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 DMD: millions of mirrors that can independently tilt in two positions  can be 

used as a spatial filtering device 

Single-pixel camera (SPC) 

Two mirrors of 13.7 µm (Texas Instruments) Digital micro-mirror device 

I. Introduction 
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 Several advantages: 
 

• Infrared or multispectral imaging 
 

• High quantum efficiency: able to detect weak intensity light changes  
 

• Low cost time-resolved system (one photon counting board) 
 

 

 

 

 

 

 

 

 
 

 

 Possible applications in medical imaging: 
 

• Fluorescence molecular tomography [Intes 2015] 
 

• Fluorescence lifetime imaging 
 

• Per-operatory imaging (oxygenation or fluorescence) 

Fluorescence lifetime 

imaging (PicoQuant) 

I. Introduction 
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I. Introduction 04/14/16 

 

 SPC acquisition: 
 

• Image of size 
 

•     patterns of size 

 

       measures mi  with 
 

 

 

 

 

 

 

 

 

 

 

 Problems:  
 

• P1 – Choice / design of the patterns pi 
 

  

• P2 – Restoration of the image f from the measures mi knowing pi 
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II. State of the art 04/14/16 

II.1 – Compressive sensing 

 

 Acquisition based on the compressive sensing (CS) [Donoho 2006, Duarte 2008] 

 

 P1 – Patterns chosen as independent realizations of random ±1 Bernoulli 

variables 

 

 P2 – Perfect restoration, in theory, by l1-minimization in a basis (e.g. 

wavelets). In practice: TV-minimization (Total Variation) for faster image 

recovery [Takhar 2006, Duarte 2008] 

 

 

 

 

 

 

 

 

 

 Non-adaptive approach: same set of patterns regardless of the image 

Example of 3 random patterns 
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II.2 – Adaptive acquisition 

 

 Acquisition directly in a given basis (Fourier, DCT, wavelets, etc…) [Deutsch 

2009, Averbuch 2012, Dai 2014] 

 

 P1 – Patterns of the chosen basis, some are determined during the 

acquisition based on measures already performed (prediction step) 

 

 P2 – Almost instant image restoration using the chosen basis inverse 

transform [Mallat 2008] 

 

 

 

 

 

 

 

 

 

 Adaptive approach: different set of patterns depending on the object 

General framework of an adaptive approach 

II. State of the art 
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III. Proposed acquisition strategy: ABS-WP 04/14/16 

III.1 – Wavelet decomposition 

 

 Choice of an adaptive approach in the wavelet domain 

 

 Coefficient:      one SPC measurement  

 

 Non-linear approximation: retains a given percentage of the strongest 

coefficients and shows excellent image recovery [Mallat 2008] 

 

Ground truth 512 x 512 image 4-level wavelet decomposition 
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III. Proposed acquisition strategy: ABS-WP 04/14/16 

III.1 – Wavelet decomposition 

 

 Choice of an adaptive approach in the wavelet domain 

 

 Coefficient:      one SPC measurement  

 

 Non-linear approximation: retains a given percentage of the strongest 

coefficients and shows excellent image recovery [Mallat 2008] 

 

Ground truth 512 x 512 image 10% of the strongest coefficients 
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III. Proposed acquisition strategy: ABS-WP 04/14/16 

III.1 – Wavelet decomposition 

 

 Choice of an adaptive approach in the wavelet domain 

 

 Coefficient:      one SPC measurement  

 

 Non-linear approximation: retains a given percentage of the strongest 

coefficients and shows excellent image recovery [Mallat 2008] 

 

Ground truth 512 x 512 image Restored image with 10% of the coefficients 
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III.2 – ABS-WP strategy 

 

 ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset 2015 - 2016]  

 

 Multiresolution approach: non-linear approximation idea applied on each of 

the j = 1…J  scales of the J-level wavelet decomposition 

 

                                                      
 

                                      
 

                                                 

                            
 

                                
 

                                              

                                   
 

                                                   

                          

 

