

Attention and Transformers

Deep Learning for Medical Imaging, Lyon

with the collaboration of Olivier Bernard

Nathan Painchaud

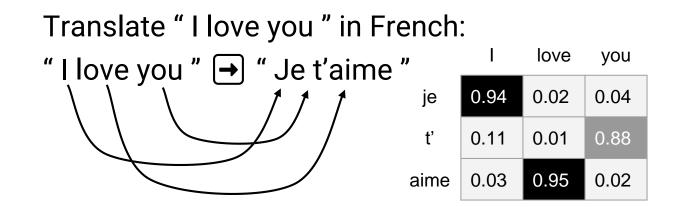
DLMI - Attention and Transformers

April 24th 2025

Introduction

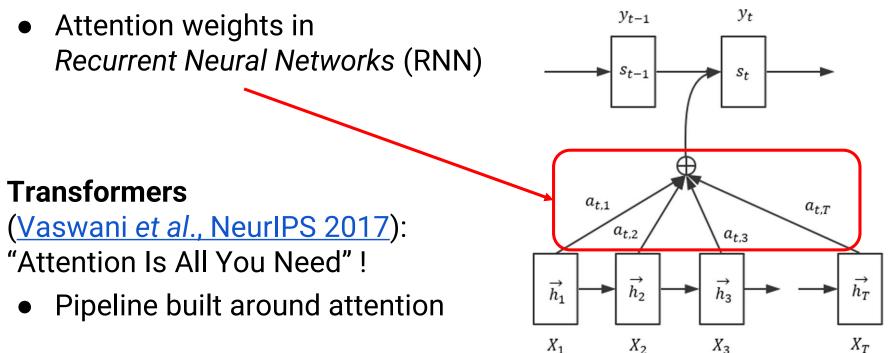
What is Attention?

- Definition: Relative importance of elements in a sequence
 Mechanism to prioritize parts of the input
- Introduced for Natural Language Processing (NLP) in 2014/15
 Alternative to encoder-decoder for sequence-to-sequence tasks



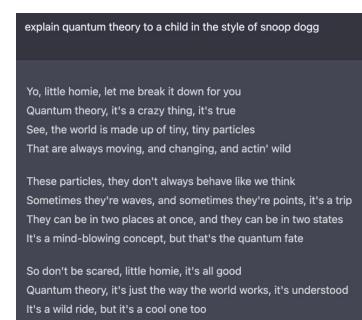
What Are Transformers?

Attention (introduced by <u>Bahdanau et al., ICLR 2015</u>):



Applications to Natural Language Processing

- Tasks formulated for Transformers
 - Machine translation
 - Speech comprehension
 - Text generation
 - Computer code generation
- Popularized by models like
 - BERT
 - GPT 3/4
 - Chat-GPT
 - and many more...



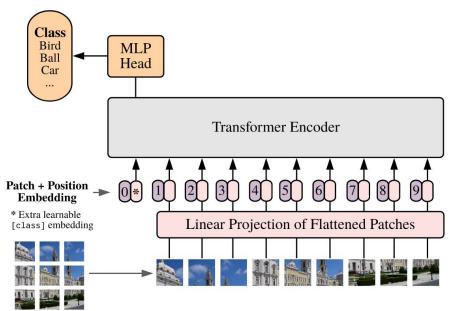
Quantum theory, it's the way the world does what it do.

Generalization to Images (and other domains)

Seminal architectures

- Classification
- Segmentation
- Segmentation + time
- Image generation

Vision Transformer (ViT) - 2020



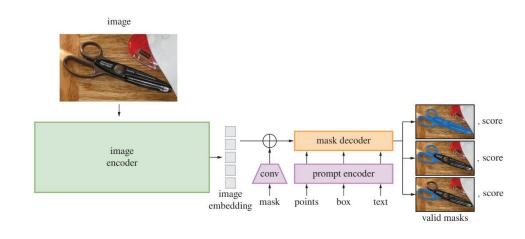
Dosovitskiy et al., ICLR 2021

Generalization to Images (and other domains)

Seminal architectures

- Classification
- Segmentation
- Segmentation + time
- Image generation

Segment Anything Model (SAM) - 2023



Kirillov et al., ICCV 2023

Generalization to Images (and other domains)

