Diffusion models

Olivier Bernard

What is the purpose of diffusion models?

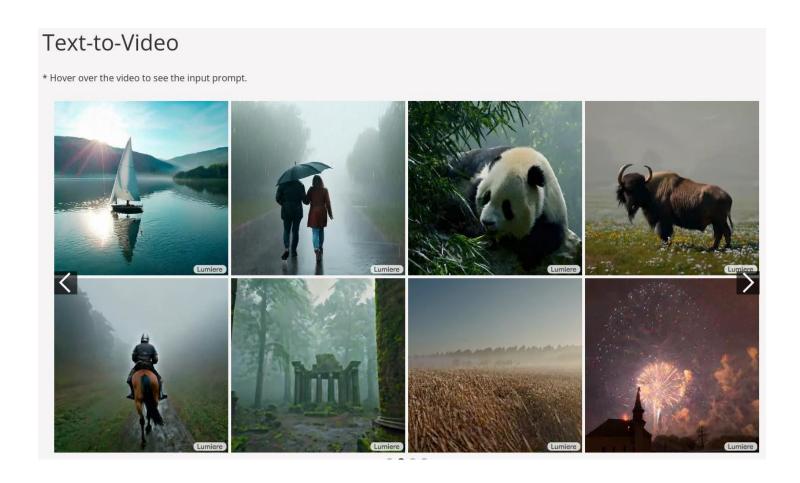
- Best current methods for synthetic image generation
- Allows generating images in a conditioned form
- Many software solutions, such as Midjourney, DALL-E

An Asian girl in ancient coarse linen clothes rides a giant panda and carries a wooden cage. A chubby little girl with two buns walks on the snow. High-precision clothing texture, real tactile skin, foggy white tone, low saturation, retro film texture, tranquil atmosphere, minimalism, long-range view, telephoto lens

What is the purpose of diffusion models?

Recent extensions for video synthesis

https://lumiere-video.github.io/#section_image_to_video



What is the purpose of diffusion models?

► Family of diffusion networks

Denoising Diffusion Probabilistic models

Score-based methods

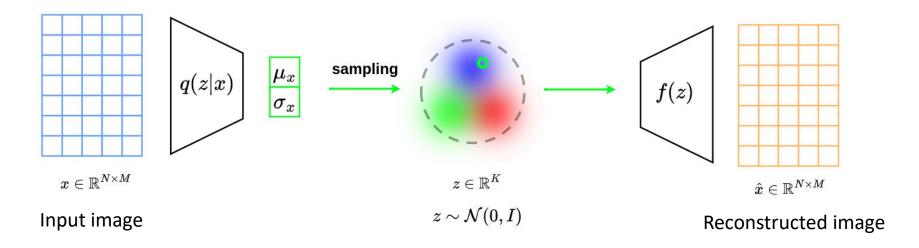
Normalizing flow methods

Intuition behind diffusion models

Interpretation of the loss function

$$ext{loss} = D_{\mathit{KL}}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \, + \, lpha \|x - f(z)\|^2$$

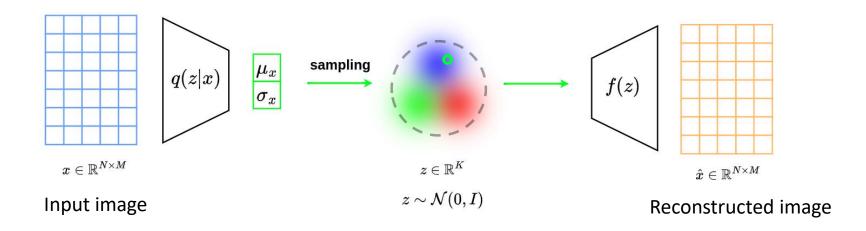
- $\rightarrow \mathcal{N}(g(x), diag(h(x)))$ imposes a local *continuity* constraint
- \rightarrow $D_{KL}(\cdot, \mathcal{N}(0, I))$ imposes a global *completeness* constraint



Completeness is expressed as a soft constraint!

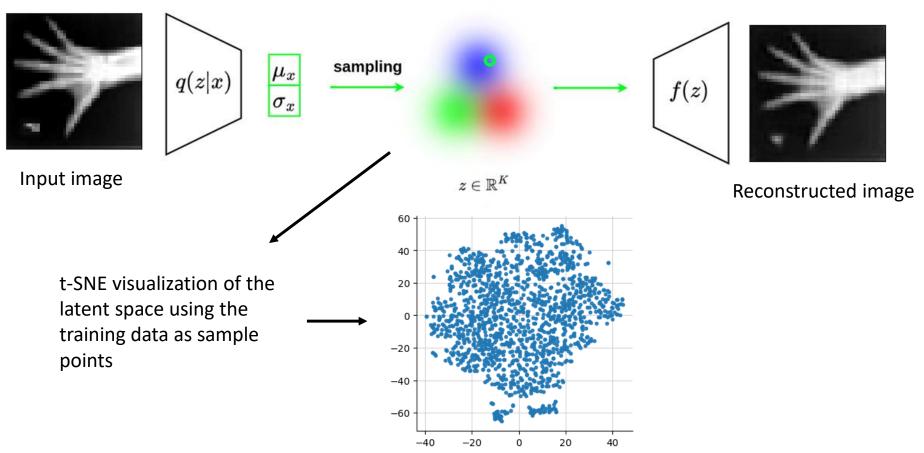
$$ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \,+\, lpha \|x - f(z)\|^2$$

 $ightarrow \mathcal{N}\left(g(x),diag(h(x))
ight)$ and $\mathcal{N}\left(0,I\right)$ should remain close in terms of distributional distance

