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Context e )

Computer-aided diagnosis

Training set Patient

Machine learning / deep learning task:
classification

Disorder targeted: dementia

Imaging modality: T1-weighted MRI

Feature extraction

Cognitively Alzheimer’s
normal disease

Model training and
optimisation

Application of
model
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A (fake & ) typical MICCAI conclusion

‘Our proposed deep learning framework achieves superior accuracy
(86.6%) and robust generalizability in distinguishing Alzheimer’s
disease patients from cognitively normal subjects, outperforming
established methods on the ADNI dataset. The model provides
anatomically interpretable results by highlighting disease-relevant
regions such as the hippocampus, demonstrates high reproducibility
and fast inference, and, by eliminating manual feature engineering
while aligning with clinical biomarkers, is both practical and

explainable—making it

)



w1 o { KT
5 SN
SN

R B 5
........... =y

DLMI202

Ensuring Robust Al in Medical Imaging

* Meaningful Metrics

» Rigorous Statistical Analysis



i ) Lo

N A LU
. = s ® /"~-
L. 1 L e o\

DLMI202

Ensuring Robust Al in Medical Imaging



ul:llm

Validation on Real-World Data DLMI2025S 6

ML/DL for dementia diagnosis & prognosis

 Avery active field of research
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l B Deep learning
ol l l l l \.

[ |
Qé\QQQ
'»'»'»'»'»’»%'»'»'»'»'»'»'»'»'»'»

—_
(8,
o

Number of articles

Sy
o



DLMI12025 % 7

Motivation Cognitively Alzheimer’s

normal disease

» Most machine learning algorithms for computer-
aided diagnosis of dementia developed and
applied on research data
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Motivation Cognitively Alzheimer’s

normal disease

» Most machine learning algorithms for computer-
aided diagnosis of dementia developed and
applied on research data

Objective
> Validate these algorithms on
» Develop robust algorithms able to handle
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AP-HP: a network of 39 hospitals
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AP-HP clinical data warehouse

ASSISTANCE ' HOPITAUX
PUBLIQUE DE PARIS

Entrepot de Données de Santé
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Objective

> ldentify patients with dementia among a clinical data warehouse from
anatomical MRI using machine learning

Cohort definition

* Inclusion criteria
o Age >18 years
o At least one cerebral MRI scan including T1-weighted 3D acquisition
o Clinical data available (available for ~18% of the subjects with a 3D T1 MRI)

« Definition of the classes of interest using diagnosis (ICD-10) codes

No dementia and no lesions (NDNL)
o Dementia vs <

No dementia with lesions (NDL)

.

Bottani et al., Medical Image Analysis, 2023
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Cohort
Category N . N Age e
patients images (mean zstd [range]) (%F)
Dementia 756 887 71.17 + 11.58 [18,90] 50.34%
NDNL 756 939 71.17 + 11.58 [18,90] 50.34%
NDL 756 997 71.17 + 11.58 [18,90] 50.34%
Total 2268 2823 71.17 £+ 11.58 [18,90] 50.34%

Bottani et al., Medical Image Analysis, 2023



Classification algorithms

* Machine learning: support vector machine
o Input: grey matter density map

* Deep learning: convolutional neural networks
o Input: minimally processed MRI

Evaluation setting
« Test set of 152 patients/images per class
« 5-fold cross-validation

Bottani et al., Medical Image Analysis, 2023
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Results

Classification strategy

Data set  Task SVM with ResNet with
grey matter maps minimally processed MRI
o D vs NDNL 68.75 73.62
Clinical
D vs NDL 73.09 72.24
Research AD vs CN 86.80 85.30

Balanced accuracy (%)

Decrease of 15 percent points in balanced accuracy:
clinical data set more heterogenous