Seminal architectures

- Classification
- Segmentation
- Segmentation + time
- Image generation

time image encoder tencoder te

SAM 2 - 2024

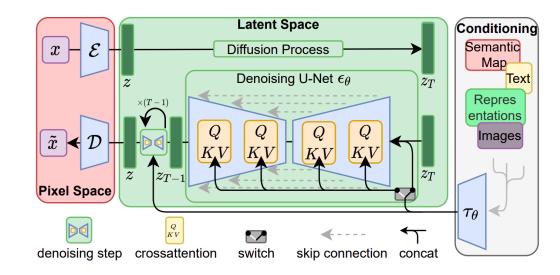
Ravi et al., arXiv 2024

Generalization to Images (and other domains)

Seminal architectures

- Classification
- Segmentation
- Segmentation + time
- Image generation

Latent Diffusion - 2022



Rombach et al., CVPR 2022

Transformer Architecture

How to Represent Data?

Break down input into tokens, i.e. vectors

- Text: token = word of a sentence
- Images: token = patch of an image

Text "I love you"

Tokenization

"I" "love" "you" "I" $\Rightarrow x_i \in \mathbb{R}^t$

Tokenization

 $\begin{array}{c} \searrow & x_i \in \mathbb{R}^{P^2 \cdot C} \\ \text{with } P \text{ patch size,} \\ C \text{ number of channels} \end{array}$

Nathan Painchaud

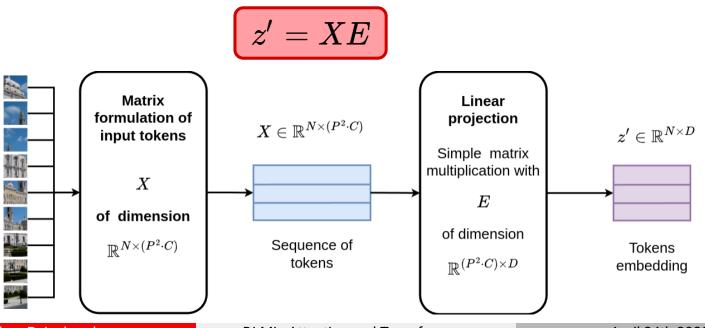
DLMI - Attention and Transformers

April 24th 2025

How to Represent Data?

Represent token in a common space, i.e. embedding

• Linear projection: Multiply by a learnable matrix



Nathan Painchaud

DLMI - Attention and Transformers

How to Represent Data?

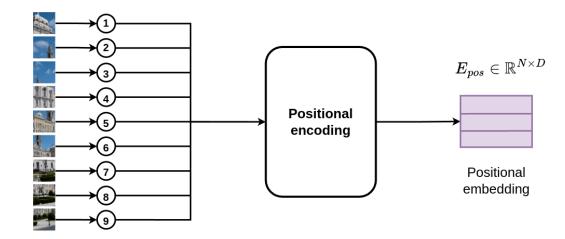
Transformers process tokens as unordered set

- Fast parallelizable attention...
 - Loss of structural information \Rightarrow Permutation invariance!

To recover structure:

 Positional encoding (PE)

 Add positional info to each token

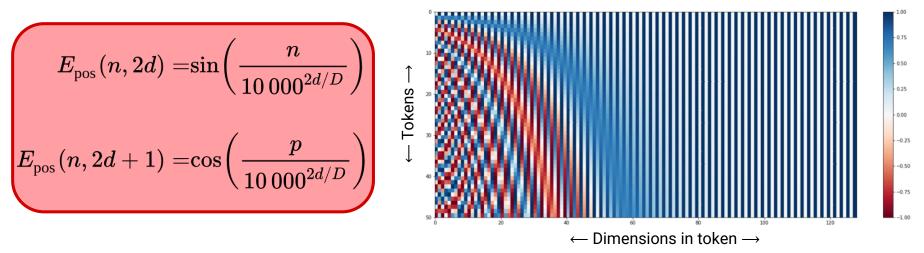


How to Represent Data?

