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Introduction

Natural vs Reconstructed Image
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Introduction

Inverse Problem

s
~ =
& ~

@ Measurements m are taken on the boundary 0.5
@ The (unknown) image f is defined on S
@ How to estimate f? l.e., how to invert m = A(f) given A?
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Introduction

Medical Imaging

Figure: () positron emission tomography ( ) photoacoustic imaging ()
magnetic resonance ( ) ultrasonography () radiography () computed
radiography
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Introduction

Main reconstruction approaches

I. Analytical methods

@ Model the imaging process and invert it algebraically

find H such that f=H(m) (1)

Il. Optimisation-based methods

@ Build a cost function from prior knowledge about the solution and
the measurements. Then, minimize it (algebraically or numerically)

find and minimize C such that C(f;m) is small (2)
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Introduction

Main reconstruction approaches

I1l. Data-driven methods

@ “Learn” to reconstruct

learn H, such that [ = H,(m) (3)
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Introduction

Outline

© Introduction o Data fidelity
© Analytical Methods o Regularisation
o B-mode Ultrasound Imaging @ Data-driven methods
o Computed Tomography © Annex: Image formation
© Optimisation-based methods @ Ultrasound imaging
@ Discretisation @ X-ray imaging
@ Algebraic reconstruction @ References
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Introduction

Organisation

8/118

e 6 CM-TD
https://github.com/nducros/image-reconstruction

@ 2 TP salle Labex (TP 5GE)

o Evaluation : CR de TP + devoir surveillé (= QCM + Exo). Annales
: https:
//moodle.insa-lyon.fr/course/section.php?id=13460

@ Emploi du temps
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Analytical Methods

© Introduction
© Analytical Methods

@ B-mode Ultrasound Imaging

© Optimisation-based methods

@ Data-driven methods

© Annex: Image formation

© References
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Pioneers

Figure: Paul Langevin (left), Robert William Boyle (right)

Paul Langevin Robert W Boyle

@ French physicist
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Pioneers

Figure: Paul Langevin (left), Robert William Boyle (right)

Paul Langevin Robert W Boyle

@ French physicist

o First patents on ultrasonic
submarine detection in 1916.
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph:

Pioneers

« } -d‘ g1 T JJ‘".. l
Figure: Paul Langevin (left), Robert William Boyle (right)

Paul Langevin Robert W Boyle

@ French physicist @ Canadian physicist

o First patents on ultrasonic
submarine detection in 1916.

10/118 N. Ducros Image Reconstruction



Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph:

Pioneers

« } -d‘ g1 T JJ‘".. l
Figure: Paul Langevin (left), Robert William Boyle (right)

Paul Langevin Robert W Boyle

@ French physicist @ Canadian physicist
o First patents on ultrasonic o First working prototype of
submarine detection in 1916. active sonar in 1917.
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Recent echographic images

Figure: Nuchal translucency ultrasound, breast ultrasound, arterial Doppler.
https://radiopaedia.org/
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph

Image formation overview

're ectea wave

I / / / /
I / // -
/
‘r ,‘/ // / ; y )
I | ] / ! /
\ [ [ : ( ‘
Send_er/ \ | | “\ ‘\ - | Object
Receiver | \ \ \ N
\ \ \ \ \ N
\ . . \ h
original wave'
I ]
' distance r '

Basics

@ Ultrasonography consists in recording echos

@ Contrast is due to changes in the tissue acoustic properties
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph

Inverse problem

LI

Measured data

o {m,(t)} : set of signals measured after excitation along z = 1
@ ne€{—N,...,N}: index of the transducer element centered at z,

To be recovered

o f(=zp,z): reflectors along x = xy
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomograph

Inverse problem

T T T

° fn(azo, 2) = G(2) mp(t = 7, (2)), with 7,(2) = 7% (2) + 75P°(2)

exci

o7 is the source-reflector propagation time and 7°h° the

propagation time from the reflector to the n-th element

e (@ is a gain that compensates for attenuation (and angular energy
dispersion)
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph:

Inverse problem
xr

Exercise

o Calculate the delays 7°*°I(z) and 75°P°(z)
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph:

Inverse problem
xr

Exercise

o Calculate the delays 7°*°I(z) and 75°P°(z)

o 7I(z) = £, assuming focusing (see slides 92-93)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomograph

Inverse problem
xr

TN

Zo

Exercise

o Calculate the delays 7°*°I(z) and 75°P°(z)

o 7¢(z) = Z, assuming focusing (see slides 92-93)

Z
C
o TEho(z) = % (zg — )% + 22
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph

Inverse problem
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph:

Inverse problem

@ Are the reflectivity maps fn(xo, z) estimated from different signals
m, the same?
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomograph:

Inverse problem

@ Are the reflectivity maps fn(xo, z) estimated from different signals
m, the same?

@ Which one to choose?
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Dynamic focusing

Philosophy

@ Dynamic focusing answers the previous two questions
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Dynamic focusing

Philosophy

@ Dynamic focusing answers the previous two questions

e How ?
1. Aligning (temporally) all the signals from the same echo being
recorded at different positions z,,
2. Averaging the aligned signals
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Delay-and-Sum Algorithm

Governing equation

@ Along a given beam direction, we define

N
1
= —A
m(t) N 11 n:E Nmn(t Tn)

where AT, are appropriate delays that align the signals
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Delay-and-Sum Algorithm

Exercise 1

o Calculate the delays AT, to align the signal m,, with the signal vy
recorded at
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Delay-and-Sum Algorithm

Exercise 1

o Calculate the delays AT, to align the signal m,, with the signal vy
recorded at

2
o hr=? 1_%%%—%)
C VA
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Delay-and-Sum Algorithm

Exercise 2

@ How to estimate the reflectivity map f(zo, z) from the delay-and-
sum signal m?

@ Derive an expression of the reflectivity map f(zo, z) as a function of
the raw signals m,,
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Analytical Methods

B-mode Ultrasound Imaging
Computed Tomography

Delay-and-Sum Algorithm

Exercise 2

@ How to estimate the reflectivity map f(zo, z) from the delay-and-
sum signal m?

@ Derive an expression of the reflectivity map f(zo, z) as a function of
the raw signals m,,

e Remember that: i) time is space and ii) all signals were aligned with

mo: fan,2) = 6(2) o ( Z)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Delay-and-Sum Algorithm

@ How to estimate the reflectivity map f(zo, z) from the delay-and-
sum signal m?

@ Derive an expression of the reflectivity map f(zo, z) as a function of
the raw signals m,,

e Remember that: i) time is space and ii) all signals were aligned with
- 2z
o f(a,2) = 6(:) o £

N

o f(z0,2) = G(2) 2N1+ : Z My ((1: (z 4 2”2 (= xo)z))

n=—N
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

© Introduction
© Analytical Methods

o Computed Tomography
© Optimisation-based methods

@ Data-driven methods

© Annex: Image formation

© References
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Wilhelm Rontgen

AL i 4

Figure: Mr. Rdntgen (left), Mrs Réntgen (au centre), a colleague (right)
ID card

@ German physicist.

@ Pioneering work on X-rays in 1895.
@ First recipient of the Nobel Price in Physisc in 1901.
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Nowadays

Figure: Chest radiography, left coronary artery (interventional cardiology),
mammogram, thorax CT scan. https://radiopaedia.org/.
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Image formation overview

24 /118

&

detector

X-ray
tube

Contrast is related to the X-ray attenuation of the tissues
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Analytical Methods
Ultrasound Imaging

Computed Tomography

Beer-Lambert law

no n
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Beer-Lambert law

no n

>

L
@ i is the linear attenuation coefficient

n = ngexp (—ulL)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Beer-Lambert law

H1 M2 (3 H4 H5

no n

e

~
~
~
~
~

n=ng H exp (—pil) = ngexp (— Zuiﬁ)
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Beer-Lambert law

n = ngexp (— [ p(£) de)
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

yﬁ\h%

Forward problem

\
[

7 ® -\
pd A
Rt

CT principle

@ Radiographs are acquired under multiple view angles

@ Post processing all the radiographs allows the object to be
recovered, which is called image reconstruction
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

oot

Forward problem

\
//’7 o

< =
AT

e

Measured data

@ Line integrals (projections) of the attenuation coefficient (see slide
39): In(ng/n) =m = [, fdl
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

oot

Forward problem

\
//’7 o

< =
AT

e

Measured data

@ Line integrals (projections) of the attenuation coefficient (see slide
39): In(ng/n) =m = [, fdl
@ The line path £ depends on the acquisition geometry
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

e,

Forward problem

\
//’7 o

< =
AT

e

Measured data

@ Line integrals (projections) of the attenuation coefficient (see slide
39): In(ng/n) =m = [, fdl
@ The line path £ depends on the acquisition geometry

o Parallel geometry here (in practice fan beam, cone beam, etc)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Forward problem

T2

Measured data
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Forward problem

T2

Measured data

o Let £(r,0) be the line path parametrized by (7, 6) as depicted above
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Forward problem

T2

Measured data

o Let £(r,0) be the line path parametrized by (7, 6) as depicted above
o Let m(r,0) be the line integral along L(r,0)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Forward problem

T2

Measured data

o Let £(r,0) be the line path parametrized by (7, 6) as depicted above
o Let m(r,0) be the line integral along L(r,0)

@ The set of line integrals for (r,0) € R x [0, 7| is referred to as
sinogram
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Forward problem

ise 1

@ Compute the Radon transform of the images below

0 10

1.0
50 0.8 08
_ 100
g 06 06
S 150
E 04 4
200 0
0.2
250 02
00
o 50 100 150 200 250 0.0

200 250

xa (in pixels)
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Forward problem
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Analytical Methods