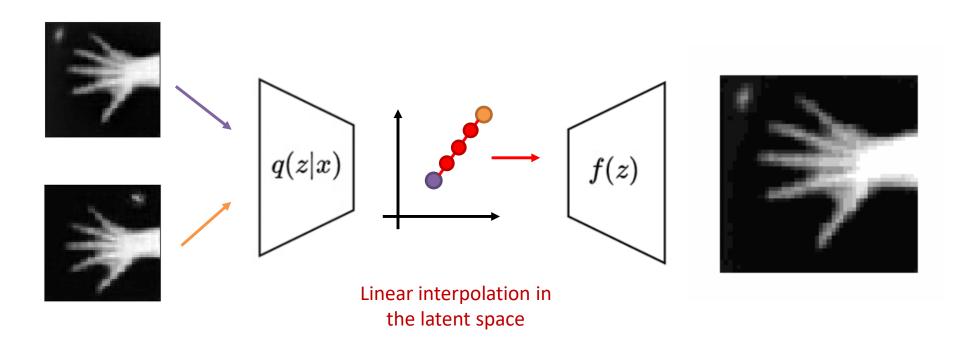


Sampling from the latent space $\mathcal{N}(0, I)$ does not guarantee to obtain a reconstructed image from the target distribution

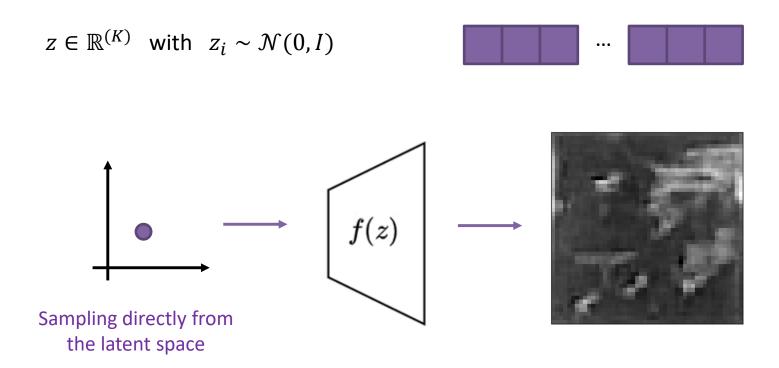
- Illustration from Mednist dataset
 - (train,valid,test) = (1491,373,223)
 - Input image size: 48x48 / latent space K=432 (compression factor around 5)



Linear interpolation between two real images



Sampling directly from the latent space



A soft constraint on the latent space to remain close to $\mathcal{N}(0,I)$ is not sufficient to build generative models that effectively learn a target distribution

The denoising diffusion probabilistic models

DDPM

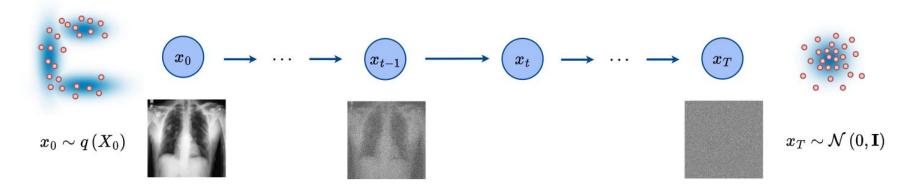
All the mathematics are described in the following blog

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

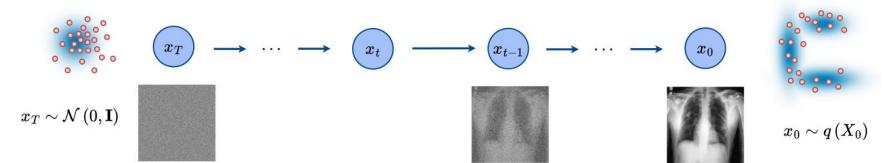
Basic idea of denoising diffusion model

How can a hard constraint be enforced to ensure a direct transformation from the latent space (modeled as a Gaussian) to the target distribution?

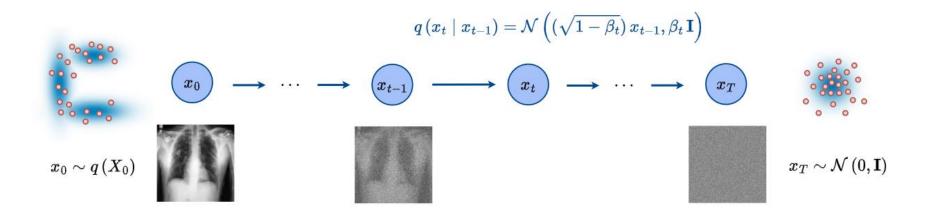
Noising process



Denoising process



Noising process (forward diffusion process)



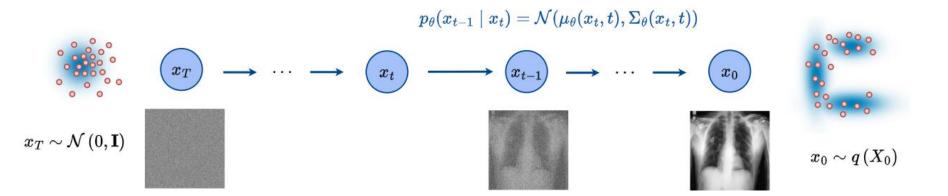
Defined as a sequence of normal distributions

$$q\left(x_{t}\mid x_{t-1}
ight)=\mathcal{N}\left(\left(\sqrt{1-eta_{t}}
ight)x_{t-1},eta_{t}\mathbf{I}
ight)$$

lacktriangle Forward process variances eta_1, \cdots , eta_T with values from 0 to 1

$$egin{array}{ll} ext{if} & eta_t = 0, \quad ext{then} & q(x_t \mid x_{t-1}) = x_{t-1} \ ext{if} & eta_t = 1, \quad ext{then} & q(x_t \mid x_{t-1}) = \mathcal{N}(0, \mathbf{I}) \end{array}$$

Denoising process



lacktriangle The denoising process $p_{ heta}$ is learned by the model

$$p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t, t), \Sigma_{ heta}(x_t, t))$$

- ► Knowing x_{t-1} , we need to predict $μ_θ$ and $Σ_θ$
 - $\Sigma_{\theta} = \sigma_t^2 I$ with $\sigma_t = \beta_t$ for simplification purposes
 - Predicting μ_{θ} involves estimating the added noise ε_t from x_{t-1} to x_t