Positional encoding (PE)

[Reference: <u>HuggingFace blog</u>]

• Typical choice: sinusoidal function



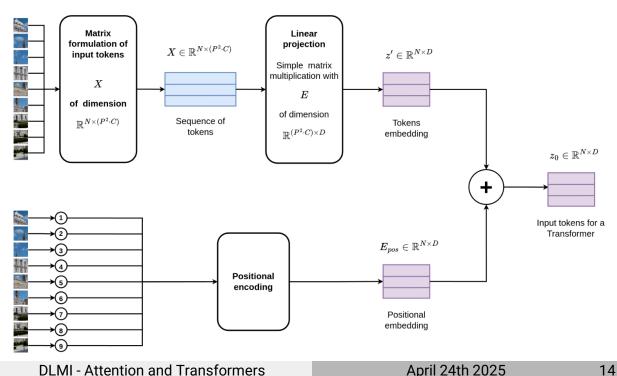
• Other option: learnable parameters $E_{pos} \in \mathbb{R}^{N \times D} \sim \mathcal{N}(0, 0.02)$

How to Represent Data?

Putting the pieces together

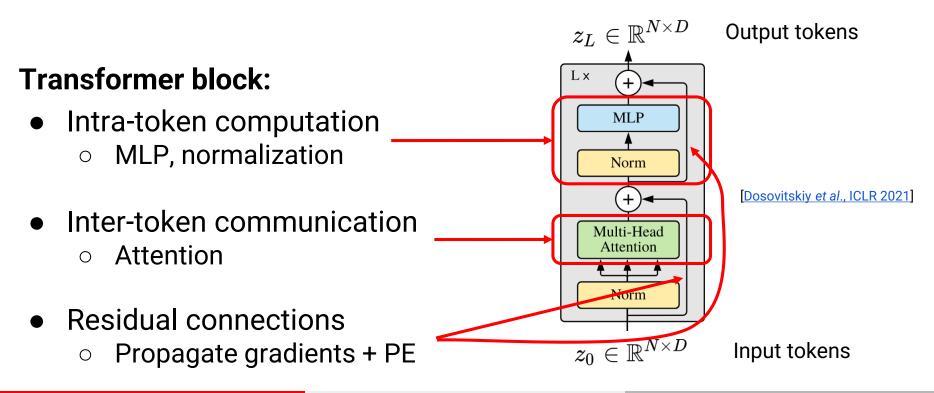
- Final tokens = embeddings + position encoding
- Parameters:
 - Projection Ο $E \in \mathbb{R}^{(P^2 \cdot C) imes D}$
 - PE (optional) $E_{ ext{pos}} \in \mathbb{R}^{N imes D}$

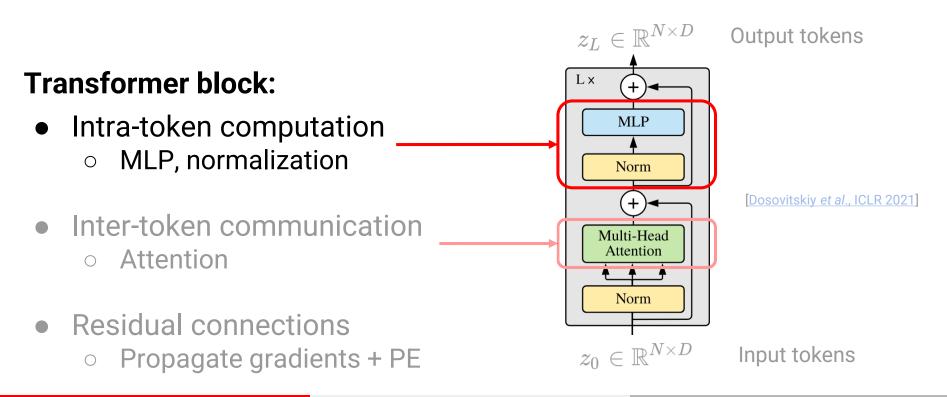
Nathan Painchaud



DLMI - Attention and Transformers

How to Process the Tokens?

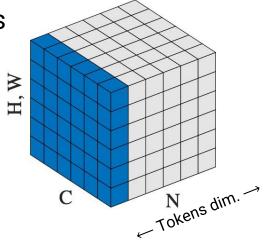




Intra-token computation layers operate on each token separately

- Layer Normalization (LN)
 - \circ μ , σ : computed **for each token, i.e. image**
 - γ , β : learnable affine transform. parameters

$$ilde{z}_{l,i} = \gamma\left(rac{z_{l,i}-\mu}{\sigma}
ight) + eta$$
 with $z_{l,i}$ a token, i.e. row, in tokens z_l

