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HYPERSPECTRAL IMAGING

Number of spectral channels

Cost

Colour Multi-spectral Hyper-spectral        Spectrometer

3                    2—10                  10—1,000              100—2,000

~€1k                 ~€10k                 ~€20k-100k                  ~€1k

Cost

Spectral channels

Array Point
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Need for low cost array with high spectral resolution

Spatial resolution

yes yes yes no

Spatial resolution
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4COMPUTATIONAL HYPERSPECTRAL CAMERA

wavelength (in nm)

LED lamp
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5FORWARD MODEL—MATRIX DESIGN—RECON 

 Linear model

1. “Weight design”: How to choose the 

patterns P?

2. Reconstruction: How to recover the 

image f?

 Hadamard patterns are optimal 

(for additive white Gaussian noise)

Spatial 

light 

modulator

Point detector 

(spectrometer)
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THE FELGETT SNR BOOST 6

 Hadamard optimality, a. k. a. Felgett’s advantage

[N. Ducros et al., working paper, 2022]
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FAST ACQUISITIONS

 Fast as subsampled acquisitions
 Sequential measurements lead to long acquisition times

 Limit to a few patterns

 This degrades the image resolution!

 How to recover the image f from m? 
 Compressed sensing/constrained optimization 

o E.g., Total variation

… which requires iterative algorithms

 Fast acquisitions: long reconstructions!
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256 × 256 image 

M = 6,500 random measurements

[Duarte et. al, IEEE SPM, 2008]
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DEEP RECONSTRUCTION (Free-Net)

 Reconstruction: How to recover the image f from m?
 Deep learning: Learn a nonlinear (reconstruction) mapping

 How to choose the non linear ‘model’ H? 

 How to interpret the output of this black box? Are there theoretical guarantees?
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Fully-connected 

layer (FCL)

Convolutional layers

(CNN, Unet, etc)

[Higham et al.,

Sci. Rep., 2018]



Nicolas Ducros     |     5 April 2022     |     Unconventional Optical Imaging III, SPIE Photonics Europe, Strasbourg

COMPLETION NETWORK (C-NET)

 Connection with Bayesian reconstruction

Fixed layer:

Gaussian completion

Learnable layer: 

compensation for non-idealities

[N. Ducros et al.,

IEEE ISBI 2020]

Covariance 

of measured

Covariance between

measured and missing

Completion approach

~1M param ~4k parameters 
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COMPLETION NETWORK (C-NET)

 Fluorescence microscopy images (not in the STL-10 training set)

 Free-Net  vs C-Net 

o Similar peak signal-to-noise ratios (<0.1 dB) performance

o Free-Net has more parameters to train than C-Net (4M vs 4k)

 C-Net vs TV

o C-Net has improved peak signal-to-noise ratios (~ +1 dB)

o C-Net is faster than TV (typ. ~100 ms vs ~s)
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red: TV + 0.8 dB

green: TV + 1.16 dB
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DENOISED COMPLETION NETWORK (DC-Net)

 Trained under Poisson noise with varying noise levels

11

[A. Lorente Mur et al., 

Opt. Express (2021)]

Fixed layer:

Gaussian denoised completion

Learnable layer: 

compensation for non-idealities
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DENOISED COMPLETION NETWORK (DC-Net)

 Noise robustness
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Increasing training noise

Increasing 

test

noise

[N. Ducros, ISTE 

book chapter, 2021] 

(in French)
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DEEP EXPECTATION MAXIMIZATION (EM-Net)

 Generalization
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Denoising (measurements)

Completion (measurements)

Denoising (image)

Image Domain
Measurement Domain

Denoising Completion

Update and mapping (image)

[Lorente-Mur et. al,

IEEE ISBI, 2021]
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EXPERIMENTAL RESULTS 14

 Siemens resolution target + linear variable filter
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RGB view
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EXPERIMENTAL RESULTS

 STL-10 cat + linear variable filter
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CONCLUSIONS

 Computational imaging
 Computational hyperspectral imaging device

 Deep reconstruction methods

o DC-Net is robust to noise deviation

o EM-Net requires fewer parameters

 Open and reproducible research
 SPyRiT Python package: https://github.com/openspyrit

 Datasets

 Future work 
 Image-guided neurosurgery (Protoporphyrin IX imaging)

 Increase the spatial resolution/field-of-view

 Increase the imaging speed
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https://github.com/openspyrit
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