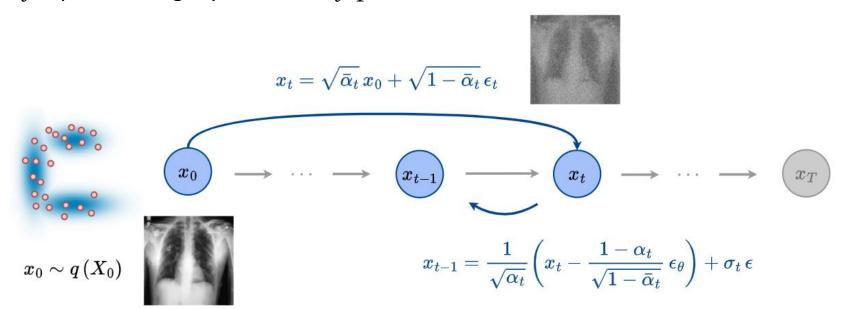
Training procedure

- ► Choose a random step $t \in \{0, \dots, T\}$
- \triangleright Add t steps of noise to our input image x_0 , and obtain a noisy image x_t

$$\left(x_t = \sqrt{ar{lpha}_t}\,x_0 + \sqrt{1-ar{lpha}_t}\,\epsilon_t\,
ight)$$

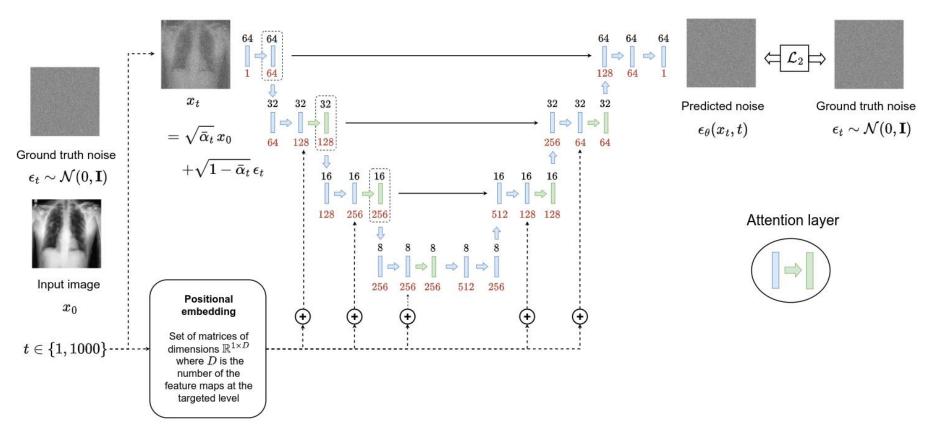
$$\left\{egin{array}{l} lpha_t = 1 - eta_t \ ar{lpha}_t = \prod_{k=1}^t lpha_k \end{array}
ight. \left\{egin{array}{l} \epsilon_t = \mathcal{N}\left(0, \mathbf{I}
ight) \ ext{added noise from } x_{t-1} ext{ to } x_t \end{array}
ight.$$

A U-Net model is trained to predict the noise pattern ε_{θ} that needs to be subtracted to x_t to predict a slightly denoised x_{t-1}



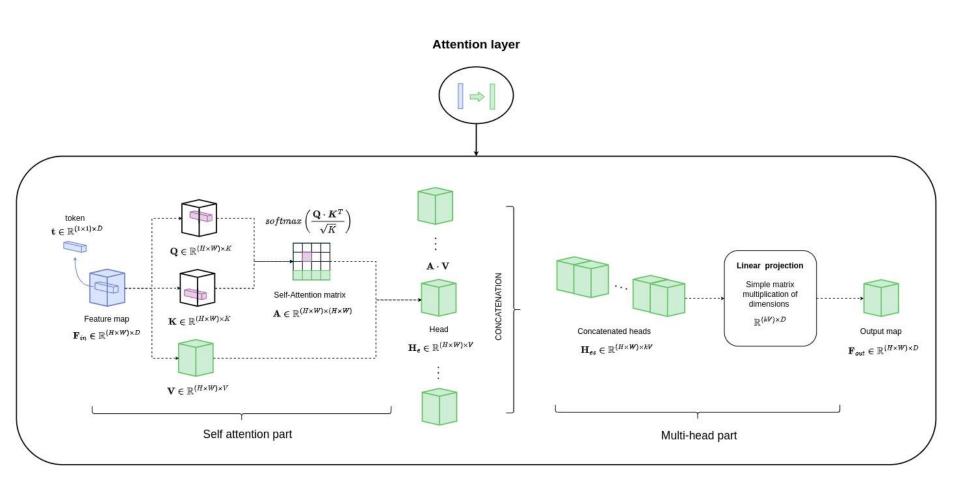
Standard U-Net with attention layers and position encoding to integrate temporal information

 \rightarrow Integration of t is necessary because the added noise varies over time

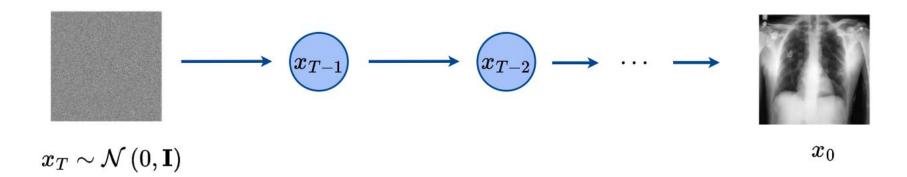


Architecture

→ Attention layer



Inference: generation of synthetic data



- ► Generate a random image $x_T \sim \mathcal{N}(0, I) \in \mathbb{R}^{N \times M}$
- \blacktriangleright At each step from T to 0, use the U-Net model to compute

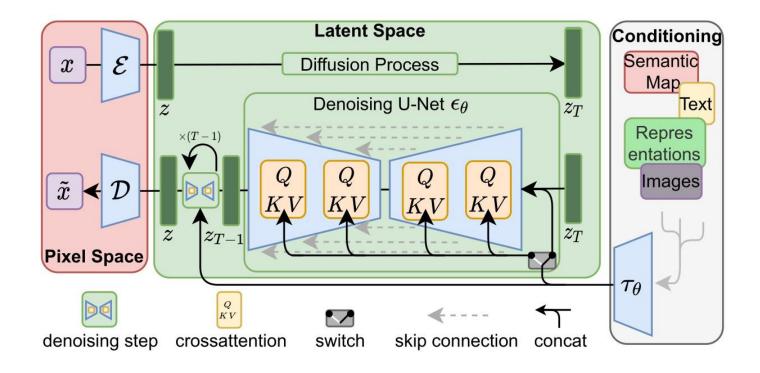
$$x_{t-1} = rac{1}{\sqrt{lpha_t}}igg(x_t - rac{1-lpha_t}{\sqrt{1-arlpha_t}}\,oldsymbol{\epsilon_ heta}(x_t,t)igg) + \sigma_t\,\epsilon$$
 U-Net

with
$$\epsilon \sim \mathcal{N}\left(0,\mathbf{I}
ight)$$
 and $\left\{egin{array}{l} lpha_t = 1 - eta_t \ ar{lpha}_t = \prod_{k=1}^t lpha_k \end{array}
ight.$