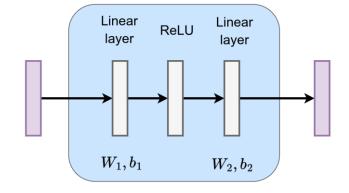


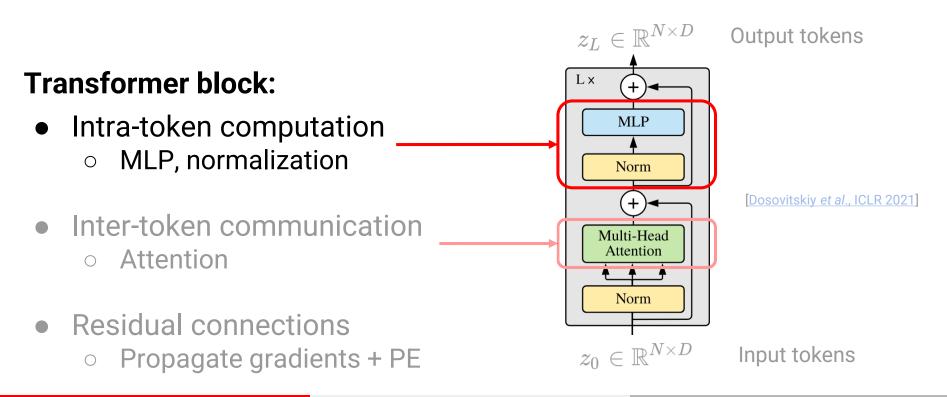
[Source: PyTorch Documentation]

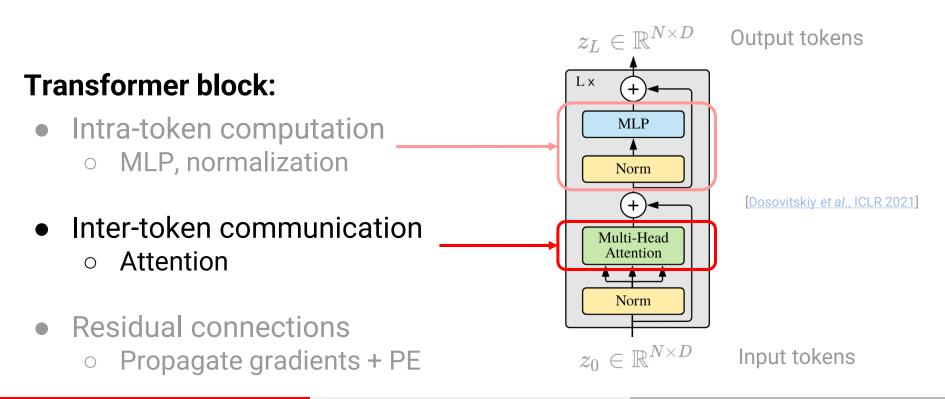
Intra-token computation layers operate on each token separately

- Feed-Forward Network (MLP)
 - Add non-linearity
 - Refine each token's representation

$$egin{aligned} ilde{z}_{l,i} &= ext{LN}(z_{l,i}) \ ext{MLP}(ilde{z}_{l,i}) &= ext{max}(0, ilde{z}_{l,i}W_1 + b_1)W_2 + b_2 \end{aligned}$$







Attention layers exchange information between tokens

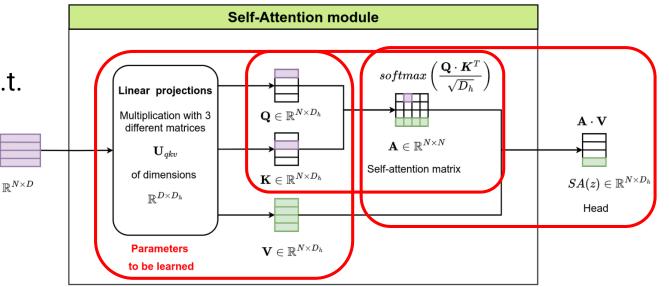
• Self-attention

Define attention A w.r.t.

