

(A short intro to) Deep learning for image reconstruction

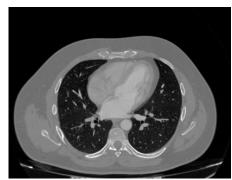
Nicolas Ducros^{1, 2}

¹CREATIS, Univ Lyon, INSA-Lyon, UCB Lyon 1,CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France

²IUF, Institut Universitaire de France

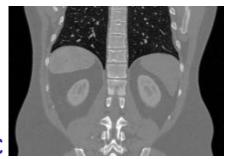
"Natural" vs Reconstructed Images

Rec



<u>Nat</u>

<u>Nat</u>

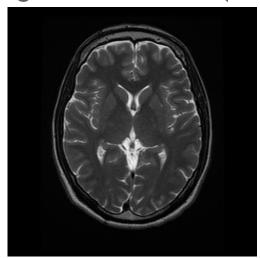


<u>Nat</u>

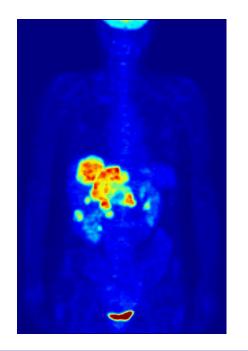
Reconstruction in Medical Imaging

Computerized tomography (CT)

Magnetic Resonance (MRI)

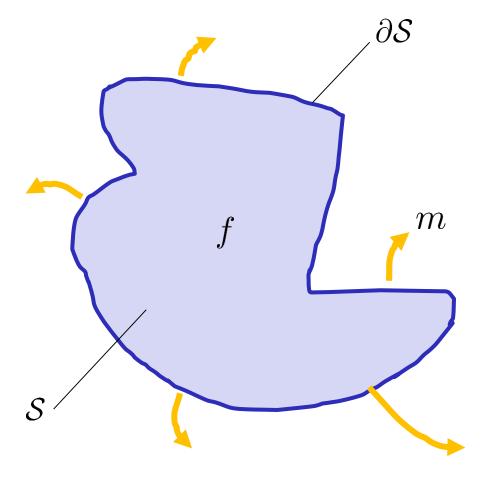


Ultrasound Imaging



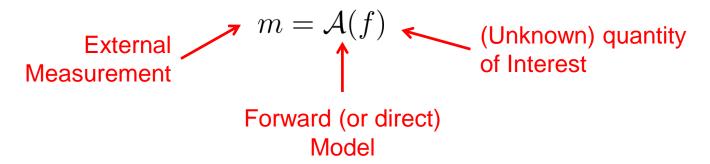
Positron emission tomography (PET)

Inverse Problem

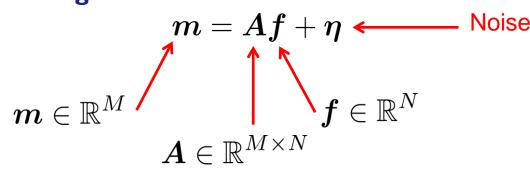


Inverse Problem

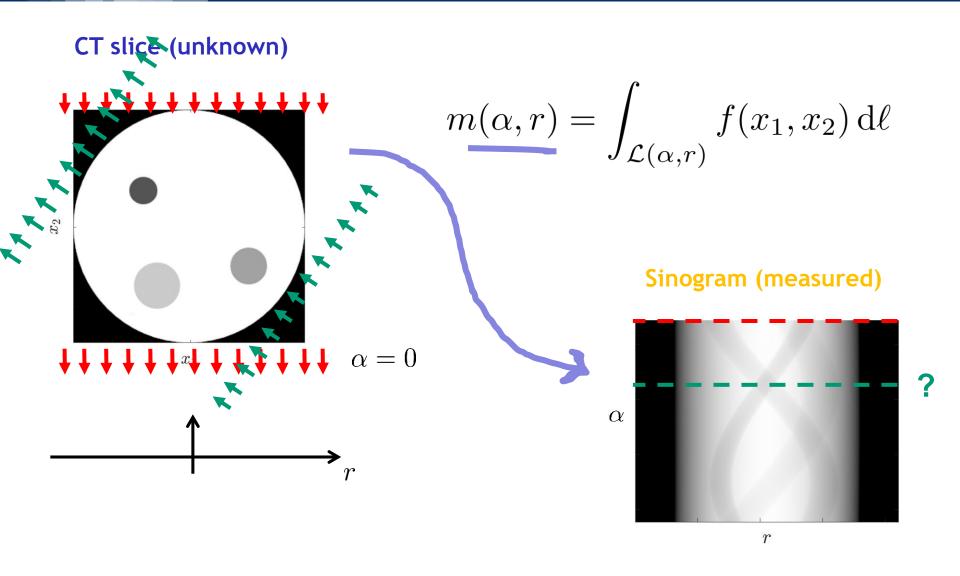
Internal unknowns from external measurements