Practical application

Latent diffusion models

- VAE is learned independently of DDPM and its architecture is fixed
 - Efficiently reduce the dimensionality of the input space
 - Efficiently initiate the Gaussian diffusion process
- LDM architecture



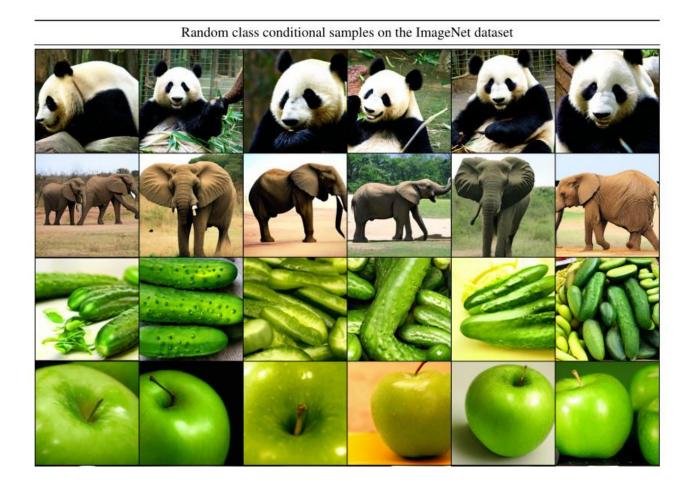
Properties

Parameters	LDM – 256×256
z dimensions	64 × 64 × 3
Diffusion steps	1000
Noise scheduler (eta_t)	linear
Number of parameters	274 Million
Channels	224
Channel multiplier	1, 2, 3, 4
Levels for attention	2, 3, 4
Number of head	1
Batch size	48
Iterations	410 k
Learning rate	9.6 e^{-5}

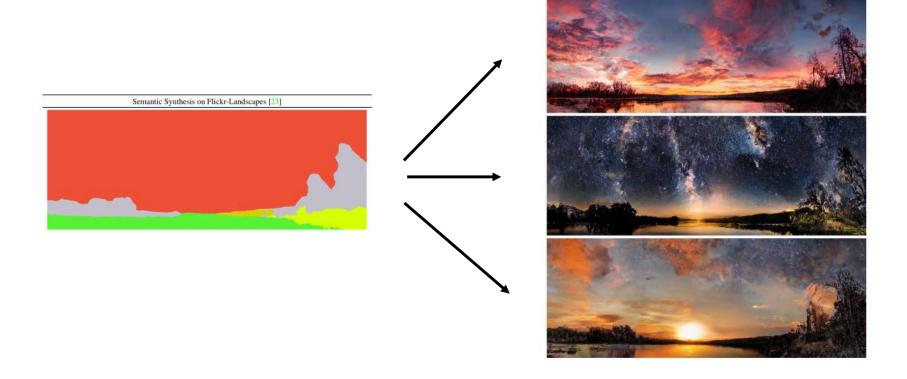
Random generation of synthetic images without conditioning learned from the CelebA-HQ database

Random samples on the CelebA-HQ dataset

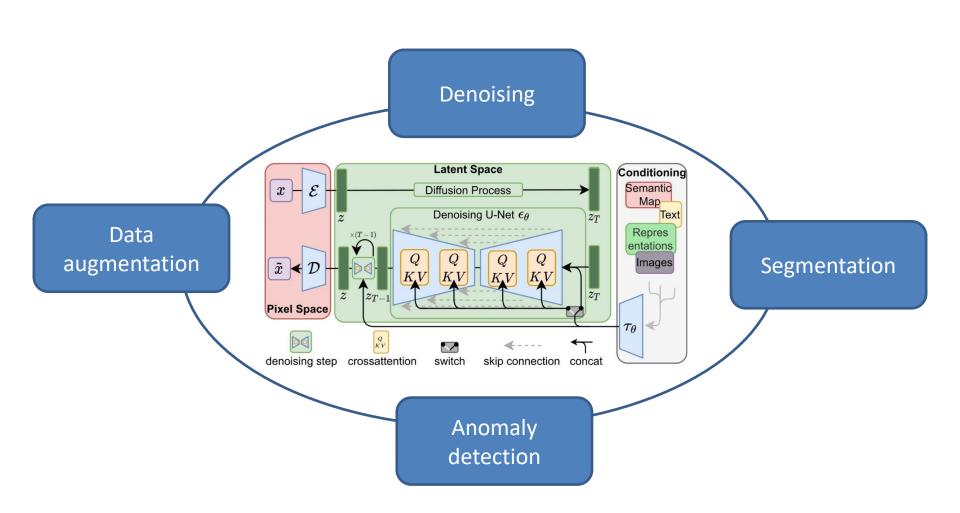
Random generation of synthetic images with conditioning on the class learned from the ImageNet database