B-mode Ultrasound In

Computed Tomography

Forward problem

@ We obtain

0
50 250 250 250
100
200 200 200
_ 150 = =
m m m
g g g
Z 200 150 3 150 a 150
£ £ £
S 250 s s
Q Q Q
100 100 100
300
350 50 50 50
400
0 0 0
0 100 200

100 200
6 (in degrees)

100 200

6 (in degrees) 6 (in degrees)
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Forward problem

Exercise 2

o Give the equation of £(r,0) in the polar coordinate system (w,., ug)

@ Derive the equation of £(r, ) in the Cartesian coordinate system
(lu’la u2)

@ Derive the equation of m(r, ) as a function of f
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Forward problem

Exercise 2

o Give the equation of £(r,0) in the polar coordinate system (w,., ug)

@ Derive the equation of £(r, ) in the Cartesian coordinate system
(lu’la u2)

@ Derive the equation of m(r, ) as a function of f

o L(r,0): £=ru, +Lluy, LER
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Forward problem

Exercise 2

o Give the equation of £(r,0) in the polar coordinate system (w,., ug)

@ Derive the equation of £(r, ) in the Cartesian coordinate system
(lu’la u2)

@ Derive the equation of m(r, ) as a function of f

o L(r,0): £=ru, +Lluy, LER
@ L(r,0): £=(rcosf — Lsinf)uy + (rsinh + £cosh)uy, £ € R
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Forward problem

Exercise 2

o Give the equation of £(r,0) in the polar coordinate system (w,., ug)

@ Derive the equation of £(r, ) in the Cartesian coordinate system
(lu’la u2)

@ Derive the equation of m(r, ) as a function of f

o L(r,0): £=ru, +Lluy, LER
@ L(r,0): £=(rcosf — Lsinf)uy + (rsinh + £cosh)uy, £ € R

° m(r,@):/f(rcos@fésinf),rsinﬂJrﬁcosH)dE
R
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Inverse Problem

T2

Measured data

@ Sinogram m(r,0)

To be recovered

o Attenuation map f(z1, 22)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Inverse Problem

Exercise

e Compute the inverse Radon transform of the following images (guess
the results first)

o 250 o 250
50 50
100 200 100 200
_ 150 _ 150
] 150 150
g g
£ 200 £ 200
< £
S 250 100 a 250 100
300 300
350 50 350 0
400 400
0 0
0 100 200 0 100 200
6 (in degrees) 6 (in degrees)
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Inverse Problem
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Inverse Problem

@ We obtain

10 10
08 08
@ 0.6
06 ¢
3 04
04 X
02
02
00
0.0 150

1 (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Projection-Slice Theorem

Theorem (a.k.a. Fourier slice theorem)

1o (€) = J (€ cos 9, Esin )
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Projection-Slice Theorem

Theorem (a.k.a. Fourier slice theorem)

g (€) = f (€ cos 0, E sin )

e my(§) = / m(r,0) exp(—j2m&r)dr is a 1-D Fourier transform
R
(with respect to r only)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Projection-Slice Theorem

Theorem (a.k.a. Fourier slice theorem)

g (€) = f (€ cos 0, E sin )

e my(§) = / m(r,0) exp(—j2m&r)dr is a 1-D Fourier transform
R
(with respect to r only)

° jf(gl,gz) — //Rgf(asl,xg) exp (—j2m(&121 + Ea20)) dy dap is a 2-D

Fourier transform

37/118 N. Ducros Image Reconstruction



Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Projection-Slice Theorem

1)

@ The Fourier domain is sampled on a polar grid

@ Interpolation is required to recover f by inverse Fourier
transformation
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Projection-Slice Theorem

Sketch of the proof

@ From the definition of my (&) find the appropriate change of variables
@ Remember to compute the determinant of the Jacobian

Exercise

@ Demonstrate the projection-slice theorem
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

FBP formula

The image f is given by
f(m, ) = / mE(z; cos O + 2, sin A) df (3)
0

where

g (&) = |€] Mo () (4)
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

FBP formula

The image f is given by
f(m, ) = / mE(z; cos O + 2, sin A) df (3)
0

where

g (&) = |€] Mo () (4)

e Equation (3) is a sum of 'back projection’ of mf!* over different view

angles
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

FBP formula

The image f is given by
f(m, ) = / mE(z; cos O + 2, sin A) df (3)
0

where

g (&) = |€] Mo () (4)

e Equation (3) is a sum of 'back projection’ of mf!* over different view
angles

e Equation (4) tells how to filter the projections myg
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

T2 A,
\
\\
\
X \
\
\ »
1 59)
= Op s
- - \ ml
- \
\
\
\
\

Back-projection

@ 7 cosf + zp8in0 = x - u, = r is the equation of a (straight) line
@ The line is denoted by £(r,6) on slide 30

41/118 N. Ducros Image Reconstruction



Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

10
70
08 60
_ _ 50
3 06 3
a a 40
£ ]
% 04 o 30
20
0.2
10
0.0 0
100 150 200 250
i (in pixels) X1 (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

0 50 100 150 200 250
X, (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X, (in pixels)

0 50 100 150 200 250
X, (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

0 50 100 150 200 250
X, (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

0 50 100 150 200 250
X, (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

0 50 100 150 200 250
X, (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

0 50 100 150 200 250
X, (in pixels)

Back-projecti

@ Summing back-projections almost recover the image
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

0 50 100 150 200 250
X, (in pixels)

Back-projecti

@ Summing back-projections almost recover the image

@ The unfiltered back-projection image is blurred
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Analytical Methods

B-mode Ultrasound Im

Computed Tomography

Filtered Back-Projection

1.0 0

X (in pixels)
& 5 o
g 8 8
X2 (in pixels)
5 2 u
g 8 8

S
8
S
8

&
&
g

0.0
50 100 150 0 50 100 150 200 250
X1 (in pixels) i (in pixels)

Filtering the projections (m
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X; (in pixels)
g

0 50 100 150 200 250
i (in pixels)

Filtering the projections (measurements)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

10
50
05
100
@ | 0.0
2
‘E‘ 150 —05
<
200 . -10
N -15
250
-2.0
50 100 150 200 250

X, (in pixels)

Filtering the projections (measurements)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

1.00
0.75
0.50

0.25

X2 (in pixels)

0.00

-0.25

-0.50

100 150
i (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

1.0
0.8
T 0.6
2
£ 0.4
<
02
0.0

100 150
X, (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

100 150
X, (in pixels)
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

X2 (in pixels)

0 50 100 150 200 250
X, (in pixels)

Filtering the projections (measurements)

@ Back-projection now recovers the image perfectly!
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Analytical Methods
B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

Sketch of the proof of the FBP formula

e Write f as a function of f

@ Use the projection-slice theorem

Exercise

@ Derive the filtered back-projection formula
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Analytical Methods

B-mode Ultrasound Imaging

Computed Tomography

Filtered Back-Projection

10

X (in pixels)
X (in pixels)

e IE

0 50 100 150 200 250
1 (in pixels)

0 50 100 150 200 250
1 (in pixels)

100 150 200 250
X1 (in pixels)

Figure: FBP reconstructions. (Left) ground truth, (middle) ramp filter, (right)
ramp filter with Hann window.

Filtered back-projection

@ Perfect recovery from noiseless data...
@ ... but high-frequency noise is amplified by the ramp filter
o In practice, mf"(€) = |¢] g (€)h(E) where h(€) is a low-pass filter
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Discretisation

Optimisation-based methods Algebra nstruction

© Introduction
© Analytical Methods

© Optimisation-based methods
@ Discretisation

@ Data-driven methods

© Annex: Image formation

© References
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Discretisation

Optimisation-based methods reconstruction

Discretisation

eal world is discrete
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Discretisation

Optimisation-based methods

Discretisation

Real world is discrete

@ Finite number of detector pixels
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Discretisation

Optimisation-based methods Alg construction

Discretisation

Real world is discrete

@ Finite number of detector pixels

@ Finite number of view angles
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Discretisation
construction

Optimisation-based methods

Discretisation

Real world is discrete

@ Finite number of detector pixels
@ Finite number of view angles
@ Dimensions of the reconstructed image are finite
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Discretisation

Optimisation-based methods Alg construction

Discretisation

Real world is discrete

@ Finite number of detector pixels
@ Finite number of view angles

@ Dimensions of the reconstructed image are finite

Two approaches

@ Analytical is 'solve-and-discretize’

@ Algebraic is 'discretize-and-solve’
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Discretisation

Optimisation-based methods

In the case of CT

T2
Discretization of variables
g
Xit1 S ere{rtje{l,....,J}
7 O)) o dec{f}),ke{l,. . K}
I g o = (m,12) € {xm;},i €
"\ {1,...,]211><IQ}
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Discretisation
Optimisation-based methods Al C reconstruction

fidelity
o

In the case of CT

T2 : T n
Discretization of functions

Xit+1 = @ Attenuation image:
7 f(@) =Y, fibi(z)

3 k) .
—=—h @ Projection at angle 0y:
I o mi(r) = >2; my,;b;(r)
\ o Where b;(z) and b;(r) are
some basis functions

Examples of basis functions

=
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Discretisation

Optimisation-based methods

In the case of CT

T2 : T n
Discretization of functions

Xit+1 = @ Attenuation image:
) f(z) = T, (=)

et @ Projection at angle 0y:

I o mi(r) = >2; my,;b;(r)

\ o Where b;(z) and b;(r) are

some basis functions

Examples of basis functions

e Sampling: b;(r) = 6(r — r;)
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Discretisation

Optimisation-based methods

In the case of CT

T2 : T n
Discretization of functions

Xit+1 2 @ Attenuation image:
) f(z) = T, (=)

et L @ Projection at angle 0y:

T N my (1) = 32, M ;b5 (r)

\ o Where b;(z) and b;(r) are
some basis functions

Examples of basis functions

e Sampling: b;(r) = 6(r — r;)

o Indicator: b;(r) = rect(r — ry)
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Discretisation

Optimisation-based methods

In the case of CT

T2 : T n
Discretization of functions

Xit+1 = @ Attenuation image:
) f(z) = T, (=)

et @ Projection at angle 0y:

I o mi(r) = >2; my,;b;(r)

\ o Where b;(z) and b;(r) are

some basis functions

Examples of basis functions

e Sampling: b;(r) = 6(r — r;)

o Indicator: b;(r) = rect(r — ry)
@ Gaussians, splines, etc
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Discretisation

Optimisation-based methods

In the case of CT

T2
X 5
Xi+1 \
IRz i 79k)
PP = )
e i \ $1
. AY
A
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Discretisation

Optimisation-based methods / ic reconstruction

Data fidelity
gular

In the case of CT

T2 "
Linear forward problem
X
. A
Xi+1 \ » m = Af
(e 9 )
G 1
4” \\ .
- X e Attenuation vector f € R/x!
: defined as f = [f1,...,f1] "
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Discretisation

Optimisation-based methods A ic reconstruction

Data fidelity
gular

In the case of CT

L2 "
Linear forward problem
X
Xit+1 x m = Af
(e 9 )
G 1
4” \\ .
- X e Attenuation vector f € R/x!
defined as f = [f1,...,f1] "

e Forward mapping A € RE/xI
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Discretisation
Optimisation-based methods / ic reconstruction

Data fidelity
gular

In the case of CT

i) 2
Linear forward problem
x-Xi :
i+1 \ m = Af

= Y

- N e Attenuation vector f € R/x!
defined as f = [f1,...,f1] "

e Forward mapping A € RE/xI

@ Projection vector m € RX/*1
defined as

m=[m/,...,mg]T, with
I

my, = [My1,..., Mk, g
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Discretisation

Optimisation-based methods / construction

In the case of CT

T2
Sketch of the proof
X
Xi+1 5 )
-1y i ‘a 916)
.17 - \\ Z1
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Discretisation
Optimisation-based methods Al C reconstruction

fidelity
o

In the case of CT

T2
Sketch of the proof

Xi
Xit+1 X ] @ Start from my(r) =
I ,Qk) Jg2 f(2)0(r — = - u,.) dx
Pt od - ‘ \\ L1
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Discretisation

Optimisation-based methods

In the case of CT

T2
Sketch of the proof

Xi
Xit+1 X ] @ Start from my(r) =
e ,Qk) Jg2 f(2)0(r — = - u,.) dx
——=—% @ Show that
B 71

My j = [go f(2)b; 1(z) dz
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Discretisation

Optimisation-based methods

In the case of CT

T2
Sketch of the proof

Xiﬁ \ o Start from my(r) =
=1 0 Je2 f(@)o(r — z - uy) dz
— : e @ Show that
\ mg,; = f]R2 )d:B
d @ Hence my, ; = Zi T(k,j),z‘fi
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Discretisation

Optimisation-based methods / econstruction

In the case of CT

T2
Sketch of the proof

Xiﬁ \ o Start from my(r) =
ki 6) Jpr F(@)3(r — 2 - w,) da
i . : e @ Show that
= \ mp.j = f]R2 )d:B
d @ Hence my, ; = Zi T(k,j),z‘fi

® 7(),j),; indicates the
contribution of pixel i to
measurement at angle £ and
position j
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Discretisation

Optimisation-based methods Alg construction

In the case of CT

X
Xi+1

T2

Exercise

@ Following the sketch of the

"9/%) proof, derive an expression for
?

T(k,j)
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Discretisation

Optimisation-based methods / aic reconstruction

In the case of CT

T2

Data fidelity
Regular

Exercise

@ Following the sketch of the

=

9k) proof, derive an expression for
?

T(k,j)

® T(kj),i = fR2 b;(x)b; x(x)dx,
with b; () = b;(z - u,(0)))
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Discretisation

Optimisation-based methods / construction

In the case of CT

T2 _X;

Interpretation of 7y, ;

\ o We define h = (k,7)
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Discretisation
Optimisation-based methods Al i reconstruction

fidelity
o

In the case of CT

o .
P
\ . o We define h = (k,7)
AT S O0r) @ For b; = b; =4, 74; indicates
T > if the center of pixel i is
i \ ! intersected by ray h = (k,j)
Tj
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Optimisation-based methods

In the case of CT

L2

_X;

53/118

G ‘7’ bk )
T1
\
)

N. Ducros

Discretisation
struction

Interpretation of 7y, ;

o We define h = (k,7)

@ For b; = b; =4, 74; indicates
if the center of pixel i is
intersected by ray h = (k,j)

@ For b; =rect and b; =9, it is
the length of ray h through
pixel 4

Image Reconstruction



Discretisation
struction

Optimisation-based methods

In the case of CT

X .
APV a
' ) o We define h = (k,7)
i ';9,6) @ For b; = b; = J, r,; indicates
T 1 if the center of pixel 7 is
s ot intersected by ray h = (k,5)
Y @ For b; =rect and b; =9, it is
the length of ray h through
. pixel 4
! @ for b; = b; = rect, it is the area

of ray h over pixel ¢
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Discretisation
Optimisation-based methods Al aic reconstruction

Data fidelity
Regular

In the case of CT

Exercise

@ Construct the discrete forward operator corresponding to the Radon
transform of a I; x I = 32 x 32 image computed under J = 40
view angles over [0, 7) using a linear detector of K = 45 pixels.
Hint: You can call the radon function from skimage.
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Discretisation
Optimisation-based methods Al ic reconstruction

In the case of CT

Sinogram

800
1000

X, (in pixels)
Projection position r (in pixels)
Projection ray (r, 6)

15 20 50 100 150

x1 (in pixels) Projection angle 6 (in deg) Image pixel x

500 1000

Figure: Discrete forward problem. (Left) attenuation image. (Middle)
corresponding sinogram. (Right) discrete Radon transform A. Here,
K x J =40 x 45 = 1800 and I = 32 x 32 = 1024.
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Discretisation
Optimisation-based methods Algebraic reconstruction

Data f
Reg

© Introduction
© Analytical Methods

© Optimisation-based methods

@ Algebraic reconstruction

@ Data-driven methods

© Annex: Image formation

© References
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Discretisation
Optimisation-based methods Algebraic reconstruction

C
R

Algebraic reconstruction

Reconstruction

@ Recover f measuring m

However...
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C
R

Algebraic reconstruction

Reconstruction

@ Recover f measuring m

@ Basically, f = A~'m

However...
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Reconstruction

@ Recover f measuring m

@ Basically, f = A~'m

However...

o Aishuge. A c R¥XI with H = KJ. Typically
H x I =256 -360 x 2562, which requires 45 GiB for full storage.
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Reconstruction

@ Recover f measuring m

@ Basically, f = A~'m

However...

o Aishuge. A c R¥XI with H = KJ. Typically
H x I =256 -360 x 2562, which requires 45 GiB for full storage.

o Infinity of solutions (few angles available)
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Reconstruction

@ Recover f measuring m

@ Basically, f = A~'m

However...

o Aishuge. A c R¥XI with H = KJ. Typically
H x I =256 -360 x 2562, which requires 45 GiB for full storage.

o Infinity of solutions (few angles available)

@ No solution (in the presence of noise, i.e., m = Af + n)
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Iterative reconstruction

Y f("""l) = f(n) -+ u(n)

Standard iterative reconstruction algorithms
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Algebraic reconstruction

Y f("""l) = f(n) -+ u(n)

@ n is the iteration number

Standard iterative reconstruction algorithms
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Y f("""l) = f(n) -+ u(n)

@ n is the iteration number

o f(") is the attenuation image at iteration 7

Standard iterative reconstruction algorithms
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Y f("""l) = f(n) -+ u(n)

@ n is the iteration number

o f(") is the attenuation image at iteration 7
o u(™ is the update at iteration n

Standard iterative reconstruction algorithms
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Algebraic reconstruction

Y f("""l) = f(n) -+ u(n)

@ n is the iteration number

o f(") is the attenuation image at iteration 7
o u(™ is the update at iteration n

@ Update can also be multiplicative

Standard iterative reconstruction algorithms
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Y f("""l) = f(n) -+ u(n)

@ n is the iteration number

o f(") is the attenuation image at iteration 7
o u(™ is the update at iteration n

@ Update can also be multiplicative

Standard iterative reconstruction algorithms

@ Algebraic reconstruction technique (ART)
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Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Y f("""l) = f(n) -+ u(n)

@ n is the iteration number

o f(") is the attenuation image at iteration 7
o u(™ is the update at iteration n

@ Update can also be multiplicative

Standard iterative reconstruction algorithms

@ Algebraic reconstruction technique (ART)

e Simultaneous lterative Reconstructive Technique (SIRT)
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Discretisation
Optimisation-based methods Algebraic reconstruction

Dz

Algebraic reconstruction

o F(n+D) — £(0) | 4y(m)

@ n is the iteration number

o f(") is the attenuation image at iteration 7
o u(™ is the update at iteration n

@ Update can also be multiplicative

Standard iterative reconstruction algorithms

@ Algebraic reconstruction technique (ART)
e Simultaneous lterative Reconstructive Technique (SIRT)

@ Simultaneous Algebraic Reconstruction Technique (SART)

58/118 N. Ducros Image Reconstruction



Discretisation
Optimisation-based methods Algebraic reconstruction

Algebraic reconstruction

Y f("""l) = f(n) -+ u(n)

@ n is the iteration number

o f(") is the attenuation image at iteration 7
o u(™ is the update at iteration n

@ Update can also be multiplicative

Standard iterative reconstruction algorithms

@ Algebraic reconstruction technique (ART)
e Simultaneous lterative Reconstructive Technique (SIRT)
@ Simultaneous Algebraic Reconstruction Technique (SART)
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Discretisation
Optimisation-based methods gebraic reconstruction

ata fidelity

ART algorithm

fo ”Dg:rQTf:mg

Z

4 fi

Figure: lllustration in 2D (I = H = 2), where 7, is the h-th row of A. Note
that 7 is normal to Dy,.