- Most medical imaging problems are
 - Linear
 - Corrupted by noise
- > In a discrete setting

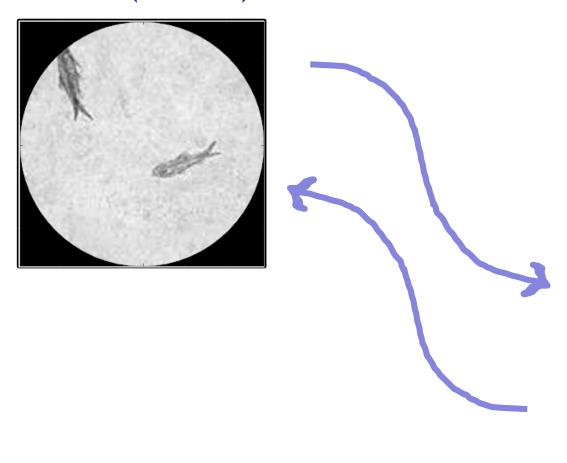


Computed Tomography (CT)

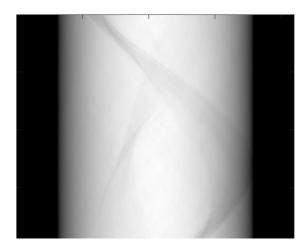


Computed Tomography (CT)

CT slice (unknown)



Sinogram (measured)



Different Options

- I. Inversion "by hand"
 - Model the forward and invert analytically

derive
$$\mathcal{R}$$
 such that $f = \mathcal{R}(m)$

- > 2. Optimization of handcrafted functionals
 - Build cost function from prior knowledge about the solution/measurements
 - Minimize the cost function

find and minimize $\mathcal C$ such that $\mathcal C(f;m)$ is small

- > 3. "Learn" to reconstruct
 - (Probably what you expect from this talk)

learn
$$\mathcal{R}_{\theta}$$
 such that $f = \mathcal{R}_{\theta}(m)$

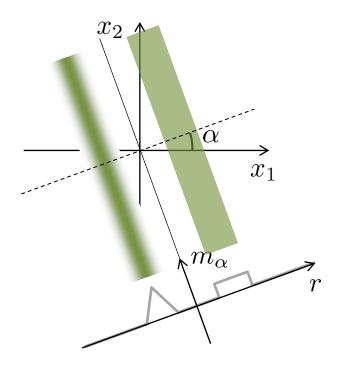
Option #1: Analytical Methods

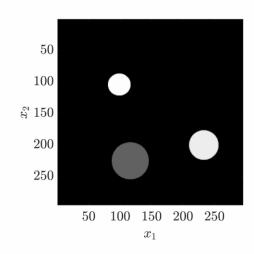
1. Analytical Methods

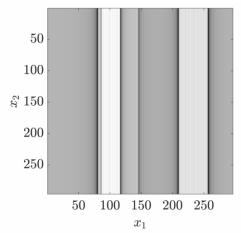
Example with CT (filtered backprojection)

$$f(x_1, x_2) = \int_0^{\pi} m_{\alpha}^{\text{filt}}(x_1 \cos \alpha + x_2 \sin \alpha) \,d\alpha$$

$$\hat{m}_{\alpha}^{\mathrm{filt}}(\xi) = |\xi| \, \hat{m}_{\alpha}(\xi)$$
 Ramp filter







1. Analytical Methods

Pros

- Elegant
- Theoretical guarantees
- Usually fast implementation
- What if only few measurements are available?
 - For dose reduction/short scans

Cons

- Not always possible to derive a solution
- Influence of noise?
- What if only few measurements are available?
 - Random or pseudo-random