Bottani et al., Medical Image Analysis, 2023
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Cohort
Category N . N Age Sex % Good/rr.Iedium % V\.Iit.h
patients images (mean zstd [range]) (%F) quality gadolinium
Dementia 756 887 71.17 £+ 11.58 [18,90]  50.34% 57.72%** 24.80%**
NDNL 756 939 71.17 £+ 11.58 [18,90]  50.34% 36.42%** 66.13%**
NDL 756 997 71.17 £+ 11.58 [18,90]  50.34% 52.25% 63.59%**
Total 2268 2823 71.17 + 11.58 [18,90] 50.34% 48.71% 52.24%

p-value corrected with Bonferroni < 0.05

Bottani et al., Medical Image Analysis, 2023




T1-weighted image quality control
* Objectives

» Reject images that are not proper T1-
weighted anatomical MR images

» Recognise images acquired after
injection of a contrast agent
(gadolinium)

» Rate the overall image quality
(good/medium/low)
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T1-weighted image quality control

™ ; A :
edium quality Good quality <+<— Manual quality control
(28%) o
(16%)
Grade
o 1 2
- Contrast
Low quality - Noise
(30%)
Straight reject
9 (26%) )

Bottani et al., Medical Image Analysis, 2022



DLMI12025

T1-weighted image quality control

 Examples
Good quality Medium quality Low quality Straight Reject

Injection of
gadolinium

Bottani et al., Medical Image Analysis, 2022
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T1-weighted image quality control

KMedium quality
(28%)

Good quality
(16%)

Grade

o
=
N

Low quality
(30%)

Straight reject

\ (26%)

Contrast

Motion

Noise

J

<«<— Manual quality control

Automatic quality control

l

Bottani et al., Medical Image Analysis, 2022



T1-weighted image quality control
* Results

» Reject images that are not proper T1-
weighted anatomical MR images

» Recognise images acquired after
contrast injection

ey

> Rate the overall 'image qual]ty Without contrast With contrast

*»» Good vs medium: balanced
accuracy > 70%

Bottani et al., Medical Image Analysis, 2022
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Cohort
Category N . N Age Sex % Good/rr.1edium % V\.Iit.h
patients images (mean xstd [range]) (%F) quality gadolinium
Dementia 756 887 71.17 £+ 11.58 [18,90]  50.34% 57.72%** 24.80%**
NDNL 756 939 71.17 £+ 11.58 [18,90]  50.34% 36.42%** 66.13%"*
NDL 756 997 71.17 £+ 11.58 [18,90]  50.34% 52.25% 63.59%"*
Total 2268 2823 71.17 + 11.58 [18,90] 50.34% 48.71% 52.24%

Bottani et al., Medical Image Analysis, 2023

p-value corrected with Bonferroni < 0.05
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Diagnosis prediction from T1w MRI

» Results with training subsets

Training set (n=88 per class)

Quality: Quality: Quality: Quality:
Task good/medium + low good/medium good/medium good/medium
Gadolinium: Gadolinium: Gadolinium: Gadolinium:
presence & absence  presence & absence absence absence/synthetic
D vs NDNL 69.47 60.26 51.51 51.71
D vs NDL 73.03 68.29 50.00 54.08

Balanced accuracy (%) - Classification strategy: SVM with grey matter maps

Bottani et al., Medical Image Analysis, 2023
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Contrast-enhanced to non-contrast-enhanced image translation
*  Methods

T1nce
. \ True
Fake
(3 Y Synthetic

Tlce K / T1nce _
Discriminator « Paired T1ce/T1nce MRI
— « 230 pairs for training
Generator o 77 paiI‘S for teSting
3D U-Net like generators Conditional GANs
» Residual connections « 3D U-Net like generators
« Attention gates » 3D patch discriminator

« Transformer layers

Bottani et al., BMC Medical Imaging, 2024
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Contrast-enhanced to non-contrast-enhanced image translation

e Results Test

€ good

Tlnce

Synthetic Tlnce

Bottani et al., BMC Medical Imaging
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Contrast-enhanced to non-contrast-enhanced image translation