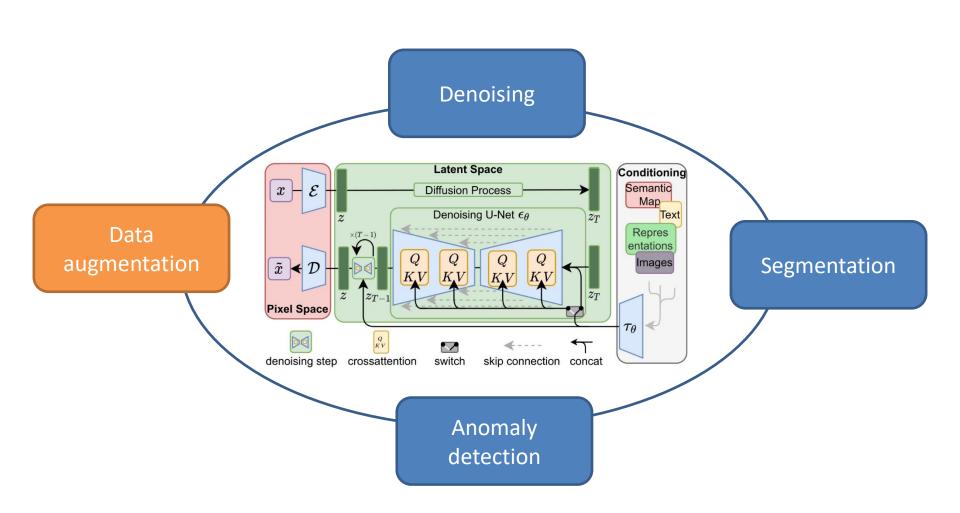


Random generation of synthetic images with conditioning on masks learned from the Flickr-landscapes database

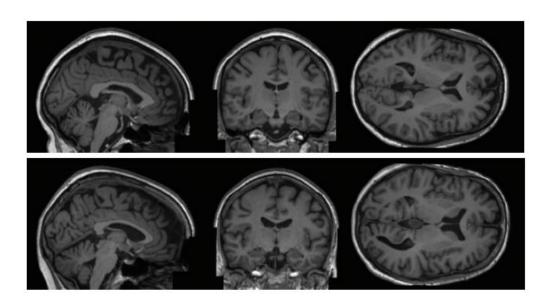


Medical applications

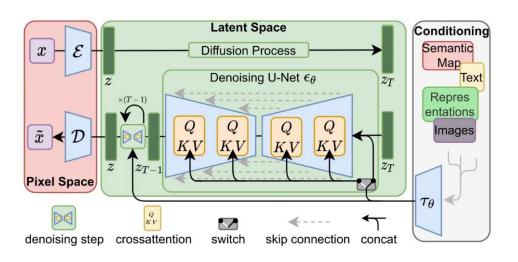




- Synthetic dataset generation for brain MR volumes [Walter et al., MICCAI workshop 2022]
- UK Biobank dataset
 - ➤ 3D MR volumes (T1w)
 - ► Training: 31,740 patients
 - with covariables: age (44 to 82 years), gender (53% women), brain structure volumes
 - Quality of synthetic data measured using FID: Fréchet Inception Distribution

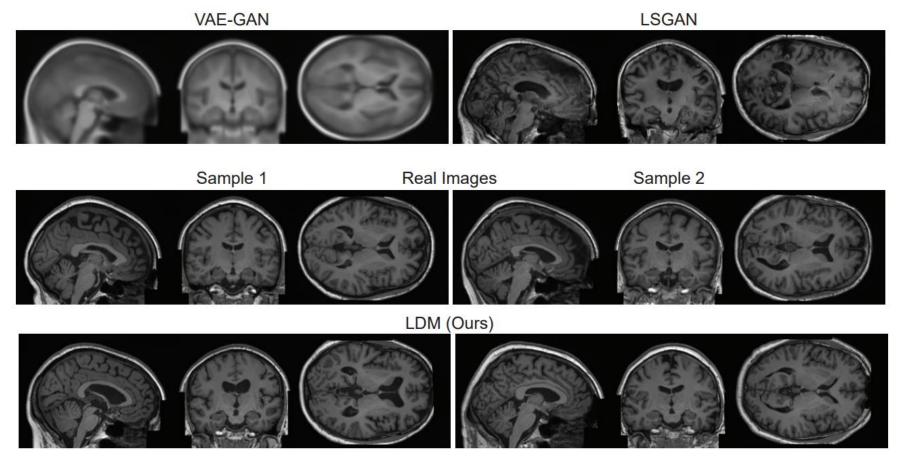


- VAE
 - ➤ 3D convolutions
 - Latent space dimension: 20 x 28 x 20
- DDPM
 - 3D convolutions
 - ► T=1000 time steps
 - Conditioning: vector encoding of each covariable

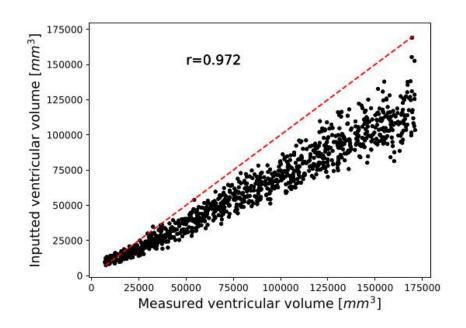


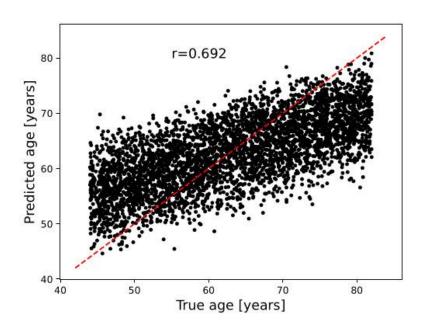
- Results
 - ► FID: generated from 1,000 samples drawn from each of the two distributions to be compared

	$\mathbf{FID}\downarrow$
LSGAN	0.0231
VAE-GAN	0.1576
LDM	0.0076
Real images	0.0005