 \circ Query (**Q**)

- *Key* (**K**)
- Value (V)

matrices



Matrix mul. **Q K** to obtain *attention map* **A**

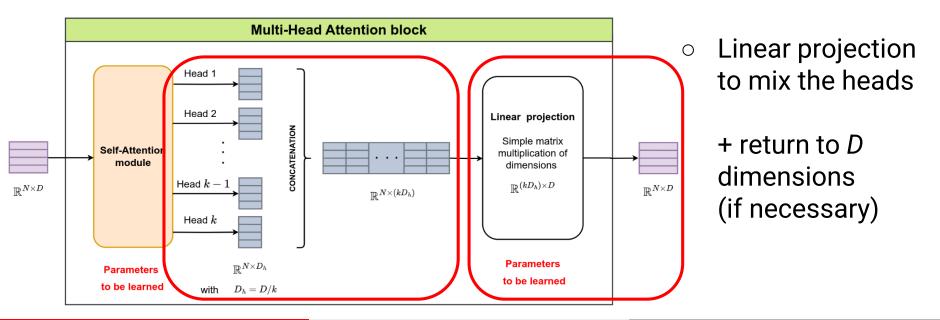
Row-wise softmax on **A** to normalize weights applied to **V**

Nathan Painchaud

DLMI - Attention and Transformers

Transformer Block - Communication

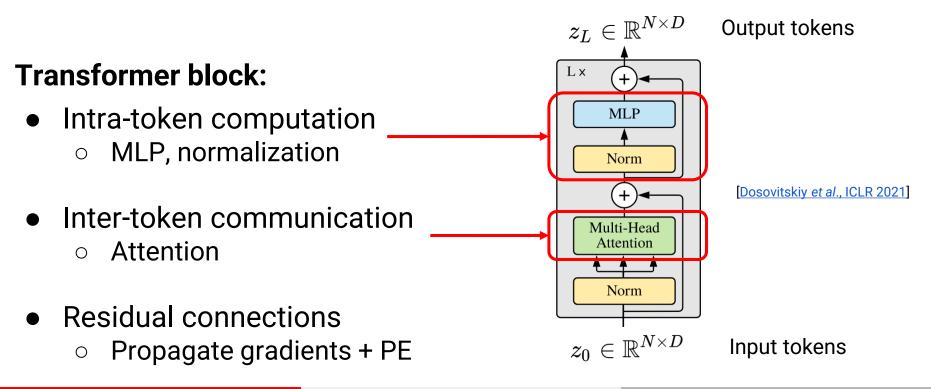
- Multi-Head Attention (MHA)
 - k heads running parallel self-attention
 - Similar to feature maps in Convolutional Neural Networks (CNN)



Nathan Painchaud

Transformer - Summary

Transformer encoder: transformer blocks repeated L times

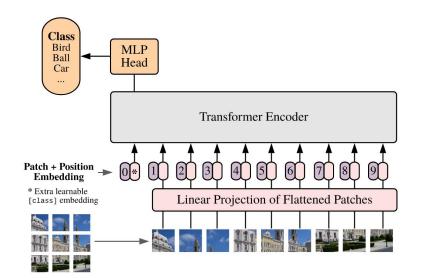


Transformers in Practice

Transformers for Image Classification

Vision Transformer (ViT)

• Reuse class token ([CLS]) from BERT



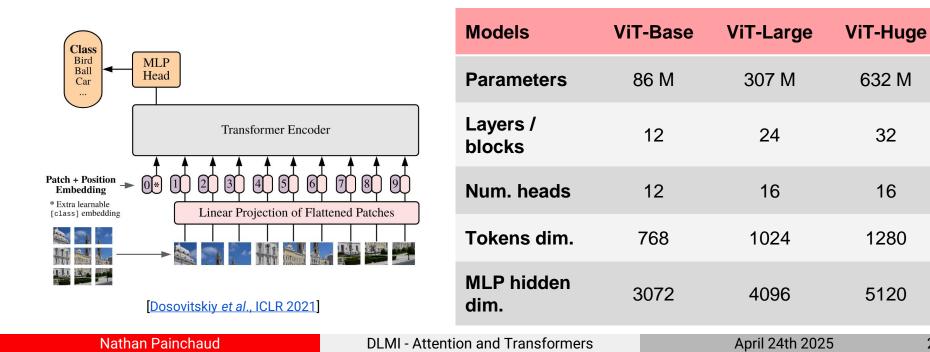
[CLS]: "Pool" information from full sequence of tokens

Dosovitskiy et al., ICLR 2021

Transformers for Image Classification

Vision Transformer (ViT)

• Trained on JFT (300 million images)



Why Use Transformers?

Advantages come with drawbacks:

- Instant global context through self-attention
 - (n^2) time-complexity w.r.t. number of tokens
- Modality agnostic representation of data
 - X Data-hungry compared to CNNs

Many frameworks for a solution...

