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Part I:
Semi-supervised learning



Importance of unlabeled data

Training deep neural nets requires lots of labeled data

ImageNet
 Over 14M annotated images
* More than 20,000 classes

Source: https://cs.stanford.edu/people/karpathy/cnnembed/



Importance of unlabeled data

However, annotating data can be hard and expensive in some applications...

Challenges:
* Volumetric images
* Low contrast regions

 Canonly be done by
trained experts

... but unlabeled data is often available for free



Learning with unlabeled images

Labeled images (few) Unlabeled images (many)




Learning with unlabeled images

Labeled images (few)

How can we use this information
to learn segmentation ?




General formulation

Labeled images (few) Unlabeled images (many)
D, = {(X(i), Y(i))}fisl D, = {X(u) }glzul
where:

X® , X® e RIS 46 images on the set of pixels Q

Y@ € {0, 1}eXICl 4 ground-truth mask for classes C



General formulation

Labeled images (few) Unlabeled images (many)
D, = {(X(i), Y(i))}fisl D, = {X(u) }glzul
where:

X® , X® e RIS 46 images on the set of pixels Q
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General formulation

Labeled images (few) Unlabeled images (many)
D, = {(X(i), Y(i))}f\isl D, = {X(u) }gizul
where:

X® , X® e RIS 46 images on the set of pixels Q

Y@ € {0, 1}eXICl 4 ground-truth mask for classes C

Trade-off weight

Objective: (hyper-parameter)
_ 1 (i) +(i) A (u)
L.0r(0) = v Z (8%, YD) + o Z £.(S%)
(X@ YD)eDy X®eD,

h . - - ——
=~ —

Supervised loss L Unsupervised loss £,




Adversarial learning
for semi-supervised segmentation



Adversarial learning

Basic idea:
Learn the data distribution using a classifier (the discriminator)

Data distribution ) ,/ 0O _C_)\\
Px //'O O O O O\\_‘ Discriminator D
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Real samples N

D(X) =1

Fake samples

D(X) =0



Adversarial learning

Basic idea:
Learn the data distribution using a classifier (the discriminator)

A .
Data distribution d O O\\
- \
Px // O O ~- . Discriminator D
e - O O \

0%q © O 7o
/"I:‘S)\ O@O O O O /’

Real samples AN L,
D(X) =1 Fake samples
D(X) =0

Objective: Generate samples in the distribution of real data



Random noise

7 ~ P,

Generative adversarial network (GAN)

Real training images

Generator

G

T — 7

\a / S - B

X ~ Px

—0
Fake image _.(fo_#

N+ B
G(a)

Discriminator

— Real
D D(X) =1
—
— Fake
D(X) =0



Random noise

7 ~ P,

Generative adversarial network (GAN)

Real training images

\a / S - B

X ~ Px

—0
Generator Fake image _.(fo_#

G -
=[] -
G(z)

How to make sure that generated images look real ?

Discriminator

— Real
D D(X) =1
—
— Fake
D(X) =0



Generative adversarial network (GAN)

Real training images

X ~ Py
Generator
Random noise (; -
Z Y PZ > j

1~ " - —

E x — Real
o = & D(X) =
Fake | f =
ake image |
: — Fake
!_ - D(X)=0

N+ B
G(a)

Training the discriminator (cross-entropy):

D

min Ex.py [ —log D(X)| + Ez-p,| —log(1 — D(G(2))]

Output ‘0’ for generated images



Generative adversarial network (GAN)

Real training images

' P\
i Generator i Fake image _.(fo_#
Random noise | G A ]
~ P . N - B
ai i — \gy
i G(2)

Training the generator:

max E.-p, [ —log(1 - D(G(z))]

Discriminator

— Real
D D(X) =1
—
— Fake
D(X) =0

Fool the discriminator into predicting ‘1’ for fake images



Generative adversarial network (GAN)

Real training images

- [T— i
Fake image :

i Generator i
Random noise ! G A i i L ql;agz _0
g P - _ D=0
- \N
E G(z)

Training the whole architecture:

min max Ex-py |log D(X)| + E,.p_|log(1 - D(G(z))]

Corresponds to a minimax problem (more on this later...)