/
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Discretisation
Optimisation-based methods

gebraic reconstruction
ata fidelity

ART algorithm

f2

)
4 fi

Figure: lllustration in 2D (I = H = 2), where 7, is the h-th row of A. Note
that 7 is normal to Dy,.

/
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

f2

) 4 J1

Figure: lllustration in 2D (I = H = 2), where 7, is the h-th row of A. Note
that 7 is normal to Dy,.
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

f2

4 fi

Figure: lllustration in 2D (I = H = 2), where 7, is the h-th row of A. Note
that 7 is normal to Dy,.
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

f2

4 fi

Figure: lllustration in 2D (I = H = 2), where 7, is the h-th row of A. Note
that 7 is normal to Dy,.

/
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Discretisation
Optimisation-based methods Algebraic reconstruction

Data fid,
Regularisation

ART algorithm

f2

/

Figure: lllustration in 2D (I = H = 2), where 7, is the h-th row of A. Note
that 7 is normal to Dy,.
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Optimisation-based methods

ART algorithm
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Discretisation
Optimisation-based methods Algebraic reconstruction

C

ART algorithm

@ We have

P £

Th
-
’I‘h Th

f(h) :f(hfl) _

Implementation
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

@ We have

,,,}'IL'f(hfl) — my,

Th
-
’I‘h Th

f(h) :f(hfl) _

@ The h-th equation is satisfied: rhTf(h) = my

Implementation
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

@ We have

,,,}'IL'f(hfl) — my,

Th
-
’I‘h Th

f(h) :f(hfl) _

@ The h-th equation is satisfied: rhTf(h) = my

Implementation
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Optimisation-based methods

ART algorithm

@ We have

,,,}'IL'f(hfl) — my,

Th
-
’I‘h Th

f(h) :f(hfl) _

@ The h-th equation is satisfied: rhTf(h) = my

Implementation

@ One iteration of ART corresponds to a sequence of h = H updates.
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Optimisation-based methods

ART algorithm

@ We have

,,,}'IL'f(hfl) — my,

Th
-
’I‘h Th

f(h) :f(hfl) _

@ The h-th equation is satisfied: rhTf(h) = my

Implementation

@ One iteration of ART corresponds to a sequence of h = H updates.

@ A few iterations are typically required before convergence.
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

Update equation

@ We have

,,,}'IL'f(hfl) — my,

Th
-
’I‘h Th

f(h) :f(hfl) _

@ The h-th equation is satisfied: rhTf(h) = my

Implementation

@ One iteration of ART corresponds to a sequence of h = H updates.
@ A few iterations are typically required before convergence.

@ There are variants that depend on the order the measurements are
processed (e.g., random-ART) or the way image is updated (e.g.,
simultaneous ART)
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Discretisation

Optimisation-based methods Algebraic reconstruction

Data fidelit

Regularisation

ART algorithm

Ground Truth

ART (2 iterations) Diff (2 iterations)
T

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
I =32 x 32=1024.
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Discretisation

Optimisation-based methods Algebraic reconstruction

Data fidelity

Regularisation

ART algorithm

Ground Truth ART (4 iterations) Diff (4 iterations)

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
I =32 x32=1024.
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Discretisation

Optimisation-based methods Algebraic reconstruction

Data fidelit

Regularisation

ART algorithm

Ground Truth

ART (6 iterations) Diff (6 iterations)
R 0.20
0.15
0.10
0.05
0.00
-0.05
-0.10

-015

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
1 =32 x 32 =1024.
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Discretisation

Optimisation-based methods Algebraic reconstruction

Data fidelity

Regularisation

ART algorithm

Ground Truth ART (8 iterations)

"

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
1 =32 x 32 =1024.

N. Ducros Image Reconstruction
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

Ground Truth

ART (10 iterations) Diff (10 iterations)
- 0.10

0.05
0.00
~0.05

-0.10

-015

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
1 =32 x 32 =1024.
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Discretisation

Optimisation-based methods Algebraic reconstruction

Data fidelity

Regularisation

ART algorithm

Ground Truth

ART (12 iterations) Diff (12 iterations)
L) -.

0.00
-0.05

-0.10

10

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
1 =32 x 32 =1024.
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

Ground Truth

ART (14 iterations) Diff (14 iterations)
=

=

0.075

0.050

0.025

0.000

~0.025

~0.050

-0.075

-0.100

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
I =32 x32=1024.
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Discretisation
Optimisation-based methods Algebraic reconstruction

Data fidelity

Regularisation

ART algorithm

Ground Truth ART (16 iterations) Diff (16 iterations)
07 o = w
u
06 0.06
5
05 004
10
04 002
0.00
03 15
-0.02
2 20
-0.04
01
2
> -0.06
0.0
30 -0.08

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
1 =32 x 32 =1024.
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Discretisation
Optimisation-based methods Algebraic reconstruction

ART algorithm

Ground Truth

ART (18 iterations) Diff (18 iterations)
=
"

erotions)
g [ oo
[, S

0.04
0.02
0.00
-0.02
—-0.04
—0.06

-0.08

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. As in slide 55, H = 40 x 45 = 1800 and
1 =32 x 32 =1024.
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Optimisation-based methods

© Introduction
© Analytical Methods

© Optimisation-based methods

o Data fidelity
@ Data-driven methods

© Annex: Image formation

© References
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Optimisation-based methods

Data fidelity

Data fidelity optimisation

Reconstruction as optimization problem
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Data fidelity

Data fidelity optimisation

Reconstruction as optimization problem

@ Look for small data misfits/residuals, i.e. m — Af ~ 0
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Optimisation-based methods / struction

Data fidelity optimisation

Reconstruction as optimization problem

@ Look for small data misfits/residuals, i.e. m — Af ~ 0

@ Minimize the cost/objective function

C(f) = llm — Af||
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Optimisation-based methods Alg nstruction

Data fidelity optimisation

Reconstruction as optimization problem

@ Look for small data misfits/residuals, i.e. m — Af ~ 0

@ Minimize the cost/objective function

C(f) = llm — Af||

e where || - || is some norm (e.g., L? or L)
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Optimisation-based methods

Data fidelity

Regularis

Data fidelity optimisation

alytical solution
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Optimisation-based methods g nstruction

Data fidelity optimisation

Analytical solution

@ A minimizer of the least-squares cost function C(f) = ||m — Af|?,
satisfies

VC=0
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Optimisation-based methods struction

Data fidelity optimisation

Analytical solution

@ A minimizer of the least-squares cost function C(f) = ||m — Af|?,
satisfies

VC=0

@ Therefore, it is a solution of the system

ATAf=A"m
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Optimisation-based methods struction

Data fidelity optimisation

Analytical solution

@ A minimizer of the least-squares cost function C(f) = ||m — Af|?,
satisfies

VC=0

@ Therefore, it is a solution of the system
ATAf=A"m
@ When AT A is invertible, the least-squares solution is given by
fis=(ATA)TATm

It is also known as the pseudo-inverse solution.
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Optimisation-based methods

Regularisation

Data fidelity optimisation

Exercise

@ Derive an expression for the gradient of C(f) = ||m — Af|?

o (Clue: First notice that |[f||2 = f T f; second, derive its gradient;
finally generalize to the remaining terms in C(f).)
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Optimisation-based methods

Data fidelity optimisation

Exercise

@ Derive an expression for the gradient of C(f) = ||m — Af|?

o (Clue: First notice that |[f||2 = f T f; second, derive its gradient;
finally generalize to the remaining terms in C(f).)

o We first write

Im — Af||* = (m — Af)" (m — Af)
=m'm—-m"Af — (Af)"m + (Af)T Af
=m'm—2m" Af + (Af)" Af
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Optimisation-based methods

Data fidelity optimisation

Exercise

@ Derive an expression for the gradient of C(f) = ||m — Af|?

o (Clue: First notice that |[f||2 = f T f; second, derive its gradient;
finally generalize to the remaining terms in C(f).)

o We first write

Im — Af||* = (m — Af)" (m — Af)
=m'm—-m"Af — (Af)"m + (Af)T Af
=m'm—2m" Af + (Af)" Af

o VCM =0-2(mTA)T +24TAf(™ = 24T (m — Af™)
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Data fidelity optimisation
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Optimisation-based methods Al onstruction

Data fidelity
Reg tion

Data fidelity optimisation

Gradient descent

o lterative algorithm

Firt) = ¢ _ yc)
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Optimisation-based methods / struction

Data fidelity optimisation

Gradient descent

o lterative algorithm
Firt) = ¢ _ yc)

e VC™ is the gradient of the cost function at f(™)
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Optimisation-based methods

Regularisation

Data fidelity optimisation

Gradient descent

o lterative algorithm
Firt) = ¢ _ yc)

e VC™ is the gradient of the cost function at f(™)
@ 7 is the step length
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Optimisation-based methods / struction

Data fidelity optimisation

Gradient descent

o lterative algorithm
Firt) = ¢ _ yc)
e VC™ is the gradient of the cost function at f(™)

