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2MEDICAL APPLICATION

 Fluorescence-guided neurosurgery
 Protoporphyrin IX (PpIX) fluorescence 

 Full spectrum acquisition
 Better detection of tumor margins

[P. Valdés et al., JNS, 123(3), 2015]

[P. Leclerc et al., Sci Reports 10, 2020]

P. Valdés et al., J. Neurosurgery, 123(3), 2015
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HYPERSPECTRAL IMAGING

Number of spectral channels

Cost

Colour Multi-spectral Hyper-spectral

3                    2—10                    10—100

~€1k                 ~€10k                    ~€100k

Cost

Spectral channels

Array Point

3

Need for low-cost array with high spectral resolution

Spatial resolution

yes yes yes

Spatial resolution

100—2,000

~€1k

no

Spectrometer
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COMPRESSIVE OPTICS 4
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Conventional image
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set-up
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COMPRESSIVE (SINGLE-PIXEL) CAMERA 5
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6ACQUISITION MODEL 

 Linear model

 Challenge
 A small M limits the acquisition time

 A small M limits the image resolution 

too!

Spatial 

light 

modulator

Point detector 

(spectrometer)
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RECONSTRUCTION 

1. Experiment design: How to choose the patterns (codes) P?
Not addressed here! We choose

2. Reconstruction: How to recover the image f from m?

 Constrained optimization 

o Least squares: fast but low resolution [Rousset et. al, IEEE TCI, 2017]

o Total variation: higher resolution but time consuming [Duarte et. al, IEEE SPM, 2009]

 CNN: Learn a nonlinear reconstructor [Higham et. al, Sci. Rep., 2018]

7

acquired patterns

missing patterns
orthogonal basis
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RECONSTRUCTION AS COMPLETION (proposed)

 The least-squares problem

…has the closed-form solution

… equivalent to

What about completing the missing 

measurements by relevant values?

8
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RECONSTRUCTION AS COMPLETION (proposed)

 How to complete? 

9

STL-10 dataset 

 Exploiting the correlation between the measured coefficients



Nicolas Ducros,   6 Apr 2020     |    IEEE ISBI, Iowa City (Virtual)

RECONSTRUCTION AS COMPLETION (proposed)

with

 Under Gaussian assumptions

 No assumption: This is the best linear solution!

10

Completion approach

Covariance of 

measured
Covariance between 

measured and missing
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LEARNING-BASED RECONSTRUCTION 11

 CNN architecture

~1M parameters ~4k parameters 

Convolutional layers

[Higham et. al, 

Sci. Rep., 2018]

Fully-connected layer (FCL)
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12LEARNING-BASED COMPLETION (proposed)

 CNN architecture

Gaussian completion recon

Fully-connected layer (FCL)

Learn to compensate for 

the non Gaussianities
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13LEARNING-BASED RECONSTRUCTION

 CNN architecture  Choices for the FCL

 Free [Higham et. al, Sci. Rep., 2018]

 Pseudo inverse [Jin et. al, IEEE TIP, 2017, 

Ravishankar et. al, Proc. IEEE, 2020]

 Bayesian completion 

 3 network variants
 freeNet: (~1M parameters)

 pinvNet: (~4k parameters)

 compNet: (~4k parameters)

measurement-to-image 

mapping

Fully-connected layer (FCL)
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RESULTS

 STL-10 (Training using ~100k images, test using 8k images)

14

pinv: 22.0  2.2 dB

comp: 23.5  2.2 dB

pinvNET: 23.6  2.2 dB

compNET: 24.1  2.3 dB

freeNET: 24.0  2.2 dB

+1.5 dB +0.1 dB +0.5 dB +0.1 dB
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RESULTS

 Fluorescence microscopy images (not from STL-10!)

15

red: 27.15 dB

green: 24.27 dB

red: PINV +  3.52 dB

green: PINV + 2.41dB

red: TV + 0.8 dB

green: TV + 1.16 dB



Nicolas Ducros,   6 Apr 2020     |    IEEE ISBI, Iowa City (Virtual)

16CONCLUSIONS & PERSPECTIVES

 Conclusions
 Reconstruction as completion

 Simple linear reconstruction scheme based on Bayesian completion 

 Simple nonlinear convolutional network

 Code

o Bayesian completion (MATLAB): https://github.com/nducros/SPIRIT

o Convolutional Network (Python): soon…

 Perspectives
 Noise

 Experimental data

 Video imaging 

o Much higher compression rate

o Still challenging…

Don’t miss the talk by Antonio 

Lorente Mur Tomorrow morning!

Thanks for watching!

https://github.com/nducros/SPIRIT