GANs for segmentation

GAN for image generation:

Generator Fake image

Random noise G - i
7 ~ P ,
? —7




GANs for segmentation

GAN for image generation:
Fake image

Generator
Random noise G - i
7z ~ P, .

GAN for image segmentation: 1
Mask

|
( Generator (G
- *-. ‘:
\ ‘ (.‘ ' - R
Y

e~




GANs for segmentation

GAN for image generation:

Generator Fake image
Random noise G . i
Z Y PZ > j
GAN for image segmentation: 1
Image
- . Generator (5 Mask
M
({‘ : Y We are now modeling
(B the distribution of
segmentation masks
X Y

The generator is a segmentation network (encoder-decoder)



Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Unlabeled images Du




Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Unlabeled images Du
- o~

GT
Segmentatlon
Ioss
vy ()

X( ) SEg

Lsup(G) = NL Z fS(G(X(i))aY(i))

P (XD, YD) eD;



Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Labeled |mages D

Data = +
L I
Labeled image Discriminator
GT or prediction loss
Y® or G(X®) I
Discriminator .,
Unlab. image G - D
Generator Unlab. image O —
prediction — Unlabeled

1

L4is(G,D) = Ni Z as(DGEM, ) + 5= ) €as(DGX™)),0)
() g X®@eD,



Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Both labeled and unlabeled: Controls the trade-off between the two losses

/

ngnmgx Laav(G, D) = ﬁsup(G) — AL4is(G, D)

Discriminator loss



Adversarial semi-supervised segmentation

Adversarial network for semi-supervised segmentation of histological images

Input Image ~ Ground Truth Ladder Networks [9]  DAN (ours)

Image from Zhang, Y., et al. "Deep adversarial networks for biomedical image segmentation utilizing unannotated images." Int. Conf. on Medical Image Computing and
Computer-Assisted Intervention. 2017.



Challenges of adversarial learning

1) Unstable optimization of minimax problem

V(D,G) V(D,G)

max V (G, D)
D

Global Optimum Global Optimum

Current V(D, G)

Current V' (D, G) ‘\_//
3 | min V (G, D)
G

Ghosh, A, et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattem Recognition. 2018.
Chang, Mark. “Generative Adversarial Networks”, published online, 2016



Challenges of adversarial learning

1) Unstable optimization of minimax problem

V(D,G) V(D,G)

max V (G, D)
D

Global Optimum Global Optimum

Current V (D, G)

Current V' (D, G) \//
& min V (G, D)
G

2) Mode collapse problem

L) .-—.—L——-..__ L]
ooty s ‘
/-/' M, i-\ o o

Ghosh, A, et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattem Recognition. 2018.
Chang, Mark. “Generative Adversarial Networks”, published online, 2016



Challenges of adversarial learning

1) Unstable optimization of minimax problem

V(D,G)

Global Optimum D V(G, D)

/\ Current V' (D, G)
D\/ *

2) Mode collapse problem

" : S

AN
PN

V(D,G)

Global Optimum

Current V(D, G)

min V (G, D)
G

D\/G

Various solutions:

Spectral normalization (Miyato et al., 2018)
Wasserstein GANs (Arjovsky et al., 2017)
LSGANSs (Mao et al., 2017)

etc.

Ghosh, A, et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattem Recognition. 2018.

Chang, Mark. “Generative Adversarial Networks”, published online, 2016




Pseudo-labeling & entropy minimization
for semi-supervised segmentation



SSL methods using pseudo-labeling

Pseudo-labeling (self-training):

Y pea L(Conf(sy?) = 7) - H(FH, si)

ZPEQ ]1(C0nf(sp ) > T)
9(:,;3( _ ) 1, if k = argmax, nggc,
P 0, else
Key idea:

e Convert confident predictions for unlabeled samples into pseudo-labels

e Use the pseudo-labeled samples in a standard loss (e.g., cross-entropy)

e Example of confidence score: Conf(sg,“)) = maxy s; ).