@ 7 is the step length

@ 7 is chosen small enough to guarantee convergence but large enough
to converge in few iterations
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Optimisation-based methods

Data fidelity

Regularis
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods / r; construction
Data fidelity

Regularis:
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods

Data fidelity

Regularis
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods

Data fidelity

Regularis

Gradient descent (no noise)

k

n Wk =20,y =035] w—p
200
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) -400
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods

Data fidelity

Regularis
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods

Data fidelity
Regularisatio

Gradient descent (no noise)

k

W [k =30,y =0.5]
600
a0,
I' 400
| | 200 40
! J 200
60
o 0

20 40 60

W= p

Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0 =5", y=0.5
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Optimisation-based methods

Data fidelity

Regularis
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods

Data fidelity
Regularisatiof

Reg

Gradient descent (no noise)

k

n w5 k=407 =035] w—p
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0 =5", y=0.5

N. Ducros Image Reconstruction



Optimisation-based methods
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Figure: Reconstruction from noiseless data. Left: ground truth; Middle:
reconstruction; Right: error. ny = ny, =64, ng =36, A0=5", v=0.5.
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Optimisation-based methods

Data fidelity

Regularis

[k=1,v=05] -
140
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Regularis:
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods

construction
Data fidelity

Regularis:
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:

ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5",v=0.5.
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Optimisation-based methods / r; construction
Data fidelity

Regularis:
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Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods / r; construction
Data fidelity

Regularis:

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods / r; construction
Data fidelity

Regularis:

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods / r; construction
Data fidelity

Regularis:

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods / r; construction
Data fidelity

Regularis:

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods / r; construction
Data fidelity

Regularis:

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods / r: nstruction
Data fidelity

Regularisation

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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ion

Optimisation-based methods reconstruction

Data fidelity

Regularisation

Gradient descent (noisy data)

Figure: Reconstruction from noisy data (5% of additive Gaussian noise). Left:
ground truth; Middle: reconstruction; Right: error. n, = ny, = 64, ng = 36,
AO=5°,~v=0.5.
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Optimisation-based methods / r: econstruction

Regularisation

© Introduction
© Analytical Methods

© Optimisation-based methods

@ Regularisation
@ Data-driven methods

© Annex: Image formation

© References
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Discretisation

Optimisation-based methods construction

Regularisation

Regularisation

Cost functi
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Optimisation-based methods r: construction

Dat y
Regularisation

Regularisation

Cost function

@ In the case where A is poorly conditioned, we can minimize the
regularized cost function

C(f) = lm — Af|* + oR(f)
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Optimisation-based methods r: construction

Dat y
Regularisation

Regularisation

Cost function

@ In the case where A is poorly conditioned, we can minimize the
regularized cost function

C(f) = lm — Af|* + oR(f)

@ « is the regularization parameter
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Optimisation-based methods

Regularisation

Regularisation

Cost function

@ In the case where A is poorly conditioned, we can minimize the
regularized cost function

C(f) = lm — Af|* + oR(f)

@ « is the regularization parameter

e R :RY = R is the regularizer
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Optimisation-based methods

Regularisation

Regularisation

Cost function

@ In the case where A is poorly conditioned, we can minimize the
regularized cost function

C(f) = lm — Af|* + oR(f)

@ « is the regularization parameter
e R :RY = R is the regularizer

@ A 'good’ regularizer is small for acceptable images but large
otherwise
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Optimisation-based methods ic reconstruction

fidelity
Regularisation

Tikhonov regularisation

Analytical solution

N. Ducros Image Reconstruction



Optimisation-based methods

Regularisation

Tikhonov regularisation

Analytical solution

e A standard choice is R(f) = || Lf||?, with typical L including the
identity or differential operators (e.g., discrete gradient or Laplacian).
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Optimisation-based methods / struction

Data fidelity
Regularisation

Tikhonov regularisation

Analytical solution

e A standard choice is R(f) = || Lf||?, with typical L including the
identity or differential operators (e.g., discrete gradient or Laplacian).

@ By setting the gradient of the cost function to zero, we obtain
fis=(ATA+aL"L)'ATm

It is also known as the Tikhonov solution.
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Optimisation-based methods

Data fidelity
Regularisation

Tikhonov regularisation

Exercise

@ Derive the expression of the minimizer of

C(f) = [lm — AF[* + ol LF||?
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Optimisation-based methods

Regularisation

Tikhonov regularisation

Exercise

@ Derive the expression of the minimizer of

C(f) = [lm — AF[* + ol LF||?

o V(|lm— Af|?) = 24" (m — Af)

72/118 N. Ducros Image Reconstruction



Optimisation-based methods

Regularisation

Tikhonov regularisation

Exercise

@ Derive the expression of the minimizer of

C(f) = [lm — AF[* + ol LF||?

o V(|lm— Af|?) = 24" (m — Af)
o V (a|Lf|?) = 2oL Lf
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Optimisation-based methods

Tikhonov regularisation

Exercise

@ Derive the expression of the minimizer of

C(f) = [lm — AF[* + ol LF||?

o V(|lm- Af||2) =-2AT(m — Af)
o V (a|Lf|?) = 2oL Lf
o V(|lm — Af|?) + V (a|[Lf||*) = 0 leads to the solution
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Data-driven methods

Philosophy

Data-driven methods

@ “Learn” to reconstruct, i.e.,

find and train H, such that H,(m=A(f))~=f (3)
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3. Learning-Based Methods 3

N =64 X 64 image

> Optimization- vs learning-based methods M = 333 measurements

N/M=8%
Ground-Truth v(f) = £l
(pinv)
V() =1Vl CNN
+2.5dB +3.5dB
(wrt pinv) (wrt pinv)
[N. Ducros et al., IEEE
ISBI, 2019]
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3. Learning-Based Methods 4

> Our dream is to find

R* : RM — RY such that R*(m) = f'"u°

... able to reconstruct well any image, i.e., something like

1 p / Minimum mean
R* € argmin 7 Z IR(m*) — £°II3 square error
R ¢ (MMSE) estimator

... Often intractable

> We have to reduce the dimension of the solution space
<+ E.g,

R(m) = Wm + b, Linear MMSE
estimator

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



| 3. Learning-Based Methods | >

> Linear MMSE

Covariance between / \ Covariance of
measurements and measurements
unknowns slope =

/\ covariance

unknown

-20 0 2
measurement

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



3. Learning-Based Methods 6

> Learning approaches only reduce the dimension of the solution
space to a family of non linear mappings

. .1 e )2
) Earg;mnf%:HR(Q,m)—f 15

< Training phase STL-10 dataset
O Image-measurement pairs {f(g), m(g))}1<g<,; = ‘
O Loss (e.g., MSE) o
o Optimization machinery (i.e., PyTorch or TensorFlow)

D.P. Kingma and J.L Ba, A. Paszke et al., NEURIPS,
ICRL, 2015 (> 215k citations) 2019 (> 22K citations)

< Reconstruction phase

f*=TRe+(m)

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



>

3. Learning-Based Methods !

m
Pros > Cons
+ Reconstruction performance
o Empirically excellent (i.e., almost % No reconstruction guarantees
always outperform optimization-based (mathematicians don'’t like it)
approaches) « Black box (radiologists don’t like it)
< Practical issue
< Computation times o How to choose the model?

O Training phase is slow, i.e., several
hours or days

O Inference is fast, i.e., tens or hundreds
of milliseconds

~Conv. ~Conv.5 ~Deconv.~,

Complex
sensor data

“Automap” n

(> 6.10° param)

Y C1 Image
" FC2 FC3 myxnxn G2 nxn
n2 n-nxn m,xnxn

[B. Zhu et al., Nature Letters,
70 2018] (> 1.5k citations)

2n?
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3.1. Post-Processing 8

> Two-step methods

~

f
f

Al
D(f) +f

where A—1 is an approximate inverse of the forward, i.e., A_lAf ~ f

Re
m J Do,

L
® o / *
:o > >  f ZRQ(m)
eV

Measurement Image

Domain Domain

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



3.1. Post-Processing 9

> Equivalent to a neural network with a frozen layer

Ro

network
D parameters
(73]

f
I S

Eg., 0 =w.

Measurement Image
Domain Domain

Atilde = nn.Linear(..., bias=False, ...) \\\\

Atilde.weight.requires_grad = False

D = nn.Module(...)