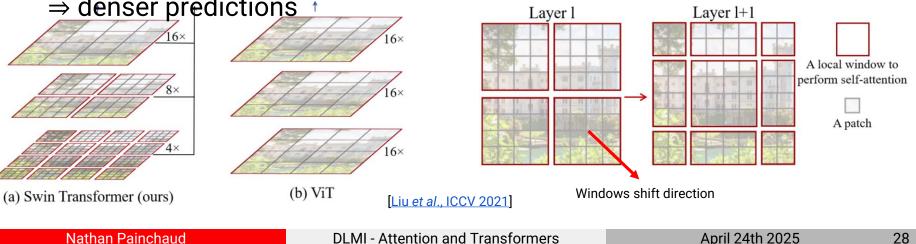
- Linear attention approx: *Linformer* (2020), *Performer* (2021), ...
- Hardware-aware optim: *FlashAttention* (2022), ...
- Compressed internal representation: <u>Perceiver</u> (2021), ...

Transformers with Spatial Priors

Shifted windows (Swin) Transformer

- Self-attention within windows \Rightarrow O(n) w.r.t. nb of patches
- Smaller patches: 4x4 < ViT's 16×16
 - \Rightarrow denser predictions

Shifted windows \Rightarrow communication between windows



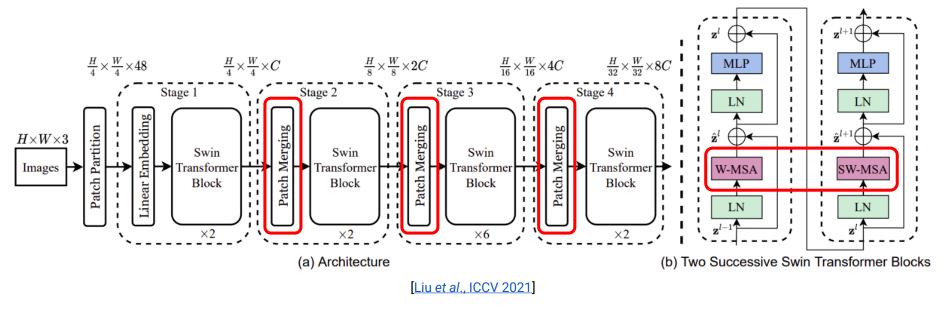
Transformers with Spatial Priors

Shifted windows (Swin) Transformer

- Patch merging = pooling in CNNs
- Transformer blocks: only change attention layers

Acronyms

W-MSA: Windows Multi-head Self-Attention SW-MSA: Shifted W-MSA



Transformers at Scale: Foundation Models

Segment Anything Model (SAM)

• 2D natural images

Task	Classification	Segmentation
ViT	300 M	-
Swin Transfor	20 K	1.28 M
SAM	-	11 M images 1.1 B masks
	model train	data
CCV 2023]	Segment Anything 1B (SA • 1+ billion masks • 11 million images • privacy respecting • licensed images	-1B):

April 24th 2025

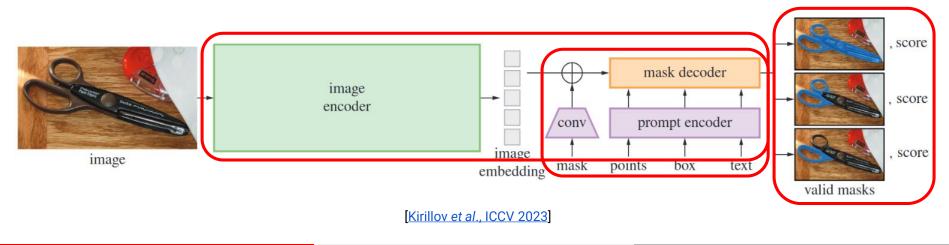
Nathan Painchaud

DLMI - Attention and Transformers

Transformers at Scale: Foundation Models

Segment Anything Model (SAM)

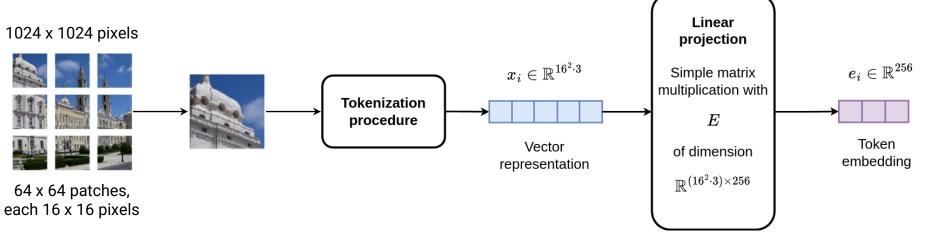
- Relatively simple architecture
- Interactive segmentation using prompts
- Accounts for ambiguous masks based on high-level prompt