 Results

1. Image synthesis accuracy
o Mean absolute error

o Peak signal to noise ratio Good synthesis accuracy
o  Structural similarity

2. Segmentation fidelity i ™
o Absolute volume difference inica
o Volume difference
Reliable feature extraction
/ Grey matter t1-volume-tissue-
\ map segmentation  J

Bottani et al., BMC Medical Imaging, 2024
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Diagnosis prediction from T1w MRI

» Results with training subsets

Training set (n=88 per class)

Quality: Quality: Quality: Quality:
Task good/medium + low good/medium good/medium good/medium
Gadolinium: Gadolinium: Gadolinium: Gadolinium:
presence & absence  presence & absence absence synthetic
D vs NDNL 69.47 60.26 51.51 51.71
D vs NDL 73.03 68.29 50.00 54.08
Balanced accuracy (%) - Classification strategy: SVM with grey matter maps
é )
Classifier exploits biases of Image translation can be useful to limit
the training set bias due to the injection of gadolinium
\. 4

Bottani et al., Medical Image Analysis, 2023
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Diagnosis prediction from T1w MRI

* Final results with unbiased training sets

Classification strategy

Training set Task SVM with ResNet with
grey matter maps minimally processed MRI
Research data set D vs NDNL 64.08 61.84
%DN' D vs NDL 69.47 61.78
Clinical data set with D vs NDNL 61.91 63.22
synthetic images of
good/medium quality D vs NDL 64.61 67.50

Balanced accuracy (%)

[Balanced accuracy still ~20 percent points lower than when testing on research data set]

Bottani et al., Medical Image Analysis, 2023
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Diagnosis prediction from T1w MRI
 Summary of the results

» Balanced accuracy much lower than in research context

» Difference in proportions of images with gadolinium and of medium/good
quality can bias the results

% Solution: training the algorithms using only research data or only
clinical images of good/medium quality without gadolinium

« Conclusion

» Quality control & data set homogenisation essential steps
« Challenge remaining

» Lack of robustness of the labels

Bottani et al., Medical Image Analysis, 2023
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Computer-aided diagnosis of neurodegenerative diseases

- Diagnosis prediction

Dementia
' m %: No dementia (and no lesions | with lesions)
« Lesion detection
oo ot
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3D FLAIR cohort constitution

AP-HP Inclusion
he CD .
Clinical Data Warehouse Criteria Query on the CDW Available for the
APPRIMAGE
4 ) ( Age > 18 - ~ project
IMAGING DATA L years ~122 000 patients
. (clinical data 13 000 3D
25 million | available for 67% [ | FLAIR MRIs
1maging exams At least one fth tient
J cerebral 3D \ of the patients) P
| FLAIR MRI scan

4 )
CLINICAL DATA

Medical records of
26 million patients

Loizillon et al., Medical Image Analysis, 2025
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3D FLAIR image quality distribution

( ™
Good quality
Medium (47%)
quality
(364) Grade
o 1 2
- Contrast
- Motion
\ NN -
Low quality Straight reject
\_ (15%) (8%) p

<«<— Manual quality control

Automatic quality control?

l

Good
% Medium

Loizillon et al., Medical Image Analysis, 2025
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3D FLAIR automatic quality control

* Annotated data available for training:
« 358 3D FLAIR MRIs
« 5000 3D T1w MRIs

Task: Low vs Medium/Good

FLAIR T1iw = Domain gap
Annotators 86.54 91.56
Training with FLAIR 69.90 + 2.38 48.20 + 0.81
Training with T1w 50.06 + 1.71 83.51 +0.93
Training with T1w + FLAIR 58.05 + 4.45 82.37 +0.85

Balanced accuracy (%)

Loizillon et al., DART@MICCAI, 2024
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Domain adaptation for 3D FLAIR automatic quality control

Source domain

5000 3D T1w MRIs
manually annotated

s -
Dg = (x;°,y;°)Ns=5000

Target domain '

5358 3D FLAIR MRIs, with
358 manually annotated Sundaresan et al., MedIA, 2021

Ty \Nyy= _ o TL o Ty\Npp=
Dr, = (x; U )N1w=5000 pp = (x; %, y;T1)N11=358

Loizillon et al., Medical Image Analysis, 2025
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Domain adaptation for 3D FLAIR automatic quality control

