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(A short intro to)
Deep learning for image 

reconstruction
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Reconstruction in Medical Imaging 3

Computerized tomography (CT) Ultrasound Imaging

Magnetic Resonance (MRI)

Positron emission 

tomography (PET)
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Inverse Problem 4
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Inverse Problem

 Internal unknowns from external measurements

 Most medical imaging problems are 
 Linear 

 Corrupted by noise 

 In a discrete setting
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Computed Tomography (CT) 6

CT slice (unknown)

Sinogram (measured)
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Computed Tomography (CT) 7

CT slice (unknown)

Sinogram (measured)
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Different Options

 1. Inversion “by hand” 
 Model the forward and invert analytically

 2. Optimization of handcrafted functionals
 Build cost function from prior knowledge about the solution/measurements

 Minimize the cost function

 3. “Learn” to reconstruct
 (Probably what you expect from this talk)
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Option #1:

Analytical Methods
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1. Analytical Methods

 Example with CT (filtered backprojection)
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1. Analytical Methods

 Pros
 Elegant

 Theoretical guarantees

 Usually fast implementation

 Cons
 Not always possible to derive a solution

 Influence of noise?

 What if only few measurements are available?

o For dose reduction/short scans

o Short scans are less prone to motion artefacts
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Option #2:

Optimization-Based Methods
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2. Optimization-Based Methods

 Look for an image with small residuals

 A simple example:
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Algebraic reconstruction 

technique (ART) [Gordon R., 1970]
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2. Optimization-Based Methods

 Look for an image with small residuals

 Influence of noise
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2. Optimization-Based Methods

 Look for an image with small residuals

 Influence of noise
 More measurements (i.e., M > N)

 Prior knowledge (e.g., f > 0)

15
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162. Optimization-Based Methods

 Typical cost functions

 Data fidelity is related the noise 

model/measurements confidence. 

E.g.

 Regularization convey prior 

knowledge about the solution. 

Data fidelity Regularization (prior)
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172. Optimization-Based Methods

 Typical regularizers

 Quadratic / Tikhonov regularization

… leads to

 Sparsity-promoting

… requires iterative algorithms

gradient of

data fidelity 

proximal 

operator of 

regularizer
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182. Optimization-Based Methods

 Illustrative results

++ Analytical solution 

(fast computation)

- - Image quality

- - Iterative algorithms 

(time consuming)

++ Image quality 

N = 64 × 64 image 

M = 333 measurements

N / M ≈ 8% 
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Option #3:

Learning-Based Methods
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3. Learning-Based Methods

 Optimization- vs learning-based methods
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N = 64 × 64 image 

M = 333 measurements

N / M ≈ 8% 
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3. Learning-Based Methods

 Our dream is to find

… able to reconstruct well any image, i.e., something like

… Often intractable

 We have to reduce the dimension of the solution space
 E.g.,

Minimum mean 

square error 

(MMSE) estimator

Linear MMSE 

estimator
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3. Learning-Based Methods 22

 Linear MMSE

Covariance of 

measurements
Covariance between 

measurements and 

unknowns

measurement

u
n

k
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o
w
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slope 
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3. Learning-Based Methods

 Learning approaches only reduce the dimension of the solution 

space to a family of non linear mappings

 Training phase

o Image-measurement pairs

o Loss (e.g., mse)

o Optimization machinery (i.e., through PyTorch/TensorFlow)

 Reconstruction phase

STL-10 dataset 

D.P. Kingma and J.L Ba, 

ICRL, 2015 (> 215k citations)
A. Paszke et al., NEURIPS, 

2019 (> 22k citations)
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243. Learning-Based Methods

 Pros
 Reconstruction performance

o Empirically excellent (i.e., almost 

always outperform optimization-based 

approaches)

 Computation times

o Training phase is slow, i.e., several 

hours or days

o Inference is fast, i.e., tens or hundreds 

of milliseconds

 Cons

 No reconstruction guarantees 

(mathematicians don’t like it)

 Black box (radiologists don’t like it)

 Practical issues

o How to choose the model?

[B. Zhu et al., Nature Letters, 

2018] (> 1.5k citations)

“Automap” 

(> 6.109 param)
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3.1. Post-Processing

 Two-step methods

where          is an approximate inverse of the forward, i.e., 

Image

Domain

Measurement

Domain
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3.1. Post-Processing

 Neural networks with frozen layers

Image

Domain

Measurement

Domain

network
parameters

Atilde = nn.Linear(..., bias=False, ...)
Atilde.weight.requires_grad = False

D = nn.Module(...)
requires_grad = True
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3.2. Unrolling (a.k.a. Unfolding)

 Iterative methods

Image

Domain

Measurement

Domain

network
parameters

data fidelity 

proximal operator

Parameters can be shared across iterations or not
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3.3. Training

 With a “physical” module: no need for meas/image pairs

Image

Domain

Measurement

Domain

physical 
module
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3.3. Training 29

 STL-10 (training: ~100k images; test: 8k images)
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3.4. Plug-and-Play

 Idea: use denoisers (e.g., BM3D) in place of proximal operators

 The denoiser can be data-driven. E.g.                          with

30

proximal operator Denoiser
Noise level

Gaussian noise 
with variance σ2
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313.4. Plug-and-Play

 Idea: use denoisers in place of 

proximal operators

 Pros
 Training is independent of the direct 

model

o Flexibility 

o Applies to any inverse problem

 Adapt to varying noise levels via 

hyperparameter

 Cons
 Manual tuning of hyperparameter

 Many iterations required compared 

to supervised methods (E.g., K = 

100—1,000 vs K = 1—10)

o Longer reconstruction times

o Higher memory requirement 

Denoiser Noise level
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3.5. Untrained/unsupervised

 Deep Generative Models

 Pros
 Only requires measurements from a single acquisition

 Theoretical guarantees (based on compressed sensing)

 Cons
 Long and challenging reconstruction

 Training of DGM is challenging (lots of data/long times)

32

Random vector
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3.5. Untrained/unsupervised

 Deep Image Priors

 Pros
 Only requires measurements from a single acquisition

 The reconstruction quality is surprisingly good

 Cons
 Long reconstruction times

 No guarantees

33

Fixed random vector

Note: Minimization must be 

stopped before convergence 

(tends to noise otherwise)
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Conclusions
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Benchmark

Memory

Requirement

Recon-

struction

(inference)

Training
Hyperparam/ 

Comment

Supervised
Low to 

intermediate
1—10

No adaptation 

(forward, 

noise)

PnP
Intermediate 

to high
100—1,000 Noise level

Untrained Usually low > 1,000 —
Number of 

iterations
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Noise robustness 36

Increasing training noise

Increasing 

test

noise

[N. Ducros, ISTE 

Book chapter, 2022])
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37Conclusions

 Data-driven DL-based 

approaches for image 

reconstruction are
 Powerful!

 No longer black boxes

 Supervised, PnP, based on generative 

models, untrained, etc.

 Supervised vs PnP methods
 Supervised methods usually require 

fewer parameters

 Supervised methods performs very 

well

 PnP methods adapts to different

o Imaging modalities (i.e., forward 

models)

o Noise levels

 Warning
 Handling noise is still an issue. 

o Evaluate the robustness to noise level 

deviations

o Train with noise (supervised)

o Tune hyperparameters (PnP)

 Hands-on session on 

Friday at 2 pm! 


