approximate inverse of the forward, i.e., 

Image

Domain

Measurement

Domain

8
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3.1. Post-Processing

 Equivalent to a neural network with a frozen layer

Image

Domain

Measurement

Domain

network
parameters

Atilde = nn.Linear(..., bias=False, ...)
Atilde.weight.requires_grad = False

D = nn.Module(...)
requires_grad = True

9
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3.2. Unrolling (a.k.a. Unfolding)

 Iterative methods

Image

Domain

Measurement

Domain

network
parameters

data fidelity 

proximal operator

Parameters can be shared across iterations or not

10
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3.3. Training

 With a “physical” module: no need for meas/image pairs

Image

Domain

Measurement

Domain

physical 
module

11
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3.3. Training 12

 STL-10 (training: ~100k images; test: 8k images)

[N. Ducros et al., IEEE 

ISBI, 2019]

1.3M vs 8k trainable 

parameters
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3.4. Plug-and-Play

 Idea: use denoisers (e.g., BM3D) in place of proximal operators

 The denoiser can be data-driven. E.g.                          with

13

proximal operator Denoiser
Noise level

Gaussian noise 
with variance σ2
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143.4. Plug-and-Play

 Idea: use denoisers in place of 

proximal operators

 Pros
 Training is independent of the 

forward model

o Flexibility 

o Applies to any inverse problem

 Adapt to varying noise levels via 

hyperparameter

 Convergence can be guaranteed

 Cons
 Manual tuning of hyperparameter

 Many iterations required compared 

to supervised methods (E.g., K = 

100—1,000 vs K = 1—10)

o Longer reconstruction times

o Higher memory requirement 

 Convergence is not always 

guaranteed (e.g., Lipschitz constant 

of denoiser)

 Underlying prior not always known
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3.5. Untrained/unsupervised

 Deep Generative Models

 Pros
 Only requires measurements from a single acquisition

 Theoretical guarantees (based on compressed sensing, e.g., considering Gaussian 

random matrices)

 Cons
 Long and challenging reconstruction

 Training of DGM is challenging (lots of data/long times)

 Stability issues (arbitrary forward models, out-of-distribution images, etc.)

15

Random vector
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3.5. Untrained/unsupervised

 Deep Image Priors

 Pros
 Only requires measurements from a single acquisition

 The reconstruction quality is surprisingly good

 Cons
 Long reconstruction times

 No guarantees

16

Fixed random vector

Note: Minimization must be 

stopped before convergence 

(tends to noise otherwise)
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Conclusions
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Benchmark

Memory

Requirement

Recon-

struction

Time 

(inference)

Training
Hyperparam/ 

Comment

Supervised
Low to 

intermediate
1—10

No adaptation 

(forward, 

noise)

PnP
Intermediate 

to high
100—1,000 Noise level

Untrained Usually low > 1,000 —
Number of 

iterations

18
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Noise robustness 19

Increasing training noise

Increasing 

test

noise

[N. Ducros, ISTE 

Book chapter, 2022])
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20Conclusions

 Data-driven DL-based 

approaches for image 

reconstruction are
 Powerful!

 No longer black boxes

 Supervised, PnP, based on generative 

models, untrained, etc.

 Supervised vs PnP methods
 Supervised methods usually require 

fewer parameters

 Supervised methods performs very 

well

 PnP methods adapts to different

o Imaging modalities (i.e., forward 

models)

o Noise levels

 Warning
 Handling noise is still an issue. 

o Evaluate the robustness to noise level 

deviations

o Train with noise (supervised)

o Tune hyperparameters (PnP)

 Hands-on session

https://github.com/openspyrit/spyrit-

examples/tree/master/2025_DLMIS

https://github.com/openspyrit/spyrit-examples/tree/master/2025_DLMIS
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Figure: Wave

p(x , t) = p0 sin
(
2πf

(
t − x

v

))
= p0 sin (ωt − kx )

Mechanical wave

Wave of pressure p(x,t) (and
displacement)

Compressible medium

Particles in the medium have
only minor displacement

Wave

f is the frequency

v is the (phase) velocity

λ = v/f is the wavelength

k = 2π/λ is the wave number
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Acoustic wave