Good quality MRIs

Source domain
(S o S\Ng=5000
Dg = (x;7,y;°)"S

Medium quality MRIs

Low quality MRIs

Target domain

_ ¢+ TL o, Ty\N7.=303
Dr, = (x; %y L)'

Loizillon et al., Medical Image Analysis, 2025
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Domain adaptation for 3D FLAIR automatic quality control

Source domain

5000 3D T1w MRIs
manually annotated

S =
DS — (xi ;}’iS)NS 5000

Target domain '

5358 3D FLAIR MRIs, with
358 manually annotated

Ty \Nyy= _ o TL o Ty\Npp=
Dr, = (x; U )N1w=5000 pp = (x; %, y;T1)N11=358

Loizillon et al., Medical Image Analysis, 2025
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Domain adaptation for 3D FLAIR automatic quality control

Straight reject

Low vs Medium/Good Medium vs Good

(yes vs no)
Annotators 94.67 86.31 84.43
[91.32,97.40] [84.25,88.25] [82.54,86.50]
Loizillon et al 89.27 79.81 73.92
' [79.69,97.08] [74.65,84.71] [70.73,77.22]

Balanced accuracy (%)

Loizillon et al., Medical Image Analysis, 2025
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Detection of age-related white matter hyperintensities in 3D
FLAIR MRI

Healthy
Healthy input image reconstructed image

80
£
£ —
Y
l_ I
Q P ” :5 4 =
() v 2
c L
[
S
[
(el
£
Image with Pseudo-healthy Residual map
unknown diagnosis reconstructed image

Loizillon et al., MIDL, 2024
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Detection of age-related white matter hyperintensities

¢ seyaze

7 seyjaze

| seyaze4

Loizillon et al., MIDL, 2024
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Detection of age-related white matter hyperintensities in 3D
FLAIR MRI

> Robust to differences in image quality:

il ;

N
srarar,
(»)I\)—‘

Lesion’s Volume (cm?)
3

ME .
CJ
(D) 50
£
40 =2 % —
: *
| =
° 9
s i == |
Fazekas 1 Fazekas 2 Fazekas 3 Good quality Moderate quality Bad quality
MRI MRI MRI

Loizillon et al., MIDL, 2024
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Conclusions

» Quality control & data set homogenisation crucial to enable translation
of computer-aided diagnosis tools to clinical practice

» Not all Al approaches are appropriate for use in clinical practice

» Size is not the only characteristic of data sets that matters
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Centralised vs federated learning




Federated learning

Objective: _
mMi/n F(w), where F(w) := Z prFr (W)
k=1

m: total number of nodes
Pk >0

2Pk =1
F,: local objective function for the kt node

Node contribution in federated averaging

framework (MacMahan et al., AISTATS, 2017):

=
Pk = -

ng,: number of datapoints in the node
n: total number of observations studied
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Federated learning
Fed-BioMed {eF 5% {e} o2 -y

‘Open, Transparent and Trusted
Collaborative Learning for Real-World GRPC Cal GRPC Cal
Healthcare Applications’

gRPC Call

fedbiomed. org - o8
& “ es er
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A (fake & ) typical MICCAI conclusion

‘Our proposed deep learning framework achieves superior accuracy
(86.6%) and robust generalizability in distinguishing Alzheimer’s
disease patients from cognitively normal subjects, outperforming
established methods on the ADNI dataset. The model provides
anatomically interpretable results by highlighting disease-relevant
regions such as the hippocampus, demonstrates high reproducibility
and fast inference, and, by eliminating manual feature engineering
while aligning with clinical biomarkers, is both practical and

explainable—making it

)
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Image level binary classification

Confusion matrix:

Predicted diagnosis

'é True positive | False negative
on (TP) (FN)
.©
E False positive | True negative
= (FP) (TN)
Scenario A AD | CN
AD |45 | 5
50 AD patients
50 CN subjects CN| 5 | 45
Scenario B AD | CN
AD | 5 | 45
50 AD patients
500 CN subjects CN | 10 | 490

Accuracy:

TP + TN

ACC = AN PP+ TN

45 + 45

ACC= 55545
= 0.9

5+ 490

ALC = 525+ 10 + 490

5+
=0.9

Balanced accuracy:

TP TN )

Bal. ACC = 0.5x (5 —— s

45 45 )

Bal. ACC = 0.5x (5 et

= 0.9

Bal. ACC = 0.5x% (5 " 45+490+10

= 0.54

5 490 >
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Brain tumour segmentation

Popular voxel-based metrics fail to capture clinical interest
Magnetic resonance imaging, same patient, different slices

Reference Prediction Reference Prediction

Sensitivity = 0.94
(voxel-level) x

Sensitivity = 0.50
(instance-level) J

Missed lesion!

Medical example: brain-tumor segmentation
A near-perfect voxel-level sensitivity hides information on missed lesions

Reinke et al., Nature Methods, 2024
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Metrics -
Reloaded

A TrameworkK Tor trustwol tny IMmage analys

validation

s to Metrics Reloaded main paper [(1')

https://metrics-reloaded.dkfz.de
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Metrics Reloaded

b Addressed by problem-driven metrics reloaded framework
(1) Problem fingerprinting enables modality-independent metric selection
o Sensitivity BA LR+
E i 8 i . it ;
@ ncoded in - Guides towards: Fy score -
Driving biomedical problem Problem fingerprint Metric selection
Problem fingerprints encapsulate relevant properties Users are educated on pitfalls while being guided
of a driving problem in a structured manner. through the process of metric selection.
(2) Application to common use cases demonstrates broad applicability (3) Online tool guides the user
Example
input
images
| I( I | J
Example Dermatofi- :
outputs brqm?;p.e q |
J Inclusion criterion: classification at image, object or pixel level « User-centric design

Maier-Hein et al., Nature Methods, 2024
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Choose your tool

Start your selection Discover Metrics

<

L

® Problem Category Selection Metric Selection Metric Library

https://metrics-reloaded.dkfz.de
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Metrics Reloaded

* Metrics library

R STR d(a,B) = min d(a,b)
EREh 8
o= ¥ da8) + X d(Ab)
s A
TP+TN e ‘ ASSDAB) = 24 —_bee
— _ B

TP+TN+FP+FN = | ={mm l”lll}

Accuracy =

VALUE RANGE: [0, 1] T\ = Min. distances from boundary

Average Symmetric Surface Distance
Accuracy (ASSD)

1
BA = 5 (Sensitivity + Specificity)

=l TP N =l
= (e TN+ FP) = 2(

VALUE RANGE: [0, 1] T

Recall

Predicted class scores VALUE RANGE: [0, 1] 1

Average Precision (AP) Balanced Accuracy (BA)

https://metrics-reloaded.dkfz.de

Area under the Receiver Operating
Characteristic Curve (AURQOCQ)

Boundary distance d
Boundary

'’
- s V%8 °
—F'% :
| B
1

Boundary Intersection over Union
(Boundary IoU)
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Metrics Reloaded
Metrics library

DICE SIMILARITY COEFFICIENT (DSC)

Synonyms: Dice, Dice Coefficient, Serensen-Dice Coefficient, F, Score, Balanced F Score

- DSC is unaware of shapes, distances and centers (Figs. 4a, SN
2.5, SN 2.12, Extended Data Fig. 1b in [Reinke et al., 2023]).

- DSC penalizes missed pixels more in small objects (Figs. SN
2.10, SN 2.12, Extended Data Fig. 1a in [Reinke et al., 2023]).

- DSC is undefined if both the reference and prediction are
empty, and ad hoc rules need to be established depending on
the use case (Fig. SN 2.18 in [Reinke et al., 2023]).