Al =AT requires_grad = True
A~ = AT (BE.g., AT(AAT)~! for full row rank A)
AL =AT(AAT + )71

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



3.2. Unrolling (a.k.a. Unfolding) 10

> lterative methods

20 = 1) AT (A )

k k I I
f% =lprox,,[(z*) data fidelity
proximal operator
Re
) network
m z(k) f(k) parameters
® o ‘l
(0]
° . é > f7=TRe(m)
(]
el _ )
Measurement Image
Domain Domain
E.g.. 0 =
Parameters can be shared across iterations or not & (uf)’ (K)
— orf=w, . .. w.
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| 3.3. Training | 1

> With a “physical” module: no need for meas/image pairs

A Re
A f D,
o
@ 0
f o q > f*=TRe(m)
: 4
. Measurement Image
n ° Domain Domain
(@)
! 1
physical 0* c a o Ra(mb) — F2
hysico cgpin 3 [Rom') ~ 1
A(f)=Af +n 0" € arg min Z [(RaoA)(£1) = £1II3

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



3.3. Training 12

> STL-10 (training: ~100k images; test: 8k images)

> IFY = Re(m)|?

gel—test
= = pinvNET A1 = Af
— - compNET 4_1 —A'(AA" + )7
5.0 — freeNET A~! = Linear
w
%)
S 45
w -
§ 1.3M vs 8k trainable
4.0 - parameters
3.5- N e e T T ——
0 10 20 30 40 50 60
Time (epochs) [N. Ducros et al., IEEE
ISBI, 2019]
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3.4. Plug-and-Play 13

> ldea: use denoisers (e.g., BM3D) in place of proximal operators

20— p=1) _p AT(AFH=D _ )
% =[prox, 4 (z") f%® =[penoi(z™): o)

proximal operator Denoiser N
Noise level

> The denoiser can be data-driven. E.g. Denoi = CNNg« with

1
0" € arg min — E HCNNg(fE—FO'G;U) —f£||g
o L= P

y;

Gaussian noise
. . , €~N(0,1)
with variance o
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3.4. Plug-and-Play

> ldea: use denoisers in place of

proximal operators

20 = p=1) _p AT(AFD) _ )

%) =|Denoi

> Pros

< Training is independent of the
forward model
O Flexibility
O Applies to any inverse problem

< Adapt to varying noise levels via
hyperparameter

< Convergence can be guaranteed

z(k); o)

Cons

< Manual tuning of hyperparameter
Many iterations required compared
to supervised methods (E.g., K =
100—1,000 vs K = |—10)

O Longer reconstruction times

L)

R/
X4

L)

O Higher memory requirement
Convergence is not always
guaranteed (e.g., Lipschitz constant
of denoiser)

> Underlying prior not always known

R/
X4

L)

G

14
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3.5. Untrained/unsupervised 15

> Deep Generative Models

f=TRe(2)

Random vector

z" <+ min ||ARg(z) — m||§

> Pros
< Only requires measurements from a single acquisition
< Theoretical guarantees (based on compressed sensing, e.g., considering Gaussian
random matrices)

> Cons
< Long and challenging reconstruction
< Training of DGM is challenging (lots of data/long times)
< Stability issues (arbitrary forward models, out-of-distribution images, etc.)

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



3.5. Untrained/unsupervised 16

> Deep Image Priors f=TRe(z)

Fixed random vector

0" «— min ||[ARg(2) — m/||3 Note: Minimization must be
0 stopped before convergence
f* = Ry~ (z) (tends to noise otherwise)

> Pros
< Only requires measurements from a single acquisition

X/

< The reconstruction quality is surprisingly good

> Cons
< Long reconstruction times
< No guarantees

Nicolas Ducros | Image reconstruction: A short tour from analytical to data-driven methods | INSA-Lyon, Dec 2025



Conclusions

Nicolas Ducros

Image reconstruction: A short tour from analytical to data-driven methods

INSA-Lyon, Dec 2025



Benchmark

Supervised

PnP

Untrained

Recon-
Memory struction Training Hyperparam/
Comment

Requirement Time
(inference)

; No adaptation
: Low t(-) 1—10 A {f } (forward,
intermediate !
noise)
Intermediate / _
to high 100—1,000 {F°} Noise level
Usually low > 1,000 — I\iltlérrr;?i?)rn(s)f

18
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Noise robustness 19

Increasing training noise

Ground-truth 2 ph: 19.85 dB

50 photons

2 ph: 19.59 dB
Increasing
C-Net ¢ test
5 noise
=
NET no noise: 12.10 dB 50 ph: 13.79 dB 10 ph: 17.22 dB 2 ph: 18.33 dB

[N. Ducros, ISTE 2
Book chapter, 2022]) IS
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Conclusions

Data-driven DL-based
approaches for image

reconstruction are

<+ Powerful!

< No longer black boxes

< Supervised, PnP, based on generative
models, untrained, etc.

Supervised vs PnP methods

< Supervised methods usually require
fewer parameters

Supervised methods performs very
well

< PnP methods adapts to different

e

<

O Imaging modalities (i.e., forward
models)

o Noise levels

20

> Warning

< Handling noise is still an issue.

o0 Evaluate the robustness to noise level
deviations

O Train with noise (supervised)

O Tune hyperparameters (PnP)

— Hands-on session
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https://github.com/openspyrit/spyrit-examples/tree/master/2025_DLMIS

Ultrasound imaging

X-ray imaging
Annex: Image formation

Acoustic wave

Figure: Wave

p(z,t) = posin (27rf (t - %)) = po sin (wt — kx)

Mechanical wave Wave

@ Wave of pressure p(x,t) (and o f is the frequency

displacement) @ v is the (phase) velocity

e \ = v/f is the wavelength

@ k =2m/\ is the wave number
only minor displacement
74 /118 N. Ducros Image Reconstruction

o Compressible medium

@ Particles in the medium have



Ultrasound imaging

X-ray imaging

Annex: Image formation

Acoustic wave

“Plane-piston”

Longitudinal wave mechanical displacement Ela;ic“panicles" in the medium
o Also known as compression /Q‘—WWNNWMWWWNWWMW

WENE (AWM =1

AV AIWWAWAWWWIY =2

@ Directions of oscillation and \(}—o—MM/wwanmwwwwwvww -

propagation are the same =4

<— Particle displacement

Compression < Rarefaction
+
Pressure | /P /\ /\ Time
amplitude —_—
variation ‘ \/ \V

Adapted from [JT Bushberg, 2011, chap.14]
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Ultrasound imaging

ray imaging

Annex: Image formation

Acoustic wave

0 M, rty)

Mytty)

NSVErse wave
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Ultrasound imaging

X-ray imaging

Annex: Image formation

Acoustic wave

low bass animals and  medical and  diagnostic
noles chemistry destructive and NDE
20Hz l 20kHz 2MHz 200MHz
< L ® L * »
Infrasound  Acoustic Ultrasound

Figure: Frequency range corresponding to ultrasounds. [wikipedia]

Wave frequency f

@ Medical ultrasound in the range 2-10 MHz

@ Unaffected by changes in acoustic properties
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https://en.wikipedia.org/wiki/Ultrasound

Ultrasound imaging

ray imaging

Annex: Image formation

Acoustic wave

Wave velocity v

@ Velocity of the wavefront
@ Not the velocity of the particle
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Ultrasound imaging

X-ray imaging

Annex: Image formation

Acoustic wave
@ Depends on the propagation medium
U =

K
p

@ pis the density (in g/cm?3), K is the bulk modulus (in Pa)

@ K measures of the stiffness (resistance of a medium to being
compressed)
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Ultrasound imaging

X-ray imaging

Annex: Image formation

Acoustic wave

Exercice

@ Given the following velocities in different media, compute the
resulting resolutions for a 5-MHz probe

e Air: v =330 m/s, soft tissue: v =1540 m/s, skull bone: 4080 m/s.
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Ultrasound imaging

X-ray imaging

Annex: Image formation

Acoustic wave

Exercice

@ Given the following velocities in different media, compute the
resulting resolutions for a 5-MHz probe

e Air: v =330 m/s, soft tissue: v =1540 m/s, skull bone: 4080 m/s.

@ A &~ 66 um
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Ultrasound imaging

X-ray imaging

Annex: Image formation

Acoustic wave

Exercice

@ Given the following velocities in different media, compute the
resulting resolutions for a 5-MHz probe

e Air: v =330 m/s, soft tissue: v =1540 m/s, skull bone: 4080 m/s.

@ A &~ 66 um

® Asott ~ 308 1m
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Ultrasound imaging

X-ray imaging

Annex: Image formation

Acoustic wave

Exercice

@ Given the following velocities in different media, compute the
resulting resolutions for a 5-MHz probe

e Air: v =330 m/s, soft tissue: v =1540 m/s, skull bone: 4080 m/s.

@ A &~ 66 um

@ Asoft ~ 308 um
@ Apone ~ 816 um
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Ultrasound imaging

ray imaging

Annex: Image formation

Ultrasound-Matter interaction

Acoustic Impedance

@ For plane waves, defined as

Z = pv

o Related to the ‘flexibility’ of the medium (think to springs)
e The Sl unit is kg/(m?s), referred to as rayl

o Typical values (x10° rayls). Air: Z =4 x 10~%, water: Z = 1.48,
liver: Z = 1.65, muscle: Z = 1.71, skull bone: Z = 7.8.

Acoustic Intensity

@ Sound power per unit area in W/m?

o For plane waves

L

pu
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Ultrasound-Matter interaction

Reflection i Incident
4/

@ Intensity reflection coefficient
defined as l

Zl: p]_Vl (EChO)

Z=2)
R=(——
Zo+ 7y 7=y, Transmission

@ Percentage of the incident
amount of power per unit area
that is reflected back

Adapted from [JT Bushberg, 2011, chap.14]
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Ultrasound-Matter interaction

Exercice

@ Compute the reflection coefficient of an air-water and a water-liver
interface

o Water: Z = 1.48, liver: Z =1.65
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Ultrasound-Matter interaction

Exercice

@ Compute the reflection coefficient of an air-water and a water-liver
interface

o Water: Z = 1.48, liver: Z =1.65

° Rairfwatcr ~ 0.9999
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Ultrasound-Matter interaction

Exercice

@ Compute the reflection coefficient of an air-water and a water-liver
interface

o Water: Z = 1.48, liver: Z =1.65

° Rairfwatcr ~ 0.9999
° Rwater—liver ~ 0.0029
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Ultrasound-Matter interaction

ei er

‘V2> 1/1

6

Adapted from [JT Bushberg, 2011, chap.14]

@ Change in the direction of the transmitted wave

@ Snell-Descartes law

sin 6y Uy

sin 6; vy
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Ultrasound-Matter interaction

Tissue interactions:
Acoustic scattering

Vvl oL

Small object reflectors Specular (smooth) Non-specular
with size <A reflection (diffuse) reflection

Boundary interactions:

Adapted from [JT Bushberg, 2011, chap.14]

Scattering

Due to object/interfaces about the size or smaller than wavelength
Non specular reflectors reflect in all directions