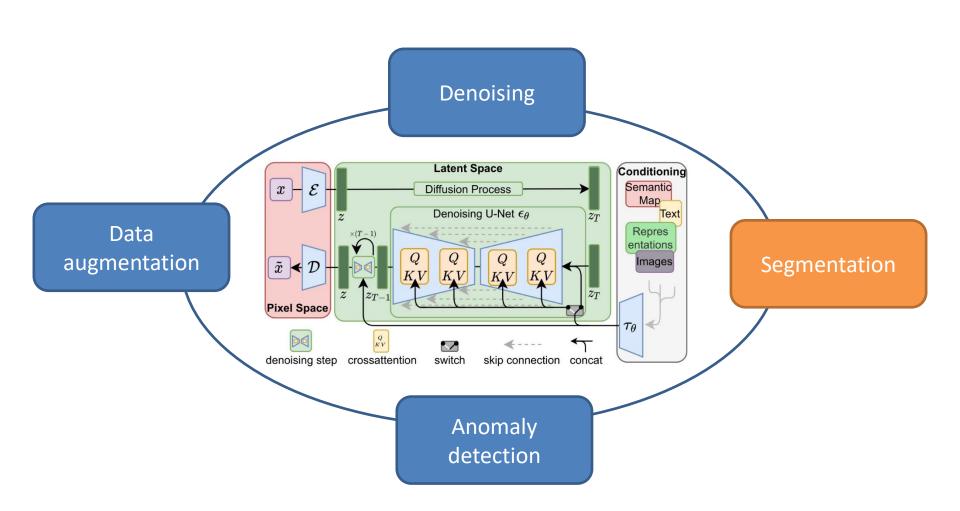


- Results
 - SynthSeg model was used to automatically measure brain volumes from synthetic data
 - ➤ A 3D CNN trained from the UK biobank was used to automatically predict the age from the synthetic data

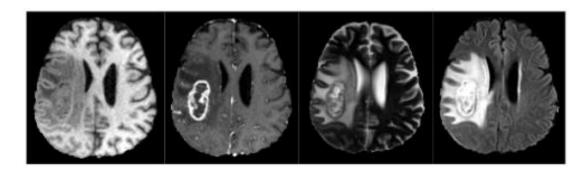




- Synthetic dataset of 100,000 human brain was generated and made publicly available with the conditioning information
- Promote data sharing with privacy guarantees



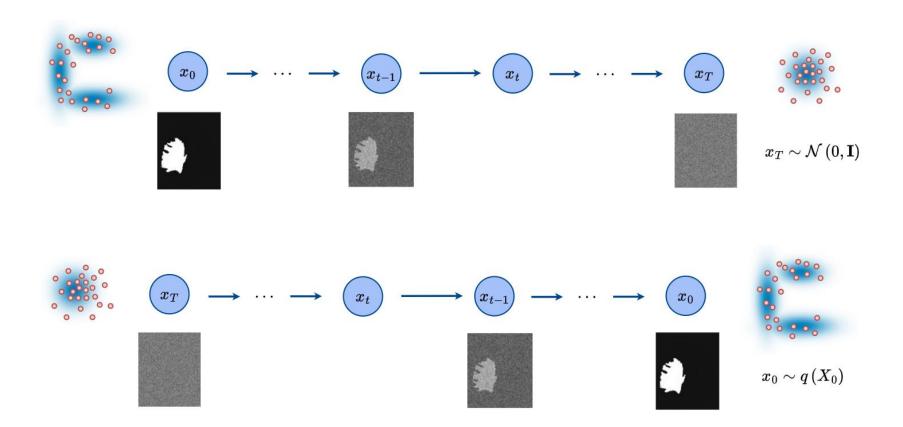
- Segmentation of tumors from MR images [Wolleb et al., MIDL 2022]
- BRATS2020 dataset
 - ▶ 4 different MR sequences per patient (T1, T2, T1ce, FLAIR)
 - Training: 332 patients with 3D volumes sequences => 16,998 2D images
 - Testing: 37 patients with 3D volumes sequences => 1,082 2D images



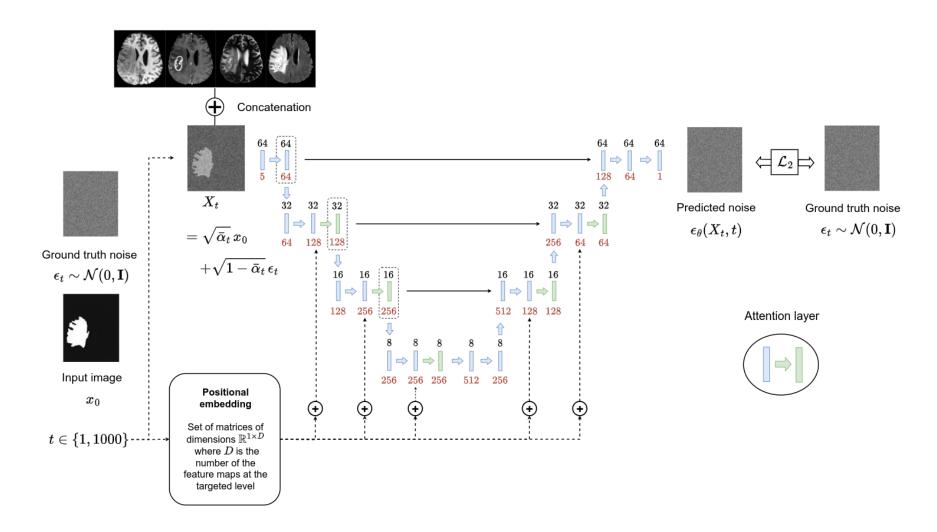
4 MR inputs per patient (T1, T2, T1ec, FLAIR)

Mask output

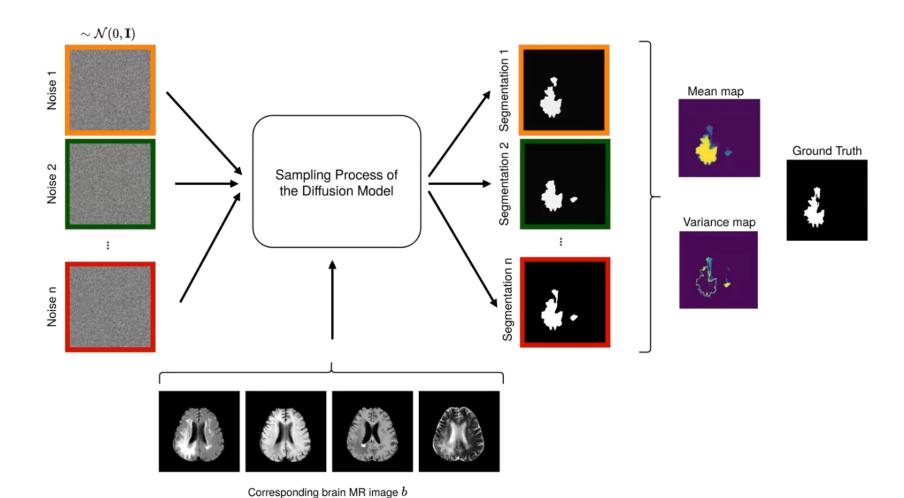
Learn the underlying distribution of tumor segmentation masks



