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Context 2

Computer-aided diagnosis
• Machine learning / deep learning task: 

classification

• Disorder targeted: dementia

• Imaging modality: T1-weighted MRI

PatientTraining set

Predicted 
diagnosis

Feature extraction 

+

Model training and 
optimisation

Feature extraction 

+

Application of 
model

Cognitively
normal

Alzheimer’s
disease



Context 3

A (fake & slightly exaggerated) typical MICCAI conclusion

‘Our proposed deep learning framework achieves superior accuracy
(86.6%) and robust generalizability in distinguishing Alzheimer’s
disease patients from cognitively normal subjects, outperforming
established methods on the ADNI dataset. The model provides
anatomically interpretable results by highlighting disease-relevant
regions such as the hippocampus, demonstrates high reproducibility
and fast inference, and, by eliminating manual feature engineering
while aligning with clinical biomarkers, is both practical and
explainable—making it ready for immediate integration into routine
diagnostic workflows.’



Ensuring Robust AI in Medical Imaging

• Validation on Real-World Data

• Meaningful Metrics

• Rigorous Statistical Analysis 
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ML/DL for dementia diagnosis & prognosis
• A very active field of research
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Motivation
Ø Most machine learning algorithms for computer-

aided diagnosis of dementia developed and 
applied on research data

Cognitively
normal

Alzheimer’s
disease
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Motivation
Ø Most machine learning algorithms for computer-

aided diagnosis of dementia developed and 
applied on research data

Objective
Ø Validate these algorithms on clinical data

Ø Develop robust algorithms able to handle 
clinical data

Cognitively
normal

Alzheimer’s
disease
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AP-HP: a network of 39 hospitals
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AP-HP clinical data warehouse

11 million patients

40 million medical reports

25 million imaging exams

325 million biological results
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Objective
Ø Identify patients with dementia among a clinical data warehouse from 

anatomical MRI using machine learning

Cohort definition
• Inclusion criteria

o Age ≥18 years
o At least one cerebral MRI scan including T1-weighted 3D acquisition
o Clinical data available (available for ~18% of the subjects with a 3D T1 MRI)

• Definition of the classes of interest using diagnosis (ICD-10) codes

o Dementia vs
No dementia and no lesions (NDNL)

No dementia with lesions (NDL)

Bottani et al., Medical Image Analysis, 2023
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Cohort

Category N
patients

N
images

Age
(mean ±std [range])

Sex
(%F)

Dementia 756 887 71.17 ± 11.58 [18,90] 50.34%

NDNL 756 939 71.17 ± 11.58 [18,90] 50.34%

NDL 756 997 71.17 ± 11.58 [18,90] 50.34%

Total 2268 2823 71.17 ± 11.58 [18,90] 50.34%

Bottani et al., Medical Image Analysis, 2023
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Classification algorithms
• Machine learning: support vector machine

o Input: grey matter density map

• Deep learning: convolutional neural networks
o Input: minimally processed MRI

Evaluation setting 
• Test set of 152 patients/images per class

• 5-fold cross-validation

Bottani et al., Medical Image Analysis, 2023
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Results

Data set Task
Classification strategy

SVM with 
grey matter maps

ResNet with 
minimally processed MRI

Clinical
D vs NDNL 68.75 73.62 

D vs NDL 73.09 72.24 

Research AD vs CN 86.80 85.30

Decrease of 15 percent points in balanced accuracy: 
clinical data set more heterogenous 

Balanced accuracy (%)

Bottani et al., Medical Image Analysis, 2023
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Cohort

p-value corrected with Bonferroni < 0.05

Category N
patients

N
images

Age
(mean ±std [range])

Sex
(%F)

% Good/medium 
quality

% With
gadolinium

Dementia 756 887 71.17 ± 11.58 [18,90] 50.34% 57.72%** 24.80%**

NDNL 756 939 71.17 ± 11.58 [18,90] 50.34% 36.42%** 66.13%**

NDL 756 997 71.17 ± 11.58 [18,90] 50.34% 52.25% 63.59%**

Total 2268 2823 71.17 ± 11.58 [18,90] 50.34% 48.71% 52.24%

Bottani et al., Medical Image Analysis, 2023
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T1-weighted image quality control
• Objectives