                                                                      

III. Proposed acquisition strategy: ABS-WP 
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III.2 – ABS-WP strategy 

 

 ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset 2015 - 2016]  

 

 Multiresolution approach: non-linear approximation idea applied on each of 

the j = 1…J  scales of the J-level wavelet decomposition 

 

 Steps: example for a 128 x 128 pixel image for J = 1 
 

 1 – Approximation image acquisition 
 

                                                 

                            
 

                                
 

                                              

                                   
 

                                                   

                          

 

                                                                      

III. Proposed acquisition strategy: ABS-WP 
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III.2 – ABS-WP strategy 

 

 ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset 2015 - 2016]  

 

 Multiresolution approach: non-linear approximation idea applied on each of 

the j = 1…J  scales of the J-level wavelet decomposition 

 

 Steps: example for a 128 x 128 pixel image for J = 1 
 

 1 – Approximation image acquisition 
 

 2 – Over-sampling by a factor 2 by a bi-cubic  

 interpolation [Keys 1981] 
 

                                
 

                                              

                                   
 

                                                   

                          

 

                                                                      

III. Proposed acquisition strategy: ABS-WP 
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III.2 – ABS-WP strategy 

 

 ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset 2015 - 2016]  

 

 Multiresolution approach: non-linear approximation idea applied on each of 

the j = 1…J  scales of the J-level wavelet decomposition 

 

 Steps: example for a 128 x 128 pixel image for J = 1 
 

 1 – Approximation image acquisition 
 

 2 – Over-sampling by a factor 2 by a bi-cubic  

 interpolation [Keys 1981] 
 

 3 – 1-level wavelet transform 
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III.2 – ABS-WP strategy 

 

 ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset 2015 - 2016]  

 

 Multiresolution approach: non-linear approximation idea applied on each of 

the j = 1…J  scales of the J-level wavelet decomposition 

 

 Steps: example for a 128 x 128 pixel image for J = 1 
 

 1 – Approximation image acquisition 
 

 2 – Over-sampling by a factor 2 by a bi-cubic  

 interpolation [Keys 1981] 
 

 3 – 1-level wavelet transform 
 

 4 – A percentage pj of the strongest detail 

 wavelet coefficients is retained 
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III.2 – ABS-WP strategy 

 

 ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset 2015 - 2016]  

 

 Multiresolution approach: non-linear approximation idea applied on each of 

the j = 1…J  scales of the J-level wavelet decomposition 

 

 Steps: example for a 128 x 128 pixel image for J = 1 
 

 1 – Approximation image acquisition 
 

 2 – Over-sampling by a factor 2 by a bi-cubic  

 interpolation [Keys 1981] 
 

 3 – 1-level wavelet transform 
 

 4 – A percentage pj of the strongest detail 

 wavelet coefficients is retained 
 

 5 – The “predicted” significant coefficients are 

 experimentally acquired 
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III.2 – ABS-WP strategy 

 

 ABS-WP: Adaptive Basis Scan by Wavelet Prediction [Rousset 2015 - 2016]  

 

 Multiresolution approach: non-linear approximation idea applied on each of 

the j = 1…J  scales of the J-level wavelet decomposition 

 

 Steps: example for a 128 x 128 pixel image for J = 1 
 

 1 – Approximation image acquisition 
 

 2 – Over-sampling by a factor 2 by a bi-cubic  

 interpolation [Keys 1981] 
 

 3 – 1-level wavelet transform 
 

 4 – A percentage pj of the strongest detail 

 wavelet coefficients is retained 
 

 5 – The “predicted” significant coefficients are 

 experimentally acquired 

 

 Set of percentages              to control the compression rate (CR) 

III. Proposed acquisition strategy: ABS-WP 
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IV. Results and comparisons 04/14/16 

IV.1 – Simulations on real images 

 

 Histological image of bone structures  

 

 Simulations for CR = 80 % 
 

• CS : restoration by TV-minimization 
 

• ABS-WP : Le Gall’s wavelet employed (CDF 5/3) 