SSL methods using pseudo-labeling

Pseudo-labeling (self-training):

Confidence score Cross-entropy

________________________

£,(XWy = 2P0 oo b P2 P
ZPEQ ]l(Con,f(s ) > T)
Pseudo-label
sw L] 1 ifk = argmaxy, Sg*}c,
AL 0, else
Key idea:

e Convert confident predictions for unlabeled samples into pseudo-labels

e Use the pseudo-labeled samples in a standard loss (e.g., cross-entropy)

e Example of confidence score: Conf(sg")) = maxy s; ).



SSL methods using pseudo-labeling

Pseudo-labeling (self-training):

Confidence score Cross-entropy

________________________

£,(XWy = 2= Ao S P P2 P
Zpesz ]l(Conf(s ) > T)
Pseudo-label
sw L] 1 ifk = argmaxy, Sg*gc,
L_?_’]_C_: 0, else
Key idea:

e Convert confident predictions for unlabeled samples into pseudo-labels

e Use the pseudo-labeled samples in a standard loss (e.g., cross-entropy)

e Example of confidence score: Conf(sl(r,“)) = maxy s; )

Problem: incorrect predictions are reinforced leading to collapse




SSL methods using pseudo-labeling

Pseudo-labeling (with teacher):

Unlabeled image

A 4

Student

\ 4

v

Key idea:

Teacher

pseudo-label

\ 4

Cross-entropy

a

\ 4

Cross-entropy

Ground-truth
mask

® Use the predictions of a Teacher network to generate pseudo-labels

® More stable, lower chances of collapse

A

e Teacher is typically pre-trained on labeled images and/or updated using EMA (more on this later...)



SSL methods using entropy minimization

Entropy as unsupervised loss:

£,(XM)Y) = —@ Z Z logs

peQ kel

- Shannon Entropy H(p)

0.0 0.2 0.4 0.6 0.8 1.0
Probability p
Key idea:

e Can be seen as a soft version of pseudo-labeling where all predictions are considered as

confident and the pseudo-label is the prediction itself. i.e. y( “) Sl(pu)



SSL methods using entropy minimization

Entropy as unsupervised loss:

£,(X™)Y) = _@ Z Z logs( u)

peQ kel

- Shannon Entropy H(p)

0.0 0.2 0.4 0.6 0.8 1.0

Probability p
Key idea:
e Can be seen as a soft version of pseudo-labeling where all predictions are considered as
confident and the pseudo-label is the prediction itself. i.e. y( “) Séu)

Problem: incorrect predictions that are confident will remain « stuck »

Solution: increase the entropy loss slowly during training



Consistency regularization
for semi-supervised segmentation



Consistency regularization for SSL

How to better use unlabeled data ?

Vanilla supervised learning

/
o /
/
/
/ o @
/

e Considers only labeled samples

e Overfits when few training
samples



Consistency regularization for SSL

How to better use unlabeled data ?

Vanilla supervised learning

/

/
e /

e Considers only labeled samples

e Overfits when few training
samples

Data augmentation

/ O N //
] |
‘\ / 7~
\_// /
,7TN
\
/ - =~ / \
7~ /’ N | . |
/ [ . \ ‘\ /
/ \ I' ~_."
N 7

® Transforms labeled samples to
augment the training set

® Better generalization, but not
enough for semi-supervised
learning



Consistency regularization for SSL

How to better use unlabeled data ?

Vanilla supervised learning

/

/
e /

e Considers only labeled samples

e Overfits when few training
samples

Data augmentation

/ O N //
] |
‘\ / 7~
\_// /
,7TN
\
P 1
7~ /’ N ‘ |
/ [ . \ \\ /
/ \ I' ~_."
N 7

® Transforms labeled samples to
augment the training set

® Better generalization, but not
enough for semi-supervised
learning

Consistency regularization

Perturbs unlabeled samples with
noise or guided transformations

Imposes the network to have
consistent outputs for perturbed
samples



SSL methods using consistency regularization

Basic transformation consistency (-model)

LO) =~ Y Lup(FXDYD) + D Brop [l (T(FXW)), FTX@))]

Lx® YOyeD, U eD,,



SSL methods using consistency regularization

Basic transformation consistency (-model)

Standard supervised loss

a R
£(6) =;i D, lwlfXOYO) e = D) Brop, g (T(F (X)), F(T (X))
(XD, YD) eD, | | X eD,,

_____________________________

Cross-entropy, Dice, etc.