- DSC treats oversegmentation and undersegmentation diffe-
rently (Fig. SN 2.8 in [Reinke et al., 2023]).

- DSC does not compensate for inter-rater variability (Fig. SN
2.17 in [Reinke et al., 2023]).

- DSC behaves differently in 2D and 3D settings. In 3D settings,
the additional z-dimension results in a cubical increase in erro-
neous pixels [Reinke et al., 2021].

DESCRIPTION
DSC measures the overlap between two
DSC(A,B) = 2@ _2 CYRIEIN e
+
. i I:| |A| | B| RECOMMENDED FOR
_ 2PPV.-Sensitivity ImLC SemS  ObD IS
PPV + Sensitivity ® e e o
CARDINALITIES
™ FP FN ™
A B ANB VALUE RANGE: [0, 1] T
- N:E o o o
IMPORTANT RELATIONS o
DSCis closely related to the loU = Jaccard index: DSC = 21U _ D?HN'TK)N Counting threshold based
T+loU [Dice, 1945] metric metric metric
DSCis equal to the F, Score (B=1in F, Score) at pixel level. .
RELEVANT PITFALLS RECOMMENDATIONS

- An overlap-based metric (by default the DSC or loU) should be
used in most cases of segmentation assessment. An exception
is the case of consistently tiny structures along with a noisy re-
ference.

- DSC should generally be used in combination with a
boundary-based metric if boundaries are of interest.

- DSC should generally not be considered if...

o ... there is a high variability of structure sizes within an
image or across images.

o ... inter-rater variability is requested to be compensated.

o ... over- and undersegmentation should be treated similarly.

- DSC should be considered as a metric in the medical communi-
ty rather than in the computer vision and biology communities
(where the almost identical loU is preferred).

https://metrics-reloaded.dkfz.de

MATTHEWS CORRELATION COEFFICIENT (MCC)

Synonyms: Phi Coefficient

TP-TN-FP-FN
Y (TP +FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

-
VALUE RANGE: [-1,1] T

Avalue of 0 refers to a prediction which is not better than random guessing.

DESCRIPTION RECOMMENDED FOR

MCC measures the correlation between the actual and ImLC SemS ObD InS
the predicted class. [ )

DEFINITION

[Matthews, 1975] PREVALENCE DEPENDENCY .

CARDINALITIES METRIC FAMILY

L FP FN N Counting Multi-threshold Distance-
(] () [ ) (] metric metric based metric
IMPORTANT RELATIONS

MCC can be rewritten as:

MCC :-\/ PPV - Sensitivity « Specificity « NPV --\/(1 - PPV) « (1 - Sensitivity) « (1 - Specificity) « (1 - NPV)

MCC is equivalent to the geometric mean of Markedness and Informedness.

MULTI-CLASS DEFINITION
For C classes, MCC can be defined as:
of actual class i that

c C c
Y2 DN NN en,
MCC = i
were predicted as

\jzfﬂ (Z?ﬂnii)(z i'\i‘%izjc’:l ni'j) \jZ?ﬂ(Z?:mj .)(2 i Zic’:1nj’i’) class j

n.: entry of the confusion
matrix for row i and
columnyj, i.e., samples

RELEVANT PITFALLS

- MCC is prevalence-dependent, thus not comparable across data sets with different prevalences
(Fig. SN 2.7 in [Reinke et al., 2023], [Reinke et al., 2021]).

- MCC does not allow for incorporating unequal severity of confusions across classes. This implies
that the metric is not applicable to cost-benefit analyses (Fig. SN 2.9 in [Reinke et al., 2023]), or
when target classes are related on an ordinal scale (Fig. 4b in [Reinke et al., 2023]).

- The theoretical lower bound of MCC (-1) may not always be achievable (Fig. SN 2.35 in [Reinke et
al., 2023]).

- MCCis hard to interpret [Zhu 2020].

- Compared to other metrics like EC, MCC lacks a framework to identify and validate the decision
rule applied to predicted class scores [Ferrer 2022].