Ø Reject images that are not proper T1-
weighted anatomical MR images

Ø Recognise images acquired after 
injection of a contrast agent 
(gadolinium)

Ø Rate the overall image quality 
(good/medium/low)

Good Medium Low

Without contrast With contrast

❌ ✅
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T1-weighted image quality control

Bottani et al., Medical Image Analysis, 2022

Tier 1: 873

SR: 1455

Tier 2: 1533

Tier 3: 1639

Gado

Not Gado

Contrast

0 1 2

Grade

Mo=on

Noise

Good quality 
(16%)

Medium quality
(28%)

Low quality 
(30%)

Straight reject
(26%)

Manual quality control
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T1-weighted image quality control
• Examples

Bottani et al., Medical Image Analysis, 2022

Good quality Medium quality Low quality Straight Reject

Injection of 
gadolinium
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T1-weighted image quality control

Bottani et al., Medical Image Analysis, 2022
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T1-weighted image quality control
• Results

Ø Reject images that are not proper T1-
weighted anatomical MR images
v Balanced accuracy > 90%

Ø Recognise images acquired after 
contrast injection
v Balanced accuracy > 95%

Ø Rate the overall image quality
v Good/medium vs low: balanced 

accuracy > 80%
v Good vs medium: balanced      

accuracy > 70% 

Bottani et al., Medical Image Analysis, 2022

Good Medium Low

Without contrast With contrast

❌ ✅
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Cohort

p-value corrected with Bonferroni < 0.05

Category N
patients

N
images

Age
(mean ±std [range])

Sex
(%F)

% Good/medium 
quality

% With
gadolinium

Dementia 756 887 71.17 ± 11.58 [18,90] 50.34% 57.72%** 24.80%**

NDNL 756 939 71.17 ± 11.58 [18,90] 50.34% 36.42%** 66.13%**

NDL 756 997 71.17 ± 11.58 [18,90] 50.34% 52.25% 63.59%**

Total 2268 2823 71.17 ± 11.58 [18,90] 50.34% 48.71% 52.24%

Bottani et al., Medical Image Analysis, 2023
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Diagnosis prediction from T1w MRI
• Results with training subsets

Task

Training set (n=88 per class)

Quality: 
good/medium + low 

Gadolinium: 
presence & absence

Quality: 
good/medium 
Gadolinium: 

presence & absence

Quality: 
good/medium 
Gadolinium: 

absence

Quality: 
good/medium 
Gadolinium: 

absence/synthetic

D vs NDNL 69.47 60.26 51.51 51.71

D vs NDL 73.03 68.29 50.00 54.08

Balanced accuracy (%) - Classification strategy: SVM with grey matter maps

Bottani et al., Medical Image Analysis, 2023
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Contrast-enhanced to non-contrast-enhanced image translation 
• Methods

• Paired T1ce/T1nce MRI

• 230 pairs for training

• 77 pairs for testing

Discriminator

True
Fake

T1nce

Generator

T1ce
Synthetic

T1nce

3D U-Net like generators
• Residual connections
• Attention gates
• Transformer layers

Conditional GANs
• 3D U-Net like generators
• 3D patch discriminator

Bottani et al., BMC Medical Imaging, 2024
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Testgood Testlow
C DA B C DA B
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Contrast-enhanced to non-contrast-enhanced image translation 
• Results

Bottani et al., BMC Medical Imaging, 2024
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Contrast-enhanced to non-contrast-enhanced image translation 
• Results

1. Image synthesis accuracy
o Mean absolute error
o Peak signal to noise ratio

o Structural similarity

2. Segmentation fidelity
o Absolute volume difference
o Volume difference

Good synthesis accuracy 

Bottani et al., BMC Medical Imaging, 2024

t1-volume-tissue-
segmentation

Clinica

Grey matter 
map

Reliable feature extraction
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Diagnosis prediction from T1w MRI
• Results with training subsets

Task

Training set (n=88 per class)