SSL methods using consistency regularization

Basic transformation consistency (-model)

Transformation consistency loss

o o e e e o e e e e e M e M e M M M e M M M e M M M e M M M e M M M e M e e e

L x®,Y®)ep,

CO =y B gl EOY) +ig 3 B[l TG, )

Random transformation: Regularization loss
rotation, flip, crop, etc. imposing transformation
equivariance

Regularization losses:

fgb;(s, S’) Z z Sp.k log (

peQ ke

) 058, 8) = ) lisp s l3

p e



SSL methods using consistency regularization

Application to chest X-ray segmentation:

labels images predictions
() 1 (x) 01
& g :
L R U-Net

> ;0™

Y2
[

supervised loss

-

N

St ) ——

(751
e
Transformation )
layer LS. ¢
fgm‘ o {t:];lui]_l
C ('a )
unsupervised

consistency loss

Transformations are random elastic deformations

Bortsova, G., et al.. "Semi-supervised medical image segmentation via learning consistency under transformations." MICCAI, 2019.



SSL methods using consistency regularization

Self-ensembling (M-model):

Unlabeled image

Random | ¥
augmentation Dropout condition 1 Consistency

regularization loss

Ty (f (T2(X(u)))

Dropout condition 2

Key idea:
e Applying different dropouts on the same network gives an ensemble of models

® Also leverages random image transformations



SSL methods using consistency regularization

Self-ensembling (M-model):

Unlabeled image

Random | _ v
augmentation : Dropout condition 1: Consistency

______________ regularization loss

T2(X(U)> T, ! (f (TQ(X(u)))

' Dropout condition 2,

Key idea:
e Applying different dropouts on the same network gives an ensemble of models

® Also leverages random image transformations



SSL methods using consistency regularization

Also trained with labeled data
Temporal-ensembling (Mean Teacher):

Student

X(u) ) estudent)

(u )
Random X
augmentatlon/

UnIabeIed image

A 4

Exponential moving average (EMA): Consistency

o) — ot (t) o
0, cacher = teacher (1 -« Qstu dent regularlz‘z:\tlon loss
u
X( eteachefr))
Teacher

Key idea:
® Consistency between the predictions of a Teacher and a Student network

e The Teacher’s weights are an EMA of the Student’s at previous training iterations (¢ =~ 1)



SSL methods using consistency regularization

] Also trained with labeled data
Temporal-ensembling (Mean Teacher): /

Student

f (T(X(u) ) ; estudent)

_.C Random \ T(X(U))‘
augmentation / -

Unlabeled image | = e e m— oo ;

A 4

Exponential moving average (EMA):

o) o= abl ) 4+ (1—a)fP

regularization loss
teacher teacher student &

|
: Consistency
|
|
|

A

————————————————————————————

T(f(X(u) ; eteachefr))

Teacher
Key idea:
® Consistency between the predictions of a Teacher and a Student network

e The Teacher’s weights are an EMA of the Student’s at previous training iterations (¢ =~ 1)



SSL methods using consistency regularization

Application of Mean Teacher to segmenting MRI spinal cord gray matter

Student Los Teacher
Label mask Prediction | Prediction
ugmentatio f(x:0) f(x:0)
g(x; @) verage
3 Student Model B . Teacher Model

g(x:¢")

Input MRI data

Perone, C.S. and Cohen-Adad, J. "Deep semi-supervised segmentation with weight-averaged consistency targets." Deep leaming in medical image analysis and multimodal
learning for clinical decision support, 2019 (extended version in Neuroimage)



SSL methods using consistency regularization

Uncertainty-aware self-ensembling

Noise &

f
..S .
‘§ EMA P
3
Noise f’ ¢ / 7 2
gl (
" Teacher Model‘* '

Yu, L et al.. "Uncertainty-aware self-ensembling model for semi-supervised 3D left atium segmentation." MICCAI, 2019.



SSL methods using consistency regularization

Uncertainty-aware self-ensembling

Noise &

e Monte Carlo

EMA Dropout

J Teacher Model‘* '

Enforces consistency only in low-
uncertainty regions of the image

Same Arch.