- MCC depends on the definition of TN (undefined for ObD and InS).

RECOMMENDATIONS
- MCC should not be used/used with care if...
o ... class confusions are of unequal severity (example: ordinal target classes).
o ... the provided class prevalences do not reflect the population of interest.
o ... there is a mismatch between class prevalences and class importance.
o ... compensation for class imbalance is not requested.
- Otherwise, MCC should be used as a multi-class metric specifically if all basic error rates (Sen-
sitivity, Specificity, PPV, NPV) should be captured in one score.
- MCC scores should be carefully interpreted in the presence of class imbalance as the distribu-
tion becomes skewed [Zhu 2020].
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Pitfalls related to the inadequate choice of

the problem category

Reference

Prediction 1

L

1 object detected ¥
DSC =0.92 >>

Reinke et al., Nature Methods, 2024

pscaB)= 2B _2IANB|
N |Al+[B

_ 2 PPV . Sensitivity

" PPV + Sensitivity

VALUE RANGE: [0, 1] T

BAle@ans

Prediction 2

O

3 objects detected J
DSC =0.79
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TP+TN+FP+FN * " TIN+FP ' TP+TN+FP+FN

Metrics Reloaded <15 o ] P

tar FA tar

 TP+FN FP TP + FN
|

« Pitfalls related to poor metric selection e = ewedd

D ° d f t h d ° hd t t P . FN (miss) rate, P,,: FP (false alarm) rate VALUE RANGE: [0, ) |
O ] S re g a r O e O I I I a ] n ] n e re S P, : prior probability (prevalence) EC can be assumed to be positive if costs are non-negative,
w,_ /w,,: (estimation of) costs of the respective errors; which can be done without loss of generality.

can be adjusted as a weighting of them.

a Overlap-based metrics disregard structure boundaries b common multi-class metrics ignore ordinal grading
Reference Prediction 1 Prediction 2 Reference Prediction 1 Prediction 2
Patient 1 Class O Class O Class O

Ordinal classes
B J A Patient 2 Class 1 Class 1 Class 1
11 ——

0 1 2

DSC =078 DSC = 078 Patient 3 Class 2 Class 0 ¥ Class 1

Accuracy = 0.67 = Accuracy = 0.67
EC=0.83 >> EC=0.33

Reinke et al., Nature Methods, 2024
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» Pitfalls related to poor metric selection
o Disregard of the properties of the dataset

Common metrics yield Annotation errors may have huge impact
implausible results in the on metric scores
presence of class imbalance Reference Prediction
Predicted Annotati
Positive Negative [ TG tEtion u
error
o | TP FN
2] 15 5 HD = 11.31
T HDg = 6.79
3 |
g ™ HH
=2 95,000
()
=z EXAMPLE: 95th perc:
= m| e d,(AB)= {ml nd(a b)}
Accuracy = 095x O~ o -m { e (bA)} HD95(A,B) = max { d,,(AB), d,(BA) }
BA=0.85 N ‘ma{{mnﬂm“}{ -------- }} -maf { |||||}{ }}
MCC = 0.05 J - TP.TN-FP-FN "’Me,;‘“;fg;“mb"“ - ““““ - il
‘\/ (TP + FP)(TP + FN)(TN + FP)(TN + FN) 'r?/ln dstancesfom boundary
pixelsin Bto A VALUE RANGE: [0, ) ¥ VALUE RANGE: [0, ) ¢

Reinke et al., Nature Methods, 2024
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« Pitfalls related to poor metric application

b simple averaging disregards non-independence of test data

Faten: >

0.5 @ DSC

|
7 DSChierarchical =0.6 J

,=05 @DSC 0.4 @ DSC 0.8

patientl patient patient3 = patient4 = patient5 =

Reinke et al., Nature Methods, 2024
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Metric implementation
» Use reference implementations
« Read metric-specific recommendations in the cheat sheets

Aggregation

« Address the potential correlation between classes when aggregating
 Complement validation with multi-class metrics

» Respect the hierarchical data structure when aggregating metrics

« Leverage metadata to reveal potential algorithmic bias

» Follow category-specific aggregation strategy

Interpretation

« Read metric-related recommendations to obtain awareness of the pitfall
« Report on the quality of the reference (e.g. intra-rater and inter-rater variability).