Conditioning with the 4 MR images using concatenation scheme

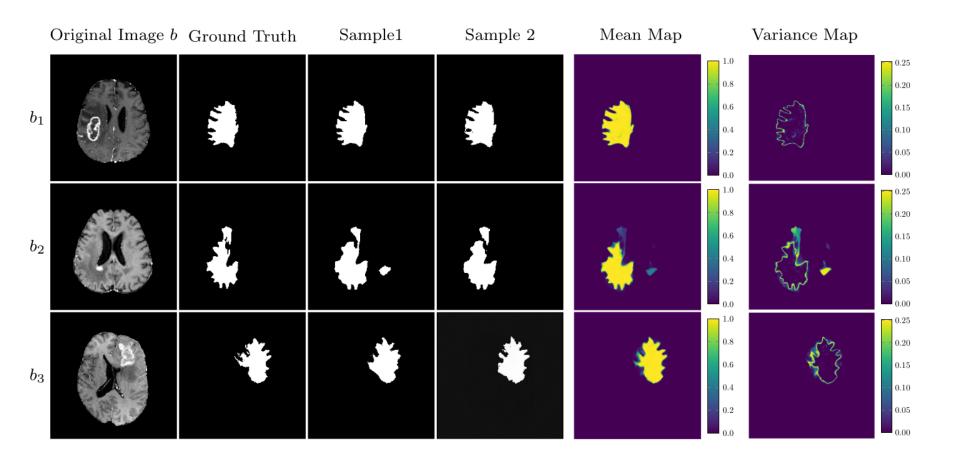


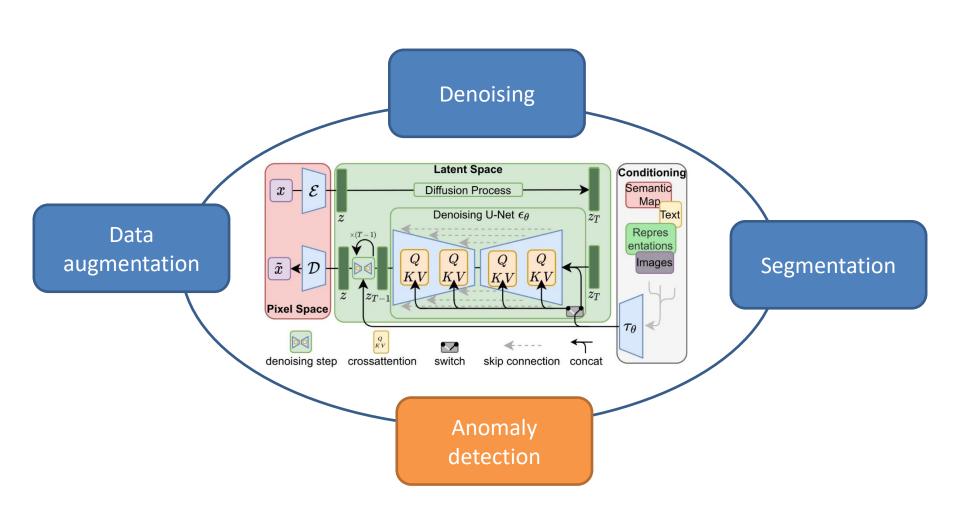
At inference time: modelling of the segmentation uncertainty



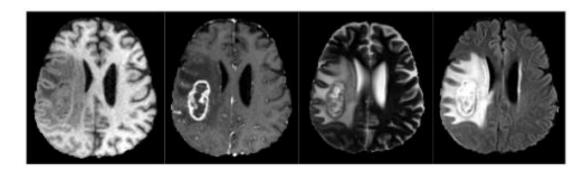
Diffusion models for image segmentation

Results





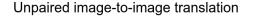
- Anomaly detection from MR images [Wolleb et al., MICCAI 2024]
- BRATS2020 dataset
 - ▶ 4 different MR sequences per patient (T1, T2, T1ce, FLAIR)
 - ► Training: 332 patients with 3D volumes sequences => 16,998 2D images
 - > 5,598 healthy 2D slices (without tumor) / 10,607 disease 2D slices

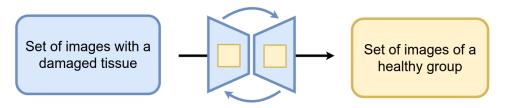


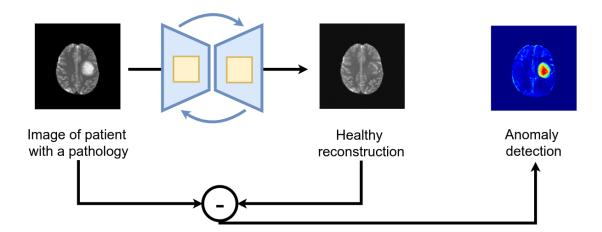
4 MR inputs per patient (T1, T2, T1ec, FLAIR)

Mask output

General idea







How to preserve spatial anatomical information using a diffusion process?

- Denoising Diffusion Implicit Models (DDIM)
 - Reformulation of the diffusion process
 - Remove the random component $\sigma_t \epsilon$

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon_{\theta}(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \cdot \epsilon_{\theta}(x_t, t)$$

$$x_{t+1} = x_t + \sqrt{\bar{\alpha}_{t+1}} \left[\left(\sqrt{\frac{1}{\bar{\alpha}}} - \sqrt{\frac{1}{\bar{\alpha}}} \right) x_t + \left(\sqrt{\frac{1}{\bar{\alpha}}} - 1 - \sqrt{\frac{1}{\bar{\alpha}}} - 1 \right) \epsilon_{\theta}(x_t, t) \right]$$

$$x_{t+1} = x_t + \sqrt{\bar{\alpha}_{t+1}} \left[\left(\sqrt{\frac{1}{\bar{\alpha}_t}} - \sqrt{\frac{1}{\bar{\alpha}_{t+1}}} \right) x_t + \left(\sqrt{\frac{1}{\bar{\alpha}_{t+1}} - 1} - \sqrt{\frac{1}{\bar{\alpha}_t} - 1} \right) \epsilon_{\theta}(x_t, t) \right]$$