A

Noise & !

\ 4

h N
R
q

Yu, L et al.. "Uncertainty-aware self-ensembling model for semi-supervised 3D left atium segmentation." MICCAI, 2019.



SSL methods using consistency regularization

Muti-view co-training

Network 1

Unlabeled (view 1)

__.C

x (")

i T(X) St =17 (i (T(X{)))

augmentation / -

Consistency
Network m regularization loss

Unlabeled (view m)

Random \ Tm(XSg)z Sm — TT;1 (fm (Tm(nglLL))))

augmentation / e

X ()

Key idea:
® Supposes the existence of separate, complementary views of the data
® Use high-confidence predictions for a given view as pseudo-labels in other views



SSL methods using consistency regularization

Muti-view co-training Typically based on

Network 1 Jensen-Shannon divergence (JSD)
Unlabeled (view 1)

__.C

x (")

i T(X) St =17 (i (T(X{)))

augmentation / -

A\ 4

Consistency
Network m regularization loss

57 = 1 (1 (1) |

Unlabeled (view m)

__{

X ()

Random \ Tm (X'Srftzb) 2

augmentation / e

Key idea:
® Supposes the existence of separate, complementary views of the data
® Use high-confidence predictions for a given view as pseudo-labels in other views



SSL methods using consistency regularization

Application of multi-view co-training for pancreas and liver tumor segmentation

Pseudo Real
cd . . Label
L Uncertainty-weighted : Label
Label Fusion Y

Input 3D data X
A (T, m Ty -
3DCNN f;
‘—} .. Rotations/ I Y
| Permutations X
= (et )~
T2 (X) :

T;!
3D CNN f5
L
.
L]
r—b- uncertainty » forward Y
estimation I
- suUpervision for @ multiply T, (X) ' 7;1'
backward 3DCNN f,

Xia, Y., et al. "3D semi-supervised learning with uncertainty-aware multi-view co-training." WACV 2020.



Self-supervised learning
for segmentation



Self-supervised representation learning

Traditional semi-supervised learning

e Trains a model simultaneously with
both labeled and unlabeled data



Self-supervised representation learning

Traditional semi-supervised learning

O
. O OQO
Q @ /
@ _— @ , 0
J
| QQCQ O
o O

e Trains a model simultaneously with
both labeled and unlabeled data

Self-supervised representation learning

o
o5 o ©
. ) . . Self @ ied
© O @) —_——— 7 A e -S.l.JperVSIe
O auxiliary task
© ® © Learned

O o representation

® Learns a data representation by solving an auxiliary task that does not
require labels
® Uses this representation to solve a downstream task

® Alight weight fine-tuning of the model can generally be done



Self-supervised representation learning

Traditional semi-supervised learning

O
. O OQO
Q @ /
@ _— @ , 0
J
| OQQ © O

e Trains a model simultaneously with
both labeled and unlabeled data

Self-supervised representation learning

Supervised
o OO o - downsteam task
@) o @)
O @) @
@ o @ - e Z,
OO O @) Learned
O o representation

® Learns a data representation by solving an auxiliary task that does not
require labels
® Uses this representation to solve a downstream task

® Alight weight fine-tuning of the model can generally be done



Approaches for URL

Self-supervised learning:

Jigsaw puzzle solving

Permutation matrix Basic idea:
Shuffle 5181 1 e Learnto solve a
patches p=ammaesy | (ML~ [ T et _
—_— —|9i7is6 pretext task which
_____ L VN .
3 i ) i 4 does not require
- annotations
e Example: find the
Rotation prediction
. correct order of
" Botate Predicted rotation permuted patches
image
— — 35 degrees (see left)

Taleb, A., et al. "Multimodal self-supervised learning for medical image analysis." arXiv preprint (2019).



Approaches for URL

Application to brain tumor MRI

_______________________________________________________________________

Tlce

o Flair

|ST.P

H =;
—’l. E
i 5

Soft Permutation !
Matrix (S)

Puzzle Solver

Tl

[

Taleb, A., et al. "Multimodal self-supervised learning for medical image analysis." arXiv preprint (2019).