Longitudinal wave

Also known as compression
wave

Directions of oscillation and
propagation are the same

Compression arefacR tion

P Time

Particle displacement

“Plane-piston”
mechanical displacement Elastic “particles” in the medium

Pressure 
amplitude
variation

+

-

t=1

t=2

t=3

t=4

t=5

Adapted from [JT Bushberg, 2011, chap.14]
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Transverse wave

Direction of vibration and propagation are perpendicular76 / 118 N. Ducros Image Reconstruction
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Figure: Frequency range corresponding to ultrasounds. [wikipedia]

Wave frequency f

Medical ultrasound in the range 2–10 MHz

Unaffected by changes in acoustic properties
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Wave velocity v

Velocity of the wavefront

Not the velocity of the particle
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Wave velocity v

Depends on the propagation medium

v =

√
K

ρ

ρ is the density (in g/cm3), K is the bulk modulus (in Pa)

K measures of the stiffness (resistance of a medium to being
compressed)
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Exercice

Given the following velocities in different media, compute the
resulting resolutions for a 5-MHz probe

Air: v =330 m/s, soft tissue: v =1540 m/s, skull bone: 4080 m/s.

Solution

λair ≈ 66 µm

λsoft ≈ 308 µm

λbone ≈ 816 µm
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Acoustic Impedance

For plane waves, defined as

Z = ρv

Related to the ‘flexibility’ of the medium (think to springs)

The SI unit is kg/(m2s), referred to as rayl

Typical values (×106 rayls). Air: Z = 4× 10−4, water: Z = 1.48,
liver: Z = 1.65, muscle: Z = 1.71, skull bone: Z = 7.8.

Acoustic Intensity

Sound power per unit area in W/m2

For plane waves

I =
p2

ρv
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Reflection

Intensity reflection coefficient
defined as

R =

(
Z2 − Z1

Z2 + Z1

)2

Percentage of the incident
amount of power per unit area
that is reflected back

(echo)

Transmission

Incident

A

Z 1= r1v1

Z 2= r2v2

Adapted from [JT Bushberg, 2011, chap.14]
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Exercice

Compute the reflection coefficient of an air-water and a water-liver
interface

Water: Z = 1.48, liver: Z = 1.65

Solution

Rair−water ≈ 0.9999

Rwater−liver ≈ 0.0029
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qrq i qrq i

qt qt
v2 > v1 v2 < v1

Adapted from [JT Bushberg, 2011, chap.14]

Refraction

Change in the direction of the transmitted wave

Snell–Descartes law
sin θt
sin θi

=
v2
v1
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Specular (smooth) 
reflection

Non-specular 
(diffuse) reflection

Boundary interactions:
Tissue interactions:
Acoustic scattering

Small object reflectors
with size £ l  

Adapted from [JT Bushberg, 2011, chap.14]

Scattering

Due to object/interfaces about the size or smaller than wavelength

Non specular reflectors reflect in all directions

Resulting echos have a small amplitude

Scattering from non specular reflectors increase with frequency
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Attenuation

Loss of acoustic energy during propagation

Originates from many different effects, e.g., scattering, absorption,
refraction

Denoted µ and expressed in dB/m

I = I0 exp(−µx )

Attenuation depends linearly on the wave frequency, with the
common approximation

µ(f ) =
ln 10

10
µ̂f

with µ̂ a constant expressed in (dB/m)/Hz
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Exercise

Assuming µ̂ = 0.5 (dB/cm)/MHz for soft tissues, calculate the
intensity of the echo generated by a 10-MHz wave having travelled 5
cm in the liver before being reflected at the boundary with a water
pocket.

Solution

I1 = I0 exp−(µ̂fx ), with 10 log (I0/I1) = 0.5× 5× 10 = 25 dB

I2 = RI1, with 10 log (I1/I2) = −10 logR ≈ 25 dB

I3 = I2 exp(−µ̂fx ), with 10 log (I2/I3) = 0.5× 5× 10 = 25 dB

The total attenuation is about 75 dB
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intensity of the echo generated by a 10-MHz wave having travelled 5
cm in the liver before being reflected at the boundary with a water
pocket.