Option #2: Optimization-Based Methods

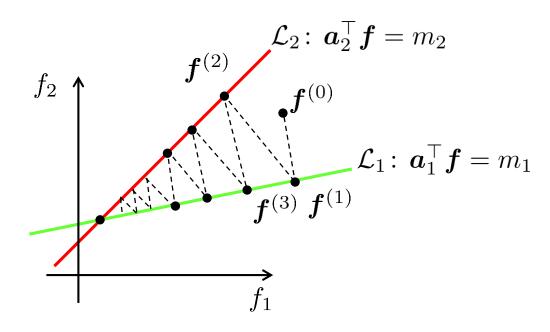
Look for an image with small residuals

$$r=m-Afpprox 0$$

❖ A simple example:

$$\begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

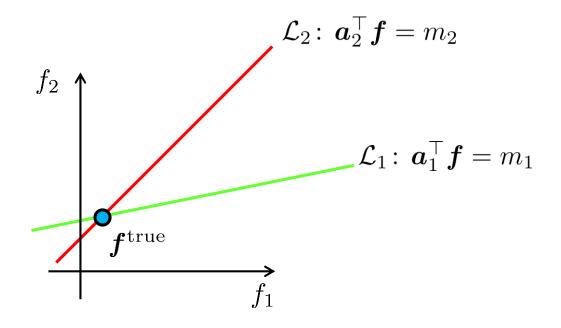
Algebraic reconstruction technique (ART) [Gordon R., 1970]



Look for an image with small residuals

$$r=m-Afpprox 0$$

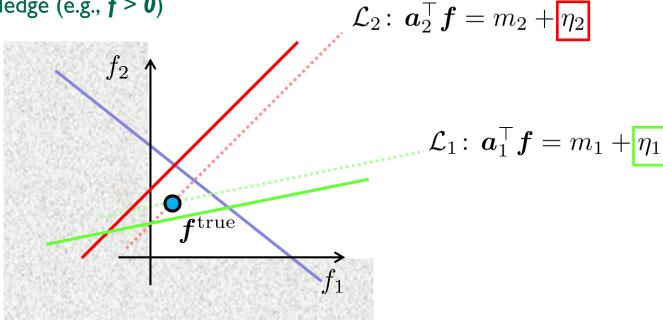
Influence of noise



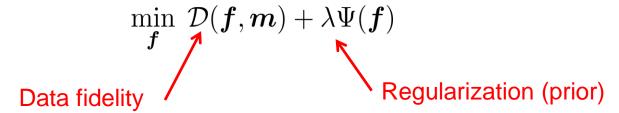
Look for an image with small residuals

$$r=m-Afpprox 0$$

- Influence of noise
 - \star More measurements (i.e., M > N)
 - ❖ Prior knowledge (e.g., f > 0)



Typical cost functions

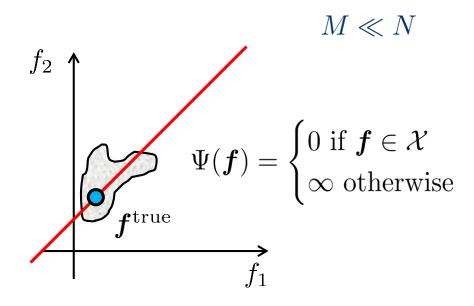


 Data fidelity is related the noise model/measurements confidence.
 E.g.

$$\mathcal{D}(oldsymbol{f};oldsymbol{m}) = \|oldsymbol{m} - oldsymbol{A}oldsymbol{f}\|_2^2$$

$$\mathcal{D}(f; m) = \mathrm{KL}(m, Af)$$

 Regularization convey prior knowledge about the solution.



Typical regularizers

Quadratic/Tikhonov regularization

$$\Psi(\boldsymbol{f}) = \|\boldsymbol{f}\|_2^2$$

... leads to

$$\boldsymbol{f}^* = \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{A}^{\top} + \lambda \boldsymbol{I}_M)^{-1} \boldsymbol{m}$$