Maier-Hein et al., Nature Methods, 2024
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A (fake & ) typical MICCAI conclusion

‘Our proposed deep learning framework achieves superior accuracy
(86.6%) and robust generalizability in distinguishing Alzheimer’s
disease patients from cognitively normal subjects, outperforming
established methods on the ADNI dataset. The model provides
anatomically interpretable results by highlighting disease-relevant
regions such as the hippocampus, demonstrates high reproducibility
and fast inference, and, by eliminating manual feature engineering
while aligning with clinical biomarkers, is both practical and

explainable—making it

)
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Common practice in medical imaging algorithm performance

analysis

Commonly encountered results tables

Methods DSC
Method 1 86.82
Method 2 87.64
Method 3 90.67
Proposed method 90.70

HD95
43.22
63.68

67.34
67.35

?

Unclear from
results table

Scenario 1 (narrow Cl; desired)

85 90 95
DSC [%]

Mean DSC cl

Scenario 2 (wide Cl)

85 90 95
DSC [%]

Christodoulou et al., MICCAI, 2024
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Common practice in medical imaging algorithm performance
analysis

97]16

MICCAI 2023 papers MICCAI 2023 segmentation papers Performance variability-
(n=730) (n=221; systematic review) related data extraction
( A
RQ1: What is the common practice with RQ2: How to estimate missing RQ3: How do Cl widths
respect to variability reporting in the variability parameters based on compare to claimed
medical image analysis community? provided data? improvements in the DSC?)
.

Christodoulou et al., MICCAI, 2024
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Standard deviation & confidence interval

 Standard deviation (SD) Small 5D Large SD
Measure of the dispersion or spread of data 0000 000 o0 01 ® o0
points from the mean value Data points
Mean Mean

True population mean
« Confidence interval (Cl)

Range within which a population parameter is : Cfn”tf;ff:lge
expected to lie with a certain level of
° *
confidence. Estimated
means

AV
7N I

Christodoulou et al., MICCAI, 2024
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Common practice with respect to variability reporting

200
0
v 150
< 2.0% (2
= 100
g 39.0% (39)
£
= 50
o 14 9% (7
} 61.7% (29) 128%
0 11.0% (1
Variability reported Cl reported SD reported SD method

- Yes - No Other - Unclear SD over independent test set SD from CV

Christodoulou et al., MICCAI, 2024
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Approximation of the standard deviation

Medical segmentation decathlon

Observed data
—— Polynomial fit (degree 2)

04
0.3 -
W 0.2
0.1
0.0 ' . ' : ,
0.2 0.4 0.6 0.8 1.0
Mean DSC

Christodoulou et al., MICCAI, 2024

(a)

Predicted Cl width
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Performance differences versus Cl widths

(b)

| |
| |
| |
| |
L) 1 1 1
0.85 0.90 0.95 1.00
Mean DSC

Christodoulou et al., MICCAI, 2024

Clforrank 1
| Mean DSC of rank 1

I Mean DSC of rank 2
(not within Cl for rank 1)

| Mean DSC of rank 2
(within Cl for rank 1)
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Conclusion

 Current publications typically do not provide sufficient evidence to
support which models could potentially be translated into clinical
practice

Recommendations

* Incorporate robust statistical analyses

« Report performance variability

« Use sufficiently large test sets to substantiate claims of outperformance

Christodoulou et al., MICCAI, 2024
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Predicted Small SD Large SD
Positive Negative 0600 ° 0 .T ® o6
% s = Data points
_ 2 = . Mean Mean
CDU Q.
o o | FP TN True popullatlon mean
T 4,980 95,000 ]
2 X

Accuracy = 0.95 x

BA =0.85 Estimated
MCC = 0.05 J > | means