Quality: 
good/medium + low 

Gadolinium: 
presence & absence

Quality: 
good/medium 
Gadolinium: 

presence & absence

Quality: 
good/medium 
Gadolinium: 

absence

Quality: 
good/medium 
Gadolinium: 

synthetic

D vs NDNL 69.47 60.26 51.51 51.71

D vs NDL 73.03 68.29 50.00 54.08

Balanced accuracy (%) - Classification strategy: SVM with grey matter maps

Classifier exploits biases of 
the training set

Image translation can be useful to limit 
bias due to the injection of gadolinium

Bottani et al., Medical Image Analysis, 2023
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Diagnosis prediction from T1w MRI
• Final results with unbiased training sets

Balanced accuracy (%)

Training set Task
Classification strategy

SVM with 
grey matter maps

ResNet with 
minimally processed MRI

Research data set D vs NDNL 64.08 61.84

D vs NDL 69.47 61.78

Clinical data set with 
synthetic images of 
good/medium quality

D vs NDNL 61.91 63.22

D vs NDL 64.61 67.50

Balanced accuracy still ~20 percent points lower than when testing on research data set

Bottani et al., Medical Image Analysis, 2023
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Diagnosis prediction from T1w MRI
• Summary of the results

Ø Balanced accuracy much lower than in research context

Ø Difference in proportions of images with gadolinium and of medium/good 
quality can bias the results
v Solution: training the algorithms using only research data or only 

clinical images of good/medium quality without gadolinium

• Conclusion

Ø Quality control & data set homogenisation essential steps

• Challenge remaining

Ø Lack of robustness of the labels

Bottani et al., Medical Image Analysis, 2023
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Computer-aided diagnosis of neurodegenerative diseases

• Diagnosis prediction

• Lesion detection
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3D FLAIR cohort constitution

Loizillon et al., Medical Image Analysis, 2025

AP-HP
Clinical Data Warehouse

CLINICAL DATA

Medical records of 
26 million patients

Inclusion
Criteria

Age > 18 
years 

At least one 
cerebral 3D 

FLAIR MRI scan

Query on the CDW

~122 000 patients 
(clinical data 

available for ~67% 
of the patients)

Available for the 
APPRIMAGE 

project

13 000 3D 
FLAIR MRIs

IMAGING DATA

25 million 
imaging exams
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3D FLAIR image quality distribution

Good quality 
(47%)Medium 

quality
(30%)

Low quality
(15%)

Straight reject
(8%)

Good

Medium

Low

Manual quality control

Automatic quality control?

Loizillon et al., Medical Image Analysis, 2025
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3D FLAIR automatic quality control
• Annotated data available for training:

• 358 3D FLAIR MRIs
• 5000 3D T1w MRIs 

Loizillon et al., DART@MICCAI, 2024

FLAIR T1w

Annotators 86.54 91.56

Training with FLAIR 69.90 ± 2.38 48.20 ± 0.81

Training with T1w 50.06 ± 1.71 83.51 ± 0.93

Training with T1w + FLAIR 58.05 ± 4.45 82.37 ± 0.85

Task: Low vs Medium/Good

Balanced accuracy (%)

⇒ Domain gap
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Domain adaptation for 3D FLAIR automatic quality control

Loizillon et al., Medical Image Analysis, 2025

Source domain

5000 3D T1w MRIs 
manually annotated

𝑫𝑺 = (𝒙𝒊
𝑺, 𝒚𝒊𝑺)𝑵𝑺$𝟓𝟎𝟎𝟎

Target domain

5358 3D FLAIR MRIs, with
358 manually annotated

𝑫𝑻𝑳 = (𝒙𝒊
𝑻𝑳 , 𝒚𝒊𝑻𝑳)𝑵𝑻𝑳$𝟑𝟓𝟖𝑫𝑻𝑼 = (𝒙𝒊

𝑻𝑼 )𝑵𝑻𝑼$𝟓𝟎𝟎𝟎
Sundaresan et al., MedIA, 2021

(𝒙𝒊
𝑻𝑼) GRL Ldom

LQC

(𝒙𝒊
𝑻𝑳 , 𝒚𝒊𝑻𝑳)

(𝒙𝒊
𝑺, 𝒚𝒊𝑺)
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Domain adaptation for 3D FLAIR automatic quality control