Self-supervised representation learning

Constrastive learning

Random \ R Z(U)"\“
augmentation / \ \tt\
W S
K J \ N
1A AJEERN
/ \ A
Random ~(u) / |-
. > 7 <~ | \
augmentation NS ,V \
AT ' A
‘I ° ‘>/ 1 e
Iv // \\ Il v
/
Random . i(v)*./_—’/ \f )/
augmentation / A v |v /!
\

7 7
/ /’/
Random ~(v)_t.-°
augmentation

exp (sim(z,2W) /1)

N

LsimcLr(0) = —Zlog
exp (sim(Z®),z2() /1) + exp (sim(ZW,2)) /1
Key idea: " v§u p {sim( )/7) +exp (sim( )/7)

® Generate two augmentations for each image
® Pull closer the representations of the same image and push away those of different ones




Approaches for URL

Contrastive learning:

Giobal contrastive leaming

volumo 1 R
2l
\ m— Y
7 — s: S
z3 —
c '/ ¥ \ \ 1 '—in s 3 E W
2 i ot (i st i N |53l ATy
3 Ty | T3 | T3 | Xy \ 4
?—b ¢ d »E volume M R
Z LA
z} —e —>
>
A o |
:‘1 —
' 5" 2,34, 5, Vi
A AN =50 . o Sk AL L
z..lll ‘r:;l :’_:l z.‘ll 2"“ = 4 »
todel Desired Representations
(a) (b) (c)
i. Global Contrastive loss
z} — ,— Local contrastive leaming
1 _’f} A
2'-2 s 1
1 —
Ty —> - ; . '
1
i L C w3
e |di|o (L
> M
x‘“r - fl . . . .- .
1 M ... .
M fa »
g g — i y 5 e e
: s fi=a@eE)  f;=aldeE)  fi=alde(E)) ] o
I:' — 'f” .
i >
M L] >
I‘ Pt
ii. Local Contrastive loss Desired Repressniations

Basic idea:
e Train with pairs of images that match (e.g., same position in volume, same image under different

transformations, etc.) or not
e Find a representation that is similar for matching pairs and different for non-matching ones

Chaitanya, K., et al. "Contrastive learning of global and local features for medical image segmentation with limited annotations." NeurlPS 2020.



Approaches for URL

Contrastive learning:

Global contrastive leaming

/ o = i
| l-—o % 3 30 3t :
:i e _’:S ] 223,23, Vi
s \ \ : ’—’4 S 3 3w
§ [ = — |
E—-b e d »E ,  Volume M\ e ||
> 7 LM ‘ .
i [ Global contrastive loss
o 1 o -
o 2} i e D H B
20 | 220 [ o2 M — > . = a
o T B bt B zl — Deskrad Rapreeariiations 1 ES]H](Z,E:]KT
(a) F—— - ————— , © — 10 — r— -
| |.GlobalContrastiveloss - — — — — = = = = = = = = = = = = = = = = = — = > ﬁES!m(z,ZJKT}F TEA ESIm(zugl (E{W}J)KT ]
z} - — g TTTTTmmmmms 1 Local contrastive leaming \.
e
! — l‘ A
z;—- 5 f1 .. - — - - — I
7} — L, |0 et zZ=g1(e(Z)), 2= g1(e(2)).
Lo[e e | oo
ML) —> 13! . . . 8@ i+
: o Ry " L hing pai
= A [ a@@®)  f)=ade@d) = ade)) 5] L O Matching pair
. ! —> f} . .
| ] g Non-matching pairs
I ii. Local Contrastive loss Desired Represeniations D &P

Basic idea:
e Matching pairs for global loss are slices in the same volume position or same subsject
e Matching pairs for local loss are feature vectors from the same image under two transformations

Chaitanya, K., et al. "Contrastive learning of global and local features for medical image segmentation with limited annotations." NeurlPS 2020.



Self-supervised representation learning

Clustering based on mutual information (Ml)

Image 7

. ".’, -

( tu"

R

Key idea:

Random

A
( augmentation ) @—ZZ >

Random
augmentatio

P@-z .