Resulting echos have a small amplitude

Scattering from non specular reflectors increase with frequency
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Ultrasound-Matter interaction

Attenuation

86 /118

Loss of acoustic energy during propagation

Originates from many different effects, e.g., scattering, absorption,
refraction

Denoted p and expressed in dB/m
I = Iyexp(—pzx)

Attenuation depends linearly on the wave frequency, with the
common approximation

ulf) = 0if

with /i a constant expressed in (dB/m)/Hz
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Ultrasound-Matter interaction

Exercise

@ Assuming i = 0.5 (dB/cm)/MHz for soft tissues, calculate the
intensity of the echo generated by a 10-MHz wave having travelled 5
cm in the liver before being reflected at the boundary with a water
pocket.
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Ultrasound-Matter interaction

Exercise

@ Assuming i = 0.5 (dB/cm)/MHz for soft tissues, calculate the
intensity of the echo generated by a 10-MHz wave having travelled 5
cm in the liver before being reflected at the boundary with a water
pocket.

o I} = Iyexp —(fifz), with 10log (Ip/,) = 0.5 x 5 x 10 = 25 dB
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Ultrasound-Matter interaction

Exercise

@ Assuming i = 0.5 (dB/cm)/MHz for soft tissues, calculate the
intensity of the echo generated by a 10-MHz wave having travelled 5
cm in the liver before being reflected at the boundary with a water
pocket.

o I} = Iyexp —(fifz), with 10log (Ip/,) = 0.5 x 5 x 10 = 25 dB
e Ir = RI, with 10log (1 /I5) = —10log R ~ 25 dB
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Ultrasound-Matter interaction

Exercise

@ Assuming i = 0.5 (dB/cm)/MHz for soft tissues, calculate the
intensity of the echo generated by a 10-MHz wave having travelled 5
cm in the liver before being reflected at the boundary with a water
pocket.

o I} = Iyexp —(fifz), with 10log (Ip/,) = 0.5 x 5 x 10 = 25 dB
e Ir = RI, with 10log (1 /I5) = —10log R ~ 25 dB
o I3 = Lexp(—jifr), with 10log (I2/I5) = 0.5 x 5 x 10 = 25 dB
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Ultrasound-Matter interaction

Exercise

@ Assuming i = 0.5 (dB/cm)/MHz for soft tissues, calculate the
intensity of the echo generated by a 10-MHz wave having travelled 5
cm in the liver before being reflected at the boundary with a water
pocket.

I = Iyexp —(fifz), with 10log (/) = 0.5 x 5 x 10 = 25 dB
e Ir = RI, with 10log (1 /I5) = —10log R ~ 25 dB

o I3 = Lexp(—jifr), with 10log (I2/I5) = 0.5 x 5 x 10 = 25 dB
@ The total attenuation is about 75 dB
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Ultrasound transducer

‘ re! ecteg wave

/ / / /
/ / -
/
I / /
I I / / / -
| I / /
I
‘ |
‘ ‘\ \ \ - | object
\ \ . \
\ \ \ N
. \ \
original wave'
} i
distance r

Transducer basics

@ Both produces and detects ultrasounds
@ Made of ceramic elements that can convert electrical energy into

mechanical energy (and the opposite)
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Ultrasound transducer

The piezoelectric element is the
. To transmitter / receiver
main component f

@ Usually lead-zirconate-titanate

Plastic Case
(PZT) Tuning coil \§/ Metal shield

@ Characterized by a natural sl |I|_— Acoustic absorber
resonance frequency fy (that l/Backing block
depends on its thickness) ‘—/ Piezoelectric element

o Can generate an acoustic pulse ~_— Matehing layer(s)
by applying a voltage spike
(N150V during 1 ,us) Adapted from [JT Bushberg, 2011, chap.14]
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Pulse-echo ultrasound

@ Pulse delays tell about the location of the reflectors
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Pulse-echo ultrasound

Challenge

@ Pulse delays only tell about the distance of the reflectors

@ Same signals can be obtained in the different media
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Pulse-echo ultrasound

@ Use converging beams that focus energy in the medium

@ Scan, i.e., deliver acoustic energy along multiple lines
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Pulse-echo ultrasound

Adapted from [JT Bushberg, 2011, chap.14]

Phased-array transducers

@ Use multiple elements at the same time to focus ultrasounds
o Different pulse delays are applied to elements

@ Tuning delays permits to select focusing depth and/or angle
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Pulse-echo ultrasound

bea

Tl

Adapted from [JT Bushberg, 2011, chap.14]

Measured signal

@ For a given excitation direction, all the elements record
simultaneously

@ A set of time-resolved signal are collected

{mn(t)}, n € {~N,...,N} (5)
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Light-matter interaction (Attenuation)

m
—
no n
L
Photon can be absorbed Photon can be deflected
@ Photoelectric effect o Compton scattering
@ Pair production @ Rayleigh scattering
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Electromagnetic radiation

< Increasing Frequency (v)

10% 102 10® 10" 10 10" 102 100 10° 10° 10* 10 10° v (Hz)
I I I 1 1 I I I 1 1 1 I I
Y rays Xrays | UV IR Microwave |[FM|  |AM Long radio waves
Radio waves

I I I I vl 1 I | 1 1 I
0% 10" 0" 10 10 00 10t 107? 10° 10 10* 10° 105 h(m)
o

- I W th (h) —
Figiire: Electromagnetlc spectrulrjr%re \ll\rll avceiJﬁn]g »=

: . Constants and units
_
@ h=6.63 x 107%* Jsis the
Planck constant

@ leV =1.60 x 107197

e ¢ =3x10®% ms~! (in vacuum)

e F = hv is the photon energy (in
eV)

@ \ = ¢/v is the wavelength
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Light-matter interaction

[V
Scattered
m preer
; e .
Incident
photon

Adapted from [JT Bushberg, 2011, chap.3]

Rayleigh scatterin
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Light-matter interaction

ard N N
Y Scattered
( \ photon
\ o\ ) e
Incident O\ it
photon N - /

Adapted from [JT Bushberg, 2011, chap.3]

Rayleigh scattering

o Elastic scattering, i.e., kinetic energy is conserved
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Light-matter interaction

ard N N
Y Scattered
( \ photon
\ o\ ) e
Incident O\ it
photon N - /

Adapted from [JT Bushberg, 2011, chap.3]

Rayleigh scattering

o Elastic scattering, i.e., kinetic energy is conserved
1 E2 = E1
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Light-matter interaction

ard N N
Y Scattered
( \ photon
\ o\ ) e
Incident O\ it
photon N - /

Adapted from [JT Bushberg, 2011, chap.3]

Rayleigh scattering

o Elastic scattering, i.e., kinetic energy is conserved
1 E2 = E1
@ small scattering angle
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Light-matter interaction

Compton scatteri

98/118 N. Ducros Image Reconstruction



Ultrasound imaging

X-ray imaging
Annex: Image formation

Light-matter interaction

Com pton scatteri Compton scattering

Valence electrons

@ Loosely bound electron e e

Compton
electron (E.)

Incident
photon

E.
E) 6/ Angle of deflection

.. _ Scattered
photon (Ep )
Adapted from [JT Bushberg, 2011, chap.3]
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Light-matter interaction

Compton scatterin Compton scattering

Valence electrons

@ Loosely bound electron e e

@ Inelastic scattering, i.e.,
kinetic energy of scattered
particle not conserved

Compton
electron (E.)

Incident

photon \/\/\/\9\/‘//, Sl
& e = 0/ Angle of defl
) ngle of deflection
AS 4@\ 9
M<l 7 “>.. Scattered

" photon (Ep)
Adapted from [JT Bushberg, 2011, chap.3]
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Light-matter interaction

Com pton scatteri Compton scattering

Valence electrons

@ Loosely bound electron e e

@ Inelastic scattering, i.e.,
kinetic energy of scattered
particle not conserved

@ Energy and momentum Q
conservation lead to

1 1 _17cos0

Compton
electron (E.)

Incident

- - photon
B B E, e
N 9/ Angle of deflection
) N
o b
with Ee = TTLeC2 M<lz 7 .. _ Scattered
photon (Ep )

Adapted from [JT Bushberg, 2011, chap.3]
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Light-matter interaction

Com pton scatteri Compton scattering

Valence electrons

@ Loosely bound electron e e

@ Inelastic scattering, i.e.,
kinetic energy of scattered
particle not conserved

@ Energy and momentum Q
conservation lead to

1 1 _17cos0

Compton
electron (E.)