Loizillon et al., Medical Image Analysis, 2025

Source domain
𝑫𝑺 = (𝒙𝒊

𝑺, 𝒚𝒊𝑺)𝑵𝑺$𝟓𝟎𝟎𝟎

Target domain
𝑫𝑻𝑳 = (𝒙𝒊

𝑻𝑳 , 𝒚𝒊𝑻𝑳)𝑵𝑻𝑳$𝟑𝟎𝟑

Low quality MRIs 

Medium quality MRIs

Good quality MRIs

802

1380

1478

400
254

52
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Domain adaptation for 3D FLAIR automatic quality control

Loizillon et al., Medical Image Analysis, 2025

Source domain

5000 3D T1w MRIs 
manually annotated

𝑫𝑺 = (𝒙𝒊
𝑺, 𝒚𝒊𝑺)𝑵𝑺$𝟓𝟎𝟎𝟎

Target domain

5358 3D FLAIR MRIs, with
358 manually annotated

𝑫𝑻𝑳 = (𝒙𝒊
𝑻𝑳 , 𝒚𝒊𝑻𝑳)𝑵𝑻𝑳$𝟑𝟓𝟖𝑫𝑻𝑼 = (𝒙𝒊

𝑻𝑼 )𝑵𝑻𝑼$𝟓𝟎𝟎𝟎

(𝒙𝒊
𝑻𝑼) GRL Ldom

LQCtarget

LQCsource

(𝒙𝒊
𝑻𝑳 , 𝒚𝒊𝑻𝑳)

(𝒙𝒊
𝑺, 𝒚𝒊𝑺)
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Domain adaptation for 3D FLAIR automatic quality control

Loizillon et al., Medical Image Analysis, 2025

Straight reject 
(yes vs no)

Low vs Medium/Good Medium vs Good

Annotators 94.67
[91.32,97.40]

86.31
[84.25,88.25]

84.43
[82.54,86.50]

Loizillon et al. 89.27
[79.69,97.08]

79.81
[74.65,84.71]

73.92
[70.73,77.22]

Balanced accuracy (%)
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Detection of age-related white matter hyperintensities in 3D 
FLAIR MRI

Healthy input image
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Loizillon et al., MIDL, 2024
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Detection of age-related white matter hyperintensities

Loizillon et al., MIDL, 2024
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Detection of age-related white matter hyperintensities in 3D 
FLAIR MRI

Loizillon et al., MIDL, 2024
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Ø Robust to differences in image quality:
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Conclusions

Ø Quality control & data set homogenisation crucial to enable translation 
of computer-aided diagnosis tools to clinical practice

Ø Not all AI approaches are appropriate for use in clinical practice

Ø Size is not the only characteristic of data sets that matters



Validation on Real-World Data 42

Centralised vs federated learning
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Federated learning

min
!
𝐹(𝑤) , where 𝐹 𝑤 ≔ *

"#$

%

𝑝"𝐹"(𝑤)

𝑚: total number of nodes
𝑝" ≥ 0
∑" 𝑝" = 1
𝐹": local objective function for the 𝑘th node

Node contribution in federated averaging 
framework (MacMahan et al., AISTATS, 2017):

𝑝" =
&(
&

𝑛": number of datapoints in the node
𝑛: total number of observations studied

Objective:
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Federated learning

Fed-BioMed

‘Open, Transparent and Trusted 
Collaborative Learning for Real-World 

Healthcare Applications’ 

fedbiomed.org



Ensuring Robust AI in Medical Imaging

• Meaningful Metrics



Meaningful Metrics 46

A (fake & slightly exaggerated) typical MICCAI conclusion

‘Our proposed deep learning framework achieves superior accuracy
(86.6%) and robust generalizability in distinguishing Alzheimer’s
disease patients from cognitively normal subjects, outperforming
established methods on the ADNI dataset. The model provides
anatomically interpretable results by highlighting disease-relevant
regions such as the hippocampus, demonstrates high reproducibility
and fast inference, and, by eliminating manual feature engineering
while aligning with clinical biomarkers, is both practical and
explainable—making it ready for immediate integration into routine
diagnostic workflows.’
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Image level binary classification

Scenario A

• 50 AD patients
• 50 CN subjects

Predicted diagnosis
Tr

ue
 d

ia
gn

os
is True positive 

(TP)
False negative 

(FN) 

False positive 
(FP)

True negative 
(TN) 