\ 4

MI maximization

Projection + é
K-way softmax v
Projection + ~
—
K-way softmax &

A

MI = Dxr, (P (&, &) || P(é)-P(&))

® Project features to a discrete K-cluster probability distribution
® Enforce transformation invariance to clusters using MI maximization



Boundary-aware Information Maximization for
Self-supervised Medical Image Segmentation

Jizong Peng* Ping Wang
ETS Montreal ETS Montreal
jizong.peng.1@etsmtl.net ping.wang.1l@ens.etsmtl.ca
Christian Desrosiers Marco Pedersoli
ETS Montreal ETS Montreal
christian.desrosiers@etsmtl.ca marco.pedersoli@etsmtl.ca
Image
| ACDC-LV | ACDC-RV | ACDC-Myo | Promise]2

Methods

n=1 n=2 n=4 avg | n=1 n=2 n=4 avg | n=1 n=2 n=4 avg | n=4 n=6 n=8 avg

Partial supervision 67.13 74.49 84.81 7548 |51.82 60.50 64.18 58.84 | 54.05 67.56 76.00 65.87 |49.91 71.53 78.04 66.49
Full supervision 92.26 86.80 88.07 89.65

Contrast (Enc+Dec) |77.98 8597 8842 84.12|66.47 72.82 76.69 71.99 | 64.96 7698 78.76 73.57|60.68 77.97 80.53 73.06
Ours (pre-train) 84.48 87.85 90.04 8745|7542 79.73 78.89 78.01 | 74.30 78.43 82.82 78.52(69.76 80.47 82.09 77.44
Entropy minimization |73.79 80.26 86.84 80.30 | 56.18 62.09 66.27 61.51 |57.23 71.10 76.28 68.20|59.78 76.09 78.98 71.62
MixUp 73.30 76.30 B84.42 78.01 |61.23 63.60 63.14 62.66 | 55.74 69.80 73.84 66.46|52.09 75.59 81.11 69.60
Mean Teacher (MT) | 83.13 87.02 87.70 8595 |61.61 68.76 67.21 65.86|61.55 7532 7842 71.76|84.71 8597 86.93 85.87
UA-MT 81.08 85.03 87.19 8443 62.06 67.91 66.64 6554|5926 73.68 78.61 7052 |66.16 81.79 84.40 77.45
ICT 76.87 78.41 86.34 80.54 | 60.31 63.42 68.35 64.03 |5591 71.77 7790 68.53 |63.97 77.92 8139 7443
Adversarial learning | 75.31 74.85 85.85 78.67 |55.29 62.25 64.58 60.71 | 57.68 70.39 7594 68.00|71.50 78.63 81.35 77.16

?g;gj:;r“t 86.37 89.57 90.40 88.78 | 75.53 78.42 77.22 77.06 | 76.11 80.21 82.00 79.44 | 76.16 82.89 84.85 81.30

MT + Ours (pre-train) | 90.25 91.36 91.04 90.88 | 80.16 81.50 78.97 80.21 | 78.71 83.33 83.61 81.88 | 85.64 85.60 88.45 86.56




Domain adaptation

Before adaptation:
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Domain adaptation

Before adaptation:

O N O QO Target
Source OO%Q) (g)8 000 distribution
distribution O ( )
ps(z) [ Q000 9520%, "
O O e 000 O@ Objective
Oo OO @ 8 @) Align the distributions
o)) o O (input, output or
l O @) representation) so that a
model trained on Source
data also works on
. © @ Target data
After adaptation: © O O@ o
® O®g g®o08 ps(z) = pr(z)
8o a S]e)



Unsupervised domain adaptation (UDA)

Labeled images Unlabeled images

Target domain



Unsupervised domain adaptation (UDA)

Labeled images Unlabeled images

Target domain

Like semi-supervised segmentation except target images are from a different
domain

Most semi-supervised learning methods (adversial learning, pseudo-label,
consistency learning, etc.) can also be used for UDA




Adversarial domain adaptation

Adversarial domain adaptation for brain lesion segmentation

LR - ™
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Source domain (Database 1):
e GE, FLAIR, T2, MPRAGE, PD

Target domain (Database 2):

e SWI,

FLAIR, T2, MPRAGE, PD

Concat.