Solution

I1 = I0 exp−(µ̂fx ), with 10 log (I0/I1) = 0.5× 5× 10 = 25 dB

I2 = RI1, with 10 log (I1/I2) = −10 logR ≈ 25 dB

I3 = I2 exp(−µ̂fx ), with 10 log (I2/I3) = 0.5× 5× 10 = 25 dB

The total attenuation is about 75 dB
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Ultrasound transducer

original wave

reflected wave

Object

distance r

transducer

Transducer basics

Both produces and detects ultrasounds

Made of ceramic elements that can convert electrical energy into
mechanical energy (and the opposite)
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Ultrasound transducer

The piezoelectric element is the
main component

Usually lead-zirconate-titanate
(PZT)

Characterized by a natural
resonance frequency f0 (that
depends on its thickness)

Can generate an acoustic pulse
by applying a voltage spike
(∼150V during 1 µs)

Plastic Case

Metal shield

Acoustic absorber

Backing block

Piezoelectric element

Matching layer(s)

To transmitter / receiver

Tuning coil

Adapted from [JT Bushberg, 2011, chap.14]
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Pulse-echo ultrasound

Basic idea

Pulse delays tell about the location of the reflectors
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Pulse-echo ultrasound

Challenge

Pulse delays only tell about the distance of the reflectors

Same signals can be obtained in the different media
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Pulse-echo ultrasound

Solution

Use converging beams that focus energy in the medium

Scan, i.e., deliver acoustic energy along multiple lines
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Pulse-echo ultrasound

Adapted from [JT Bushberg, 2011, chap.14]

Phased-array transducers

Use multiple elements at the same time to focus ultrasounds

Different pulse delays are applied to elements

Tuning delays permits to select focusing depth and/or angle
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Pulse-echo ultrasound

Ultrasound
beam

Adapted from [JT Bushberg, 2011, chap.14]

Measured signal

For a given excitation direction, all the elements record
simultaneously

A set of time-resolved signal are collected

{mn(t)}, n ∈ {−N , . . . ,N } (5)
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Light-matter interaction (Attenuation)

Photon can be absorbed

Photoelectric effect

Pair production

Photon can be deflected

Compton scattering

Rayleigh scattering
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Electromagnetic radiation

Figure: Electromagnetic spectrum. [wikipedia]

Main relations

E = hν is the photon energy (in
eV)

λ = c/ν is the wavelength

Constants and units

h = 6.63× 10−34 J.s is the
Planck constant

1eV = 1.60× 10−19J

c = 3× 108 ms−1 (in vacuum)
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Light-matter interaction

Adapted from [JT Bushberg, 2011, chap.3]

Rayleigh scattering

Elastic scattering, i.e., kinetic energy is conserved

E2 = E1

small scattering angle
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E2 = E1

small scattering angle
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Rayleigh scattering
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small scattering angle
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Light-matter interaction

Compton scattering

Loosely bound electron

Inelastic scattering, i.e.,
kinetic energy of scattered
particle not conserved

Energy and momentum
conservation lead to

1

E2
− 1

E1
=

1− cos θ

Ee

with Ee = mec
2

Continuum of scattering
angle and energy

Adapted from [JT Bushberg, 2011, chap.3]

98 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Ultrasound imaging
X-ray imaging

Light-matter interaction
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Light-matter interaction

Adapted from [JT Bushberg, 2011, chap.3]

Photoelectric effect

Absorption of photon/emission of a (photo)electron

Electronic shell discontinuities (Quantum effect)

Atom ionization

Radiative atomic relaxation (fluorescence and Auger)
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Light-matter interaction

Adapted from [JT Bushberg, 2011, chap.3]

Exercise

Calculate the energy and wavelength of the emitted radiations
(fluorescence X-ray)

Solution

Kα: 33− 5 = 28 keV; Kβ : 33− 1 = 32 keV; Kγ : 33− 0 = 33 keV

Lα: 5− 1 = 4 keV; Lβ : 5− 0 = 5 keV

Mα: 1− 0 = 1 keV

100 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Ultrasound imaging
X-ray imaging

Light-matter interaction

Adapted from [JT Bushberg, 2011, chap.3]
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Adapted from [JT Bushberg, 2011, chap.3]

Exercise

Calculate the energy and wavelength of the emitted radiations
(fluorescence X-ray)

Solution

Kα: 33− 5 = 28 keV; Kβ : 33− 1 = 32 keV; Kγ : 33− 0 = 33 keV
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Light-matter interaction

Electron pair production

Positron-negatron pair is
created

Eincident > 2mec
2 = 1.02

MeV

Adapted from [JT Bushberg, 2011, chap.3]
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Cross-section

d0

q
dW

d

Definition

We assume that a single particle is illuminated by a plane wave
propagating along d0 with an intensity I0 (W.cm−2)

The power I (in W) is measured along d such that d · d0 = cos θ

The (total) cross-section is defined by σ(θ) = I (θ)
I0

The cross-section is an area
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Cross-section

Link to attenuation

For a homogeneous medium with density ρ (in cm−3), we have:

µ = σρ

Mean free path is defined as l = µ−1 (in cm).