ACC =
TP + TN

TP + FN + FP + TN

AD CN

AD 45 5

CN 5 45

ACC =
45 + 45

45 + 5 + 5 + 45
= 0.9

Scenario B

• 50 AD patients
• 500 CN subjects

AD CN

AD 5 45

CN 10 490

ACC =
5 + 490

5 + 45 + 10 + 490
= 0.9

Bal. ACC = 0.5×
TP

TP + FN
+

TN
TN+FP

Bal. ACC = 0.5×
5

5 + 45
+

490
490+10

= 0.54

Bal. ACC = 0.5×
45

5 + 45
+

45
45+5

= 0.9

Accuracy: Balanced accuracy:Confusion matrix:
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Brain tumour segmentation

Reinke et al., Nature Methods, 2024
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https://metrics-reloaded.dkfz.de
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Metrics Reloaded

Maier-Hein et al., Nature Methods, 2024
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https://metrics-reloaded.dkfz.de
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Metrics Reloaded
• Metrics library

https://metrics-reloaded.dkfz.de
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Metrics Reloaded
• Metrics library

https://metrics-reloaded.dkfz.de
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Metrics Reloaded
• Pitfalls related to the inadequate choice of 

the problem category

Reinke et al., Nature Methods, 2024
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Metrics Reloaded
• Pitfalls related to poor metric selection

o Disregard of the domain interest

Reinke et al., Nature Methods, 2024
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Metrics Reloaded
• Pitfalls related to poor metric selection

o Disregard of the properties of the dataset

Reinke et al., Nature Methods, 2024
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Metrics Reloaded
• Pitfalls related to poor metric application

Reinke et al., Nature Methods, 2024
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Metrics Reloaded
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Metrics Reloaded
• Metric implementation

• Use reference implementations
• Read metric-specific recommendations in the cheat sheets

• Aggregation
• Address the potential correlation between classes when aggregating
• Complement validation with multi-class metrics
• Respect the hierarchical data structure when aggregating metrics
• Leverage metadata to reveal potential algorithmic bias
• Follow category-specific aggregation strategy

• Interpretation
• Read metric-related recommendations to obtain awareness of the pitfall
• Report on the quality of the reference (e.g. intra-rater and inter-rater variability).

Maier-Hein et al., Nature Methods, 2024



Ensuring Robust AI in Medical Imaging

• Rigorous Statistical Analysis 
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A (fake & slightly exaggerated) typical MICCAI conclusion

‘Our proposed deep learning framework achieves superior accuracy
(86.6%) and robust generalizability in distinguishing Alzheimer’s
disease patients from cognitively normal subjects, outperforming
established methods on the ADNI dataset. The model provides
anatomically interpretable results by highlighting disease-relevant
regions such as the hippocampus, demonstrates high reproducibility
and fast inference, and, by eliminating manual feature engineering
while aligning with clinical biomarkers, is both practical and
explainable—making it ready for immediate integration into routine
diagnostic workflows.’
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Common practice in medical imaging algorithm performance 
analysis

Christodoulou et al., MICCAI, 2024
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Common practice in medical imaging algorithm performance 
analysis

Christodoulou et al., MICCAI, 2024
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Standard deviation & confidence interval

• Standard deviation (SD)
Measure of the dispersion or spread of data 
points from the mean value

• Confidence interval (CI)
Range within which a population parameter is 
expected to lie with a certain level of 
confidence. 

Christodoulou et al., MICCAI, 2024

Confidence 
intervals

True population mean

Estimated 
means

Mean Mean
Data points

Small SD Large SD
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Common practice with respect to variability reporting

Christodoulou et al., MICCAI, 2024
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Approximation of the standard deviation

Christodoulou et al., MICCAI, 2024
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Performance differences versus CI widths

Christodoulou et al., MICCAI, 2024
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Conclusion
• Current publications typically do not provide sufficient evidence to

support which models could potentially be translated into clinical
practice

Recommendations
• Incorporate robust statistical analyses

• Report performance variability

• Use sufficiently large test sets to substantiate claims of outperformance

Christodoulou et al., MICCAI, 2024
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Research vs clinical data
Confidence 
intervals

True population mean

Estimated 
means

Mean Mean
Data points

Small SD Large SD