Sparsity-promoting

$$\Psi(\boldsymbol{f}) = \|\boldsymbol{\Phi}\boldsymbol{f}\|_1$$

... requires iterative algorithms

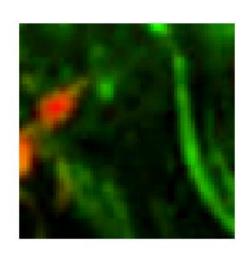
$$oldsymbol{z}^{(k)} = oldsymbol{f}^{(k-1)} - \eta oldsymbol{A}^ op (oldsymbol{A} oldsymbol{f}^{(k)} - oldsymbol{m})$$
 $oldsymbol{f}^{(k)} = oldsymbol{prox}_{\lambda\Psi}(oldsymbol{z}^{(k)})$ gradient of data fidelity

proximal operator of regularizer

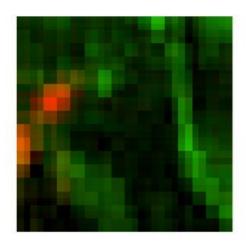
Illustrative results

 $N = 64 \times 64$ image M = 333 measurements $N / M \approx 8\%$

Ground-Truth



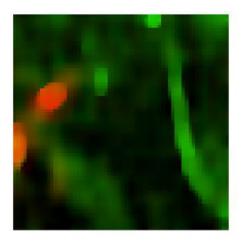
$$\Psi(\boldsymbol{f}) = \|\boldsymbol{f}\|_2^2$$



++ Analytical solution (fast computation)

- - Image quality

 $\Psi(\boldsymbol{f}) = \|\nabla \boldsymbol{f}\|_1$



- - Iterative algorithms (time consuming)

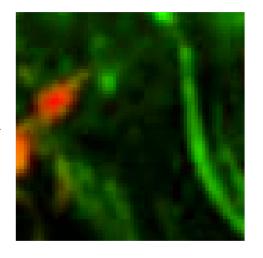
++ Image quality

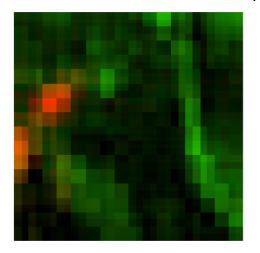
Option #3: Learning-Based Methods

Optimization- vs learning-based methods

 $N = 64 \times 64$ image M = 333 measurements $N/M \approx 8\%$

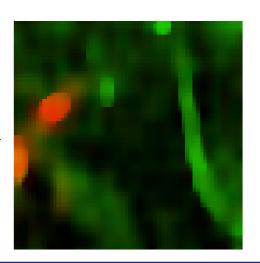
Ground-Truth

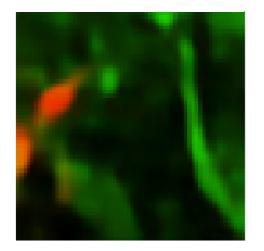




$$\Psi(oldsymbol{f}) = \|oldsymbol{f}\|_2^2$$
 (pinv)

$$\Psi(m{f}) = \|
abla m{f}\|_1$$
 +2.5 dB (wrt pinv)





CNN +3.5 dB (wrt pinv)

[N. Ducros et al., IEEE ISBI, 2019]

Our dream is to find

$$\mathcal{R}^*: \mathbb{R}^M \mapsto \mathbb{R}^N \text{ such that } \mathcal{R}^*(m{m}) = m{f}^{ ext{true}}$$

... able to reconstruct well any image, i.e., something like

$$\mathcal{R}^* \in \operatorname*{arg\,min} rac{1}{L} \sum_{\ell} \|\mathcal{R}(oldsymbol{m}^\ell) - oldsymbol{f}^\ell\|_2^2$$

Minimum mean square error (MMSE) estimator

... Often intractable

We have to reduce the dimension of the solution space
 E.g.,

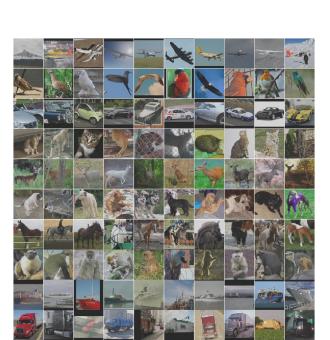
$$\mathcal{R}(m) = \mathbf{W}m + \mathbf{b},$$