Incident

- - photon
E2 El Ee (Eq)
N 9/ Angle of deflection
) .
o 2N
with Ee = TTLeC2 M<lz 7 .. Scattered
" photon (Ep)
@ Continuum of scattering Adapted from [JT Bushberg, 2011, chap.3]

angle and energy
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Light-matter interaction

— Binding energy (keV) ——
Kﬂ keV photoelectron \
©

100 keV/
incident
photon

Adapted from [JT Bushberg, 2011, chap.3]

Photoelectric effec
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Light-matter interaction

— Binding energy (keV) ——
o /67 keV photoelectron

100 keV/ P ©

incident

photon

Adapted from [JT Bushberg, 2011, chap.3]

Photoelectric effect

@ Absorption of photon/emission of a (photo)electron
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Light-matter interaction

/— Binding energy (keV) ——
&

7 keV photoelectron
)

100 keV/
incident
photon

Adapted from [JT Bushberg, 2011, chap.3]
Photoelectric effect

@ Absorption of photon/emission of a (photo)electron

@ Electronic shell discontinuities (Quantum effect)
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Light-matter interaction

/— Binding energy (keV) ——
&

7 keV photoelectron
)

100 keV/
incident
photon

Adapted from [JT Bushberg, 2011, chap.3]
Photoelectric effect

@ Absorption of photon/emission of a (photo)electron

@ Electronic shell discontinuities (Quantum effect)
@ Atom ionization
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Light-matter interaction

— Binding energy (keV) ——
Kﬂ keV photoelectron
- © -

100 keV/
incident
photon

Adapted from [JT Bushberg, 2011, chap.3]
Photoelectric effect
@ Absorption of photon/emission of a (photo)electron
@ Electronic shell discontinuities (Quantum effect)

@ Atom ionization

o Radiative atomic relaxation (fluorescence and Auger)
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Light-matter interaction

—— Binding energy (keV) 7\
/ 67 keV photoelectron \
© &

~0.
S e

100 keV/
incident
photon

Adapted from [JT Bushberg, 2011, chap.3]

Exercise

o Calculate the energy and wavelength of the emitted radiations
(fluorescence X-ray)

N. Ducros Image Reconstruction



Ultrasound imaging

X-ray imaging
Annex: Image formation

Light-matter interaction

/k Binding energy (keV) 7\

o 67 keV photoslectron
100 ke oo ©
incident
photon

Adapted from [JT Bushberg, 2011, chap.3]

Exercise

o Calculate the energy and wavelength of the emitted radiations
(fluorescence X-ray)

° K,: 33 —5=28keV; Kg: 33 —1 =32 keV; K,: 33 — 0 =33 keV

100/ 118
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Light-matter interaction

—— Binding energy (keV) ——

100 keV
incident
photon

ME

Adapted from [JT Bushberg, 2011, chap.3]

Exercise

o Calculate the energy and wavelength of the emitted radiations
(fluorescence X-ray)

@ Kyt 33 —5=28keV; Kg: 33 —1=32keV; K,: 33 —0 = 33 keV
@ Lo: 5—1=4keV; Lg: 5—0=15 keV
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Light-matter interaction

—— Binding energy (keV) ——

100 keV
incident
photon

ME

Adapted from [JT Bushberg, 2011, chap.3]

Exercise

o Calculate the energy and wavelength of the emitted radiations
(fluorescence X-ray)

@ Kyt 33 —5=28keV; Kg: 33 —1=32keV; K,: 33 —0 = 33 keV
@ Lo: 5—1=4keV; Lg: 5—0=15 keV
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Light-matter interaction

.
o .
Excitation and
& © - ionization
incident, /& o ° 5

hoton"V)/
phaton Ul (Negatron)

Electron pair producti

@ Positron-negatron pair is
created

o Eincident > 2meCQ =1.02
MeV

(Positron)

0511 Mev

hilation Radiation

B
Adapted from [JT Bushberg, 2011, chap.3]
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Cross-section

Definition
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Cross-section

dy

Definition

@ We assume that a single particle is illuminated by a plane wave
propagating along dy with an intensity Iy (W.cm~2)
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Cross-section

dy

Definition

@ We assume that a single particle is illuminated by a plane wave
propagating along dy with an intensity Iy (W.cm~2)
@ The power I (in W) is measured along d such that d - dy = cos 6
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Cross-section

dy

Definition

@ We assume that a single particle is illuminated by a plane wave
propagating along dy with an intensity Iy (W.cm~2)
@ The power I (in W) is measured along d such that d - dy = cos 6

@ The (total) cross-section is defined by o(6) = %?)
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Cross-section

dy

Definition

@ We assume that a single particle is illuminated by a plane wave
propagating along dy with an intensity Iy (W.cm~2)

@ The power I (in W) is measured along d such that d - dy = cos 6

@ The (total) cross-section is defined by o(6) = %?)

@ The cross-section is an area
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Cross-section

Link to attenuation

@ For a homogeneous medium with density p (in cm=3), we have:

p=op

@ Mean free path is defined as [ = = (in cm).
e Common units: [o] = cm?.g7!, [p] = g.cm™2, and [o] = b where b
= 1072 m? stands for the barn.

@ All attenuation effects sum up

0 = Ope + Ocoh + Tincoh + Opair
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Cross-section is energy-dependent

Il Il L
103\ ——- tissue (compton) |-
o —-=- tissue (pair) ]
€ 10 e tissue (rayleigh) [
[§) N i
40" tissue (p.e.) L
< g
= P S .
107 R —
102F— P s
N e
10° \\ g ’
10" - 4
N t-.
10-5 ™N ’. -
10-6 Lil L i 1 e,
10° 5 10’ 5 10 5 10° 5 10

photon energy, keV

Figure: Soft tissue mass attenuation. Data and plot obtained using XMuDat
[Nowotny, 1998]
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Cross-section is energy-dependent

I I

10° B [
10%- = <
10° -
£ qo0f— e S N
107 = e
109=="
107
104 £
10° 4

10- - IH'. Ll
10° 5 10 5 102 5 10° 5 10

photon energy, keV

cm?/g

Figure: Tungsten mass attenuation. Data and plot obtained using XMuDat
[Nowotny, 1998]

@ Hard spheres collision is a wrong mental image. Think 'likelihood'.
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X-ray tube

cooling fins

I calhode anode I I | ||| I

|-|'I'I

voltage electrons
source
for heater

0 O

-V + U
; L i
high voltage source X-rays

Figure: Principle of a Coolidge tube (X-ray tube)

Typical paramesers

@ Generation of electrons @ Peak voltage V,: 20-150 kV

(cathode) @ Tube current: 10-1000 mA

@ High voltage electron beam e Focal spot size: 1 yum—5 mm

o X-rays emission (anode)
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X-ray tube

photon density

\ d\\
0 50 100 150
energy (keV)

Figure: spectra from a tungsten anode x-ray tube operating for different peak
voltages V, (70, 120, and 150 kV). Data from [Poludniowski et al., 2009].
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X-ray source

| A oM
Target atom o N e )

¢ & . Ka (LK)
Nucleus,
Incident electrons
1o e |
2 ®
3e = &1/ 2 Close interaction
Moderate energy
o

Impact with nucleus:
Maximum energy

Distant interaction
Low energy

Adapted from [JT Bushberg, 2011, chap.6]

Bremsstrahlung Characteristic X-rays

@ Incident electrons deflected in @ Electron-matter interaction
the electric field of the nucleus o Electron vacancy results in
@ Emission of a photon energy levels transition

@ Continuous spectrum from
Emin to Emax = 6‘/p
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X-ray source

Target atom

] o “’;’UW M, (N-M)
/ o @ o o2 N
¢ & I S 11m La (ML)
Nucleus. W ,9 / _—e— ~. < 8
Incident electrons \ ¢ ¥ } N K, (L—K)
Y —0@ Vo [/ SN K
2 ; o P e /[y \
20 : &1/ 2 Close interaction
| Moderate energy
-
1
Impact with nucleus: 3 5
Maximum energy Disan neracion

Figure: Tungsten energy-level diagram

e Compute the characteristics X-ray emitted by a tungsten anode
tube. Is it consistent with the plot on slide 1077
109/ 118

N. Ducros Image Reconstruction



Ultrasound imaging
X-ray imaging

Annex: Image formation

X-ray detector

Direct Conversion Indirect Conversion
(X rays) (X rays) (X rays)
200 9099 999%

X-ray interaction Scintillator Scintillator
(Optical
Xeray Photo- ¢ }}H (visie ugm coupling
conductor - - = to CCD)
; (a-Selenium)
Conversion to Photodiode
electric charge

(a-Silicon)

Charge readout TFT Array

TFT Array
(Digital image) (Digital image)  (Digital imaege)

Figure: Direct vs indirect detection [Chotas et al., 1999]. TFT = Thin-film
transistor, CCD = charge-coupled device.
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X-ray detector

Indirect conversion

@ X-rays converted into visible light by scintillators, e.g., Csl(TI)

@ Visible photons converted into an electric charge by photodiode
arrays

Direct conversion

@ X-ray photons generate electron-hole pairs via photoelectric effect

@ A bias voltage conducts electrons and holes to electrodes
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X-ray detector

Hybrid pixel array detectors

@ Direct conversion within semiconductor materials

@ Bonded pixel-by-pixel to a readout application-specific integrated
circuit (ASIC)
@ Two mode of operations available: integration or counting
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X-ray detector

Integrating detectors

@ The incoming photo-generated current is integrated onto a feedback
capacitor

@ The measured signal is proportional to the attenuated X-ray energy
[Huang et al., 2012]

Ermax
s=/ gs(E)n.(E)EdE
Enin

na(E) = no(E)(1 — exp[—ps(E) Ls])

@ ¢(F) includes the fractional energy absorbed in the scintillator, the
scintillator conversion efficiency, and the optical coupling efficiency.
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X-ray detector

Photon-counting detectors

@ Absorption of an X-ray photon generate a current pulse

@ One hit is recorded if the height pulse is above some (energy)
threshold

@ The measured signal is proportional to the attenuated X-ray photon
numbers.

Emax
s :/ q(E)n.(E)dE

Emin

@ ¢ includes amplification gains and energy distortion effects, e.g.,
fluorescence, share sharing, or pulse pile-up

@ Energy discrimination capabilities based on pulse height analysis
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X-ray imaging

Noise model

Basics

@ Photon measurements are
intrinsically corrupted by
Poisson noise

P(A)

@ For large photon numbers A,
we have

PA) = N(=\o=VA)

N. Ducros
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Noise model

Measured signal noise

@ A complicated cascaded analysis is required to statistically model the
conversion of incident X-ray photons into electrons (possibly via
visible photons)

@ An empirical model is often retained

5~ N(p=s,0=p3s)

where 5 depends on the detector
@ The output signal is usually computed as

o (3).

which makes things even more complicated...
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