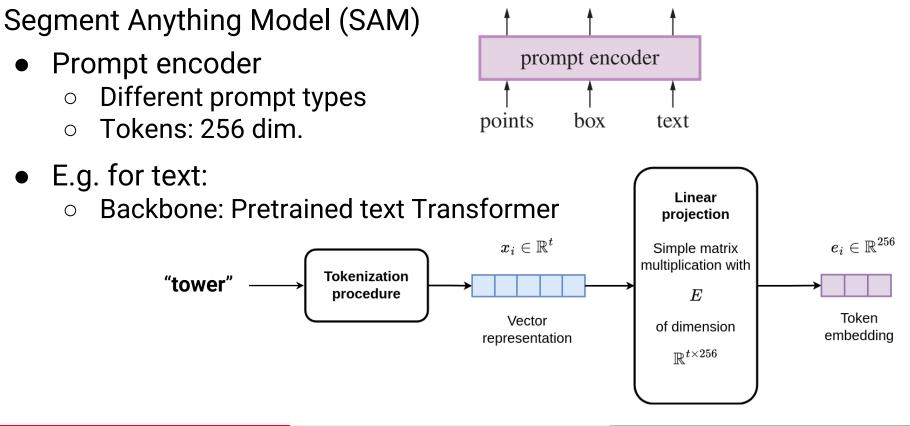
Transformers at Scale: Foundation Models

Segment Anything Model (SAM)

- Image encoder
 - Resize images to 1024 x 1024 pixels
 - Backbone: ViT-Huge with 16 x 16 pixels patches
 - Tokens: 256 dim.



Transformers at Scale: Foundation Models

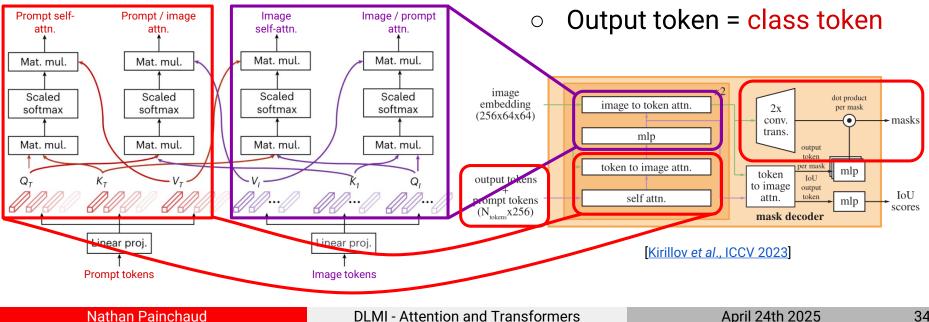


33

Transformers at Scale: Foundation Models

Segment Anything Model (SAM)

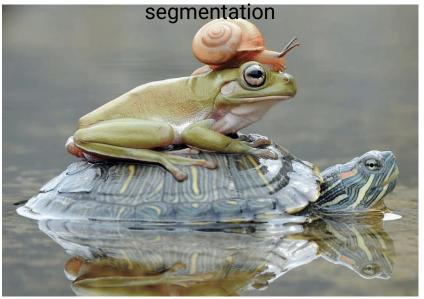
- Mask decoder
 - Cross-attention: **Q**, **K**, **V** from two sources Ο



Transformers at Scale: Foundation Models

Segment Anything Model (SAM)

User prompts \Rightarrow Interactive



Automatic prompts (e.g. regular grid) \Rightarrow Automatic segmentation

[Source: Segment Anything, Meta AI]

DLMI - Attention and Transformers

Alternative Paradigms

Is Attention All We Need?