Source or
Target Domain?

Domain
Discriminator LaddBac)

No adaptation
(All sequences)

No adaptation
(No GE/SWI)

Adaptation ST

Ground-truth

Image from Kamnitsas, K., et al. "Unsupervised domain adaptation in brain lesion segmentation with adversarial networks." Int. Conf. on Information Processing in

Medical Imaging, 2017.



Part Il:
Weakly-supervised learning



From full to weak supervision

Different levels of supervision

Idea:

Weak labels like image tags,
bounding boxes and scribbles
are cheaper to obtain

Challenge:

How can we use this partial
information to train the

segmentation network?

Original image Image tags Bounding boxes Scribbles Full supervision

Image from Dolz et al., Less-supervised Segmentation with CNNs, MICCAI Book Series, Springer 2025



Pixel-level annotations

Weakly-supervised loss:

mmz Z £ (y(l) (l))+/IZ€ (S

i=1 p eQ(i)

Key idea: _
e For each image i, class labels are only known for a reduced set of pixels Q) cQ

e Include a segmention prior in the form of a regularization loss



Pixel-level annotations

Standard loss
Weakly-supervised loss: (e.g., cross-entropy)

i=1, pGQ(‘)' =1 Regularization loss

________ segmentation prior
Labeled pixels (seg prior)

of image i

Key idea: |
e For each image i, class labels are only known for a reduced set of pixels Q) cQ
e Include a segmention prior in the form of a regularization loss



Examples of regularization losses

Entropy minimization:

WSO == ), ) spklogsy)

peQ\Q0) keC

Key idea:
e Push the predictions for unlabled pixels to be confident



Examples of regularization losses

Conditional random field (CRF):

¢, (S(l))_ Z wpq CRF(S(I) (i))

p,q €Ll

where fCRF(s(l) (l)) = ]l[argml?x s;,) * arg max sc(l,)k]

Key idea:

e Penalize the assignement of different labels to related pixels

e Typically solved using graph-cuts or mean field approximation



Examples of regularization losses

Conditional random field (CRF):

¢, (S(l))_ Z wpq CRF(S(I) (i))

p,q €Ll
4 s(l) (l) — 1 [arg max s() are max s
where €ege ( ) = 1]arg AX S bk # arg WX S gk /]
S A @O O\ T o\
' lp—qll*  IIxp" —x4 |l lp —qll*)
LW = brexp | — - + b1exp|— !
Ve B2 P( 2072 207 B1 exp 207 | |

_________________________________________________________

Key idea:

e Penalize the assignement of different labels to related pixels

e Typically solved using graph-cuts or mean field approximation



Refining the segmentation

Iterative refinement:

Initial pseudo-labels Training Network predictions
Segmentation Network

Pseudo-label
refinement (DenseCRF)

Key idea:

e Use the output of the CRF prediction as pseudo-label for next iteration

e Repeat until convergence

Image from Dolz et al., Less-supervised Segmentation with CNNs, MICCAI Book Series, Springer 2025



Using Class Activation Maps (CAMs)

GAP Softmax
Input Image
P & ~~<_ Trained Classification Image-level
X AN Network predictions
AY
N >
\
Y Threshold
\ <
| Pseudo-label Class activation map i
~ I
:. Y CAM !
1
! \ S
__________________________ I e e e e e
......................... .".--------.-------------\.a...:-------------------------------------------
! Segmentation ) B L
i (Training)

Input Image s tati Network
egmentation prediction Pseudo-label
X Network N ~
] Y

Image from Dolz et al., Less-supervised Segmentation with CNNs, MICCAI Book Series, Springer 2025

Image-level annotations

Key idea:

e Train a classifier with image-level
annotations

Use the CAMs of the classifier as pseudo-

labels for training the segmentation
network



Take home messages

Building large training set of labeled examples is not always possible...
... but unlabeled data is often available for free

Semi-supervised methods (e.g., adversarial learning, consistency regularization,
knowledge distillation) and self-supervised representation learning can boost
performance when labeled data is limited

Similar approaches can be used to adapt models across different domains (e.g.,
in unsupervised domain adaptation or test-time adaptation)

Not