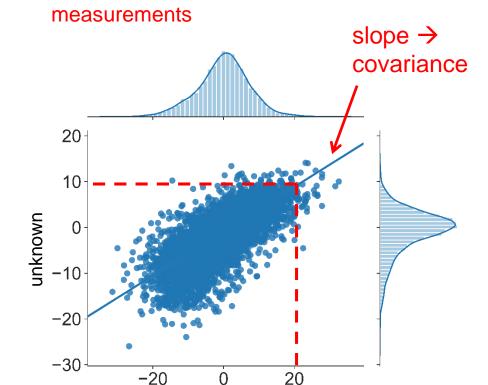
Linear MMSE estimator

Linear MMSE

$$oldsymbol{f}^* = ar{oldsymbol{f}} + oldsymbol{\Sigma}_{f,m} oldsymbol{\Sigma}_m^{-1} (oldsymbol{m} - ar{oldsymbol{m}})$$

Covariance between measurements and unknowns





measurement

Covariance of

Learning approaches <u>only</u> reduce the dimension of the solution space to a family of <u>non linear</u> mappings

$$oldsymbol{ heta}^* \in rg \min_{oldsymbol{ heta}} rac{1}{L} \sum_{\ell} \| \mathcal{R}(oldsymbol{ heta}; oldsymbol{m}^{\ell}) - oldsymbol{f}^{\ell} \|_2^2$$

- Training phase
 - \circ Image-measurement pairs $\{m{f}^{(\ell)};m{m}^{(\ell)})\}_{1\leq \ell\leq L}$
 - o Loss (e.g., MSE)
 - Optimization machinery (i.e., PyTorch or TensorFlow)

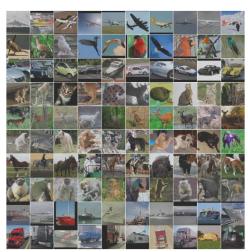
D.P. Kingma and J.L Ba, ICRL, 2015 (> 215k citations)

A. Paszke *et al.*, NEURIPS, 2019 (> 22k citations)

Reconstruction phase

$$f^* = \mathcal{R}_{m{ heta}^*}(m{m})$$

STL-10 dataset

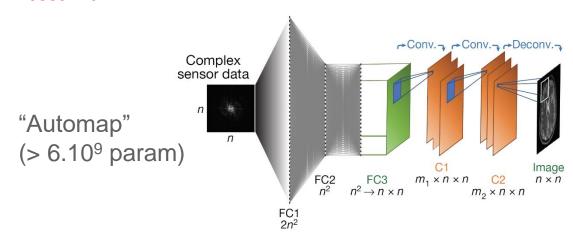


Pros

- Reconstruction performance
 - Empirically excellent (i.e., almost always outperform optimization-based approaches)
- Computation times
 - Training phase is slow, i.e., several hours or days
 - <u>Inference</u> is <u>fast</u>, i.e., tens or hundreds of milliseconds

> Cons

- No reconstruction guarantees (mathematicians don't like it)
- Black box (radiologists don't like it)
- Practical issue
 - O How to choose the model?



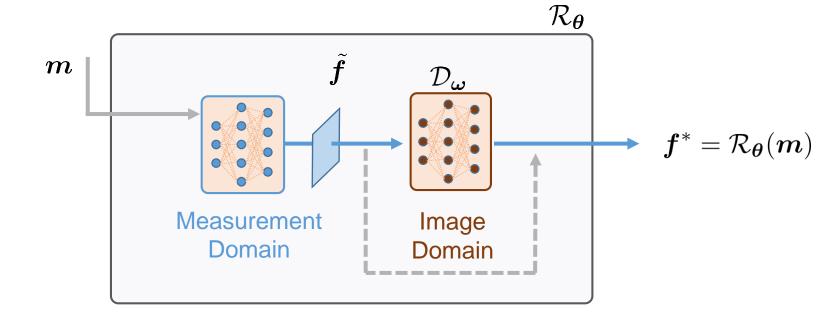
[B. Zhu et al., Nature Letters, 2018] (> 1.5k citations)