Make the diffusion process deterministic

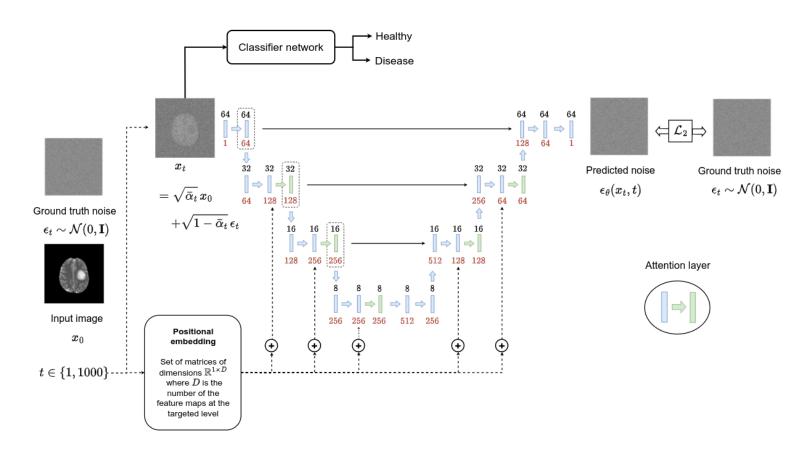
Iterative noise encoding

for
$$t=0,\cdots T$$

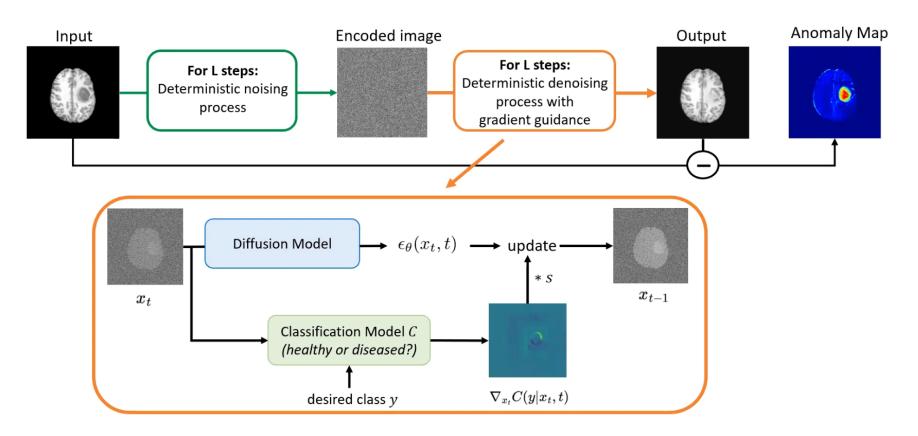
Iterative noise decoding

for
$$t=T,\cdots 0$$

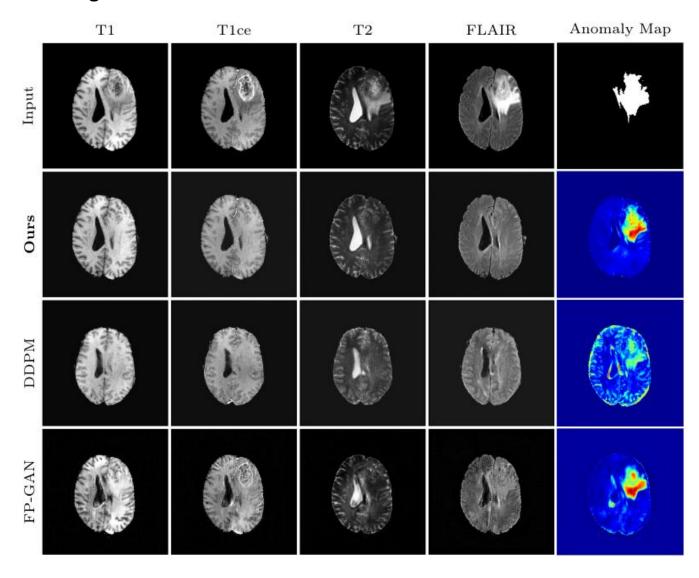
- Main algorithm part 1
 - Train a classical DDPM on the dataset containing healthy and disease images
 - Train a classifier network ${\it C}$ to predict the class label (healthy vs disease) from any noisy images x_t



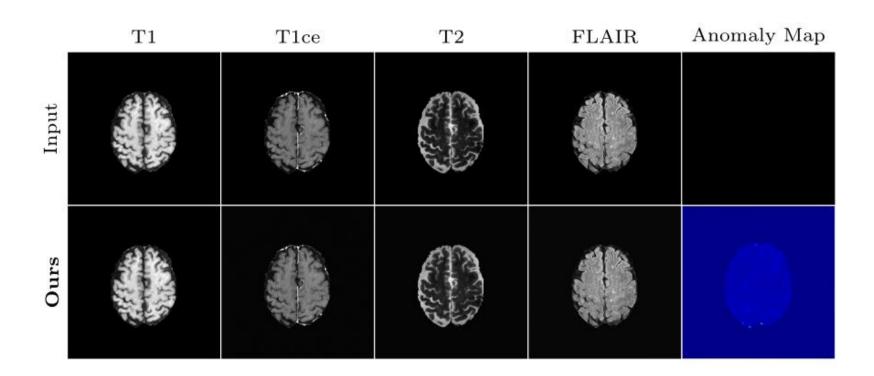
- Main algorithm part 2
 - Use DDIM process
 - Compute the gradient of the classifier to guide the removing of anomaly regions



Result on an image with a tumor



Result on an image without any tumor



That's all folks

What is the purpose of diffusion models?

Recent extensions for video synthesis

https://lumiere-video.github.io/#section_image_to_video

Image-to-Video

* Hover over the video to see the input image and prompt.

Latent diffusion model (LDM)

- Random generation of synthetic images with conditioning on text learned from LAION-400M database
 - → Using the BERT tokenizer
 - → This model has over 1.45 billion parameters!

'A painting of the last supper by Picasso.'