 

 

 

 

 

 

 

 

 

 

 
Reference 256 x 256 

CS 

PSNR = 29.4 dB 

t = 214 s  

ABS-WP 

PSNR = 31.2 dB 

t = 0.4 s 
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IV.1 – Simulations on real images 

 

 Bioluminescence image of a mouse over the ambient light image (images 

provided by V. Josserand et J.L. Coll) [Coll 2010] 

 

 ABS-WP simulations (Le Gall) on the bioluminescence image: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 High compression rates for smooth images 

Reference 128 x 128 
CR = 95 % 

PSNR = 41.2 dB 

CR = 98 % 

PSNR = 35.3 dB 

IV. Results and comparisons 
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IV.1 – Simulations on real images 

 

 PSNRs obtained for 4 tests images for CS or our method ABS-WP for a 85 % 

compression rate: 

 

 

 

 

 

 

 

 

 

 

 

 Set of percentages used for ABS-WP identical for each image: 

 

 

 

 Adaptivity of ABS-WP to different types of images  

Image 
PSNR (dB) 

CS ABS-WP 

Lena (256 x 256) 27.89 29.59 

Peppers (256 x 256) 32.96 34.83 

Bone structures (256 x 256) 28.14 30.29 

Mouse (128 x 128) 41.41 48.58 

IV. Results and comparisons 
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IV.2 – Experimental data 

 

 Jaszczak target printed on a paper and then employed as object  

 

 Acquisitions for CR = 80 % 
 

• CS : restoration by TV-minimization 
 

• ABS-WP : Le Gall’s wavelet 

Experimental CCD 

128 x 128 image 

CS 

PSNR = 21.2 dB 

t = 14 s 

ABS-WP 

PSNR = 21.7 dB 

t = 0.2 

IV. Results and comparisons 
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IV.2 – Experimental data 

 

 Other Jaszczak target printed on paper and employed as an object to judge 

the system’s spatial resolution. 

 

 Acquisitions for ABS-WP (Le Gall) : 

 

 

 

 

 

 

 

 

 

 

 

 

 Measured pixel pitch of 210 µm. It can be easily modified by changing the 

optics or the size of the patterns. 

Experimental CCD  

128 x 128 image 

CR = 75 % 

PSNR = 22.4 dB 

CR = 85 % 

PSNR = 21.5 dB 

CR = 90 % 

PSNR = 20.9 dB 

IV. Results and comparisons 
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V. Conclusion 04/14/16 

Type of comparison CS ABS-WP 

Restoration Perfect in theory Perfect if CR = 0% 

Complexity Expensive computation Direct restoration 

Computation time x 10-100 1 

Parameters 
Several parameters for the 

TV-minimization 

Choice of the wavelet + set 

of percentages 

 

 Proposed method to acquire images by a SPC: 
 

• Adaptive technique 
 

• Wavelet patterns 
 

• Bi-cubic interpolation prediction 
 

• Multiresolution approach 

 

 

 Favorable comparison with compressive sensing: 
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Wavelet pattern creation 

 We note W an orthonormal operator so that one wavelet pattern p can be 

obtained as 

 

 
 

     with e a unit vector chosen from the canonic basis : 

 

 

 

 

 

 

 

 Obtained patterns have real positive and negative values. The DMD can only 

receive b-bits patterns  
 

  uniform quantization of the patterns and positive/negative separation: 
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 Average computation times for the simulations + experimental data 

(acquisition time excluded). It includes TV-minimization for CS and the 

prediction step + restoration for ABS-WP : 

 

 

 

 

 

 

 

 

 

 TV-minimization demands expensive computations, time increases quickly 

with the number of measures and the image size 

  

 For ABS-WP, bi-cubic interpolation and the wavelet transform are 

optimized and fast operations 

 

 Real time possible for our technique 

Image size 
Time (s) 

CS ABS-WP 

128 x 128 13.18 0.18 

256 x 256 213.62 0.42 

Computation times 
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