3.1. Post-Processing

Two-step methods

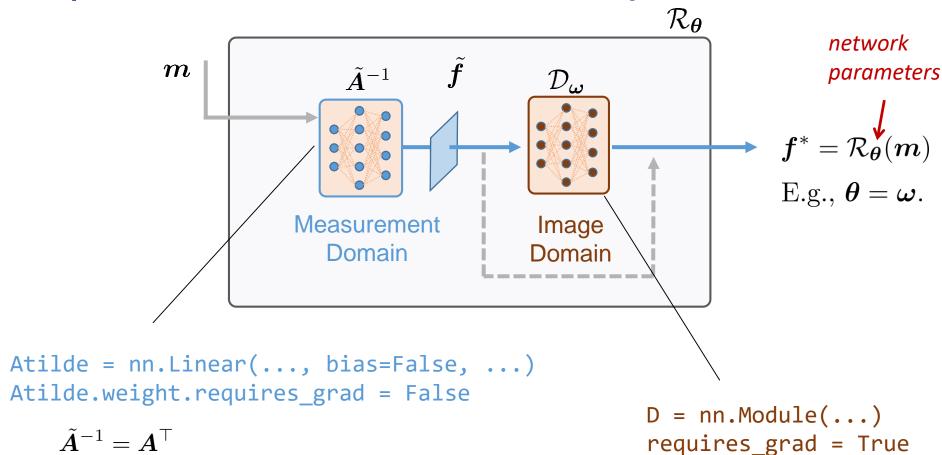
$$egin{aligned} ilde{m{f}} &= ilde{m{A}}^{-1}m{m} \ m{f}^* &= \mathcal{D}_{m{\omega}}(ilde{m{f}}) + ilde{m{f}} \end{aligned}$$

where $ilde{A^{-1}}$ is an approximate inverse of the forward, i.e., $ilde{A}^{-1}Afpprox f$



3.1. Post-Processing

Equivalent to a neural network with a frozen layer



Nicolas Ducros, 23 April 2025

 $ilde{oldsymbol{A}}^{-1} = oldsymbol{A}^ op (oldsymbol{A}oldsymbol{A}^ op + oldsymbol{I})^{-1}$

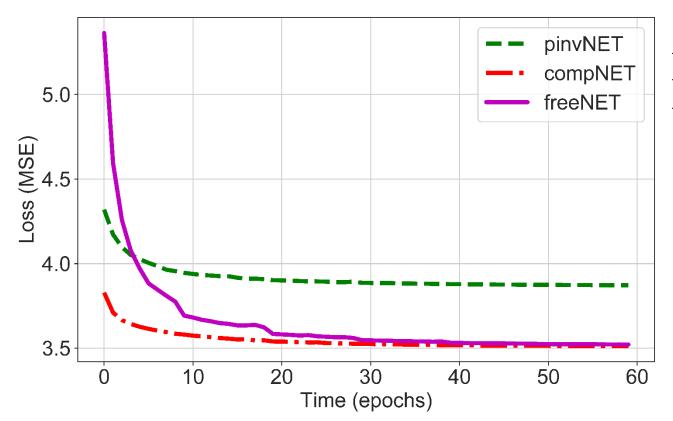
 $\tilde{\mathbf{A}}^{-1} = \mathbf{A}^{\dagger}$ (E.g., $\mathbf{A}^{\top} (\mathbf{A} \mathbf{A}^{\top})^{-1}$ for full row rank A)

Deep Learning for Medical Imaging Spring School, Lyon

3.3. Training

STL-10 (training: ~100k images; test: 8k images)

$$\sum_{\ell \in \mathcal{I}_{\mathsf{test}}} \| oldsymbol{f}^{(\ell)} - \mathcal{R}_{oldsymbol{ heta}}(oldsymbol{m}^{(\ell)}) \|^2$$



$$egin{aligned} ilde{A}^{-1} &= A^\dagger \ ilde{A}^{-1} &= A^ op (AA^ op + oldsymbol{\Sigma})^{-1} \ ilde{A}^{-1} &= ext{Linear} \end{aligned}$$

1.3M vs 8k trainable parameters

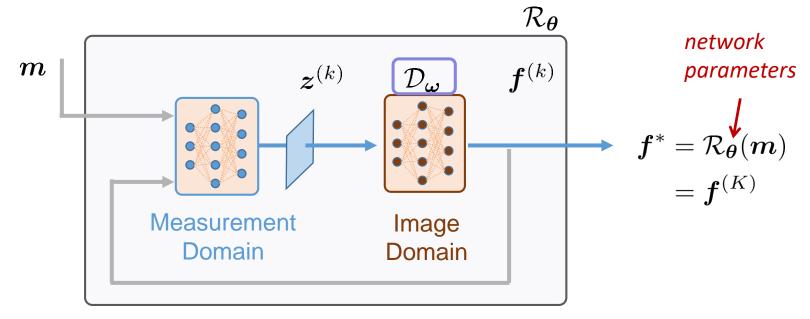
[N. Ducros et al., IEEE ISBI, 2019]