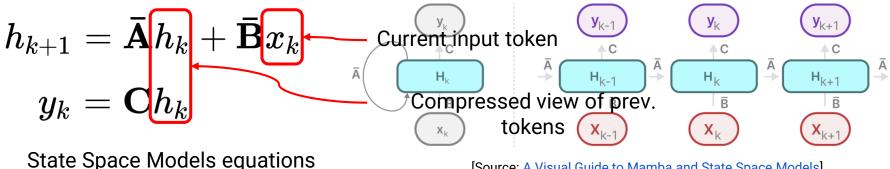
X Transformer not implicitly suited for long context Effectiveness / efficiency trade-off

L: Sequence length	Training		Inference	
RNNs, LSTMs	-Effective / +Efficient			
	Serial tokens computation: O(L)		Look at last step: O(L)	
Transformers	++Effective / -Efficient			
	Tokens x to	okens: O(L²) but parallelizable	Look at prev. tokens: O(L ²))
Mamba	+Effective / ++Efficient			
	Serial tokens	comput.: O(L) + hardware optim.	Look at last step: O(L)	
Nathan Painchaud		DLMI - Attention and Transformers	April 24th 2025	37

What Are State Space Models?

Gu et al., ICLR 2022

- General framework, including Recurrent Neural Networks (RNN)
 - **Internal state** \Rightarrow compressed view of previous tokens Ο
 - (Learnable) matrices describe input / state / output interactions Ο



Source: A Visual Guide to Mamba and State Space Models

Commonly, **A** and **B** $\perp \!\!\!\perp x_k$ (i.e. linear time invariance) \Rightarrow ✓ Parallelizable convolutions \Rightarrow fast! Less expressive context \Rightarrow limits effectiveness

What Did Mamba Change in SSM?

Improve theoretical **effectiveness**...

- Selective SSM
 - Make **B**, **C**, and Δ functions (i.e. linear proj.) of the input
 - Similar to **Q**, **K**, **V** projections
 - ✓ Able to store/forget specific inputs ⇒ +effectiveness
 - X No convolutional representation

And practical implementation!

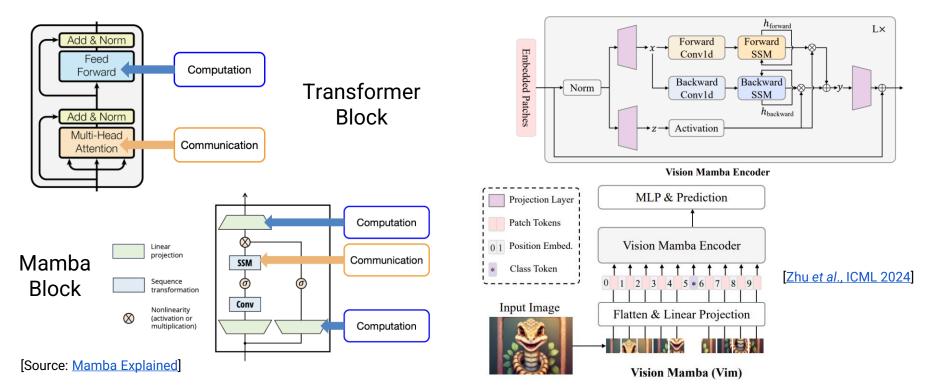
- Parallel scan: Compute matrix mul. in parts + combination
- Kernel fusion: Fuse steps to avoid unnecessary memory I/O
- **Recomputation:** Recompute interm. states rather than store them

Gu and Dao, COLM 2024

Encoder = Repeat blocks

Encoder: Transformers vs Mamba

• Same 2-step process



Nathan Painchaud

DLMI - Attention and Transformers

Do We Really Need Mamba for Vision?

- Transformers: popularized framing tasks as sequence modelling
- Mamba: address limitations for autoregressive tasks / **long sequences** (> 2,000-4,000 tokens)
 - e.g. UltraLight VM-UNet: SOTA performance at 49K params Ο

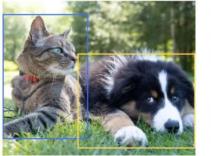
Is it useful for computer vision?

Is this a cat?

X Global tasks Dense tasks

Image Classification

What is there in the image and where?



Object Detection

Which pixels belong to which object

Image Segmentation

Nathan Painchaud

DLMI - Attention and Transformers

Takeaway Messages

- Transformers are the dominant (attention-based) paradigm
 ✓ No input assumptions ⇒ easily adaptable to different data
 ✓ Performance scaling with more compute and data
- **X** Complexity \Rightarrow Time and space given sequence length
 - Motivated two main avenues of research
 - Image specific: architecture with **spatial priors**
 - *Generic tasks*: scale data for **foundation models**
- Alternative sequence models being explored...
 - Mind the task/data when choosing models

Thank you for your *attention* ;)

Questions?