Common units: [σ] = cm2.g−1, [ρ] = g.cm−3, and [σ] = b where b
= 10−28 m2 stands for the barn.

All attenuation effects sum up

σ = σpe + σcoh + σincoh + σpair
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Cross-section is energy-dependent

Figure: Soft tissue mass attenuation. Data and plot obtained using XMuDat

[Nowotny, 1998]
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Cross-section is energy-dependent

Figure: Tungsten mass attenuation. Data and plot obtained using XMuDat

[Nowotny, 1998]

Hard spheres collision is a wrong mental image.Think ’likelihood’.
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X-ray tube

Figure: Principle of a Coolidge tube (X-ray tube)

Basics

Generation of electrons
(cathode)

High voltage electron beam

X-rays emission (anode)

Typical parameters

Peak voltage Vp: 20–150 kV

Tube current: 10–1000 mA

Focal spot size: 1 µm—5 mm
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X-ray tube

energy (keV)
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Figure: spectra from a tungsten anode x-ray tube operating for different peak
voltages Vp (70, 120, and 150 kV). Data from [Poludniowski et al., 2009].
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Adapted from [JT Bushberg, 2011, chap.6]

Characteristic X-rays

Electron-matter interaction

Electron vacancy results in
energy levels transition
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Figure: Tungsten energy-level diagram

Exercise

Compute the characteristics X-ray emitted by a tungsten anode
tube. Is it consistent with the plot on slide 107?
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X-ray detector

Figure: Direct vs indirect detection [Chotas et al., 1999]. TFT = Thin-film
transistor, CCD = charge-coupled device.
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X-ray detector

Indirect conversion

X-rays converted into visible light by scintillators, e.g., CsI(Tl)

Visible photons converted into an electric charge by photodiode
arrays

Direct conversion

X-ray photons generate electron-hole pairs via photoelectric effect

A bias voltage conducts electrons and holes to electrodes
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X-ray detector

Hybrid pixel array detectors

Direct conversion within semiconductor materials

Bonded pixel-by-pixel to a readout application-specific integrated
circuit (ASIC)

Two mode of operations available: integration or counting
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X-ray detector

Integrating detectors

The incoming photo-generated current is integrated onto a feedback
capacitor

The measured signal is proportional to the attenuated X-ray energy
[Huang et al., 2012]

s =

∫ Emax

Emin

qs(E )na(E )E dE

na(E ) = n0(E )(1− exp[−µs(E )Ls])

qs(E ) includes the fractional energy absorbed in the scintillator, the
scintillator conversion efficiency, and the optical coupling efficiency.
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X-ray detector

Photon-counting detectors

Absorption of an X-ray photon generate a current pulse

One hit is recorded if the height pulse is above some (energy)
threshold

The measured signal is proportional to the attenuated X-ray photon
numbers.

s =

∫ Emax

Emin

q(E )na(E ) dE

q includes amplification gains and energy distortion effects, e.g.,
fluorescence, share sharing, or pulse pile-up

Energy discrimination capabilities based on pulse height analysis
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Noise model

Basics

Photon measurements are
intrinsically corrupted by
Poisson noise

P(λ)

For large photon numbers λ,
we have

P(λ) ≈ N (µ = λ, σ =
√
λ)

115 / 118 N. Ducros Image Reconstruction



Introduction
Analytical Methods

Optimisation-based methods
Data-driven methods

Annex: Image formation
References

Ultrasound imaging
X-ray imaging

Noise model

Measured signal noise

A complicated cascaded analysis is required to statistically model the
conversion of incident X-ray photons into electrons (possibly via
visible photons)

An empirical model is often retained

s̃ ∼ N (µ = s, σ = β
√
s)

where β depends on the detector

The output signal is usually computed as

log
( s

s0

)
,

which makes things even more complicated...
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