3.2. Unrolling (a.k.a. Unfolding)

Iterative methods

$$oldsymbol{z}^{(k)} = oldsymbol{f}^{(k-1)} - \eta oldsymbol{A}^ op (oldsymbol{A} oldsymbol{f}^{(k)} - oldsymbol{m})$$
 $oldsymbol{f}^{(k)} = oldsymbol{prox}_{\lambda\Psi}(oldsymbol{z}^{(k)})$ data fidelity

proximal operator

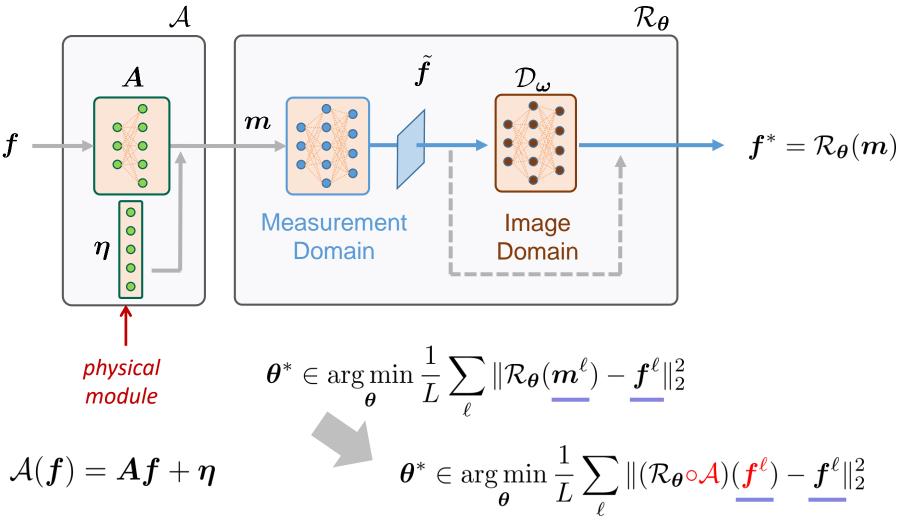


Parameters can be <u>shared</u> across iterations <u>or not</u>

E.g.,
$$\boldsymbol{\theta} = \boldsymbol{\omega}$$
, or $\boldsymbol{\theta} = [\boldsymbol{\omega}^{(1)}, \dots, \boldsymbol{\omega}^{(K)}]$.

3.3. Training

With a "physical" module: no need for meas/image pairs



3.4. Plug-and-Play

Idea: use denoisers (e.g., BM3D) in place of proximal operators

$$oldsymbol{z}^{(k)} = oldsymbol{f}^{(k-1)} - \eta oldsymbol{A}^ op (oldsymbol{A} oldsymbol{f}^{(k)} - oldsymbol{m})} oldsymbol{f}^{(k)} = oldsymbol{ ext{Denoi}}(oldsymbol{z}^{(k)}; \sigma) \ oldsymbol{ ext{proximal operator}}$$

> The denoiser can be data-driven. E.g. $Denoi = CNN_{\theta^*}$ with

3.4. Plug-and-Play

Idea: use denoisers in place of proximal operators

$$egin{aligned} oldsymbol{z}^{(k)} &= oldsymbol{f}^{(k-1)} - \eta oldsymbol{A}^ op (oldsymbol{A} oldsymbol{f}^{(k-1)} - oldsymbol{m}) \ oldsymbol{f}^{(k)} &= oldsymbol{ ext{Denoi}} oldsymbol{z}^{(k)}; \sigma) \end{aligned}$$

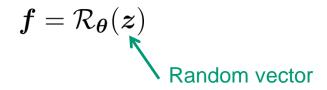
- Pros
 - Training is independent of the forward model
 - Flexibility
 - Applies to any inverse problem
 - Adapt to varying noise levels via hyperparameter
 - Convergence can be guaranteed

> Cons

- Manual tuning of hyperparameter
- ❖ Many iterations required compared to supervised methods (E.g., K = 100—1,000 vs K = 1—10)
 - Longer reconstruction times
 - Higher memory requirement
- Convergence is not always guaranteed (e.g., Lipschitz constant of denoiser)
- Underlying prior not always known

3.5. Untrained/unsupervised

Deep Generative Models



$$egin{aligned} oldsymbol{z}^* \leftarrow \min_{oldsymbol{z}} \|oldsymbol{A}\mathcal{R}_{oldsymbol{ heta}}(oldsymbol{z}) - oldsymbol{m}\|_2^2 \ oldsymbol{f}^* = \mathcal{R}_{oldsymbol{ heta}}(oldsymbol{z}^*) \end{aligned}$$

> Pros

- Only requires measurements from a single acquisition
- Theoretical guarantees (based on compressed sensing, e.g., considering Gaussian random matrices)

> Cons

- Long and challenging reconstruction
- Training of DGM is challenging (lots of data/long times)
- Stability issues (arbitrary forward models, out-of-distribution images, etc.)

3.5. Untrained/unsupervised

Deep Image Priors

$$oldsymbol{f} = \mathcal{R}_{oldsymbol{ heta}}(oldsymbol{z})$$
 Fixed random vector

$$egin{aligned} oldsymbol{ heta}^* \leftarrow \min_{oldsymbol{ heta}} \|oldsymbol{A} \mathcal{R}_{oldsymbol{ heta}}(oldsymbol{z}) - oldsymbol{m}\|_2^2 \ oldsymbol{f}^* = \mathcal{R}_{oldsymbol{ heta}^*}(oldsymbol{z}) \end{aligned}$$

Note: Minimization must be stopped before convergence (tends to noise otherwise)

- > Pros
 - Only requires measurements from a single acquisition
 - The reconstruction quality is surprisingly good
- > Cons
 - Long reconstruction times
 - No guarantees

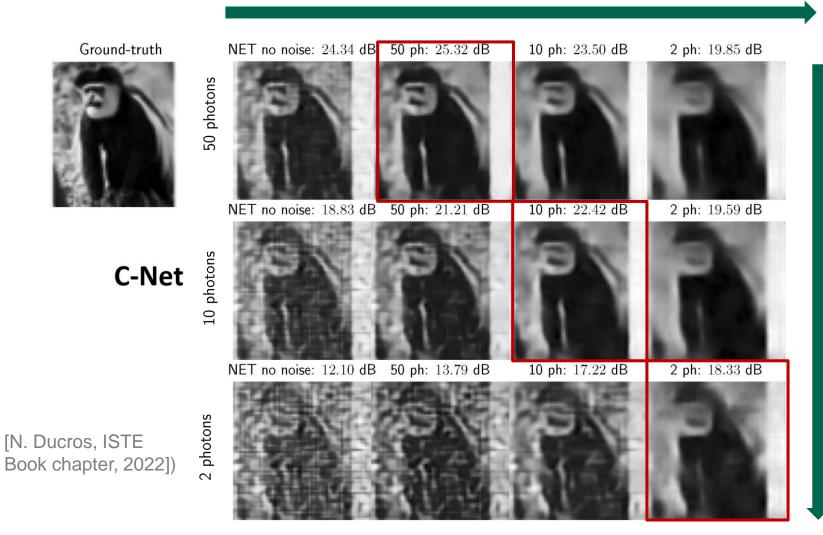
Conclusions

Benchmark

	Memory Requirement	Recon- struction Time (inference)	Training	Hyperparam/ Comment
Supervised	Low to intermediate	1—10	$m{A} \hspace{0.1cm} \{m{f}^\ell\}$	No adaptation (forward, noise)
PnP	Intermediate to high	100—1,000	$\{oldsymbol{f}^\ell\}$	Noise level
Untrained	Usually low	> 1,000	_	Number of iterations

Noise robustness

Increasing training noise



Increasing test noise

Conclusions

- Data-driven DL-based approaches for image reconstruction are
 - Powerful!
 - No longer black boxes
 - Supervised, PnP, based on generative models, untrained, etc.
- Supervised vs PnP methods
 - Supervised methods usually require fewer parameters
 - Supervised methods performs very well
 - PnP methods adapts to different
 - Imaging modalities (i.e., forward models)
 - Noise levels

Warning

- Handling noise is still an issue.
 - Evaluate the robustness to noise level deviations
 - Train with noise (supervised)
 - Tune hyperparameters (PnP)

→ Hands-on session on Friday at 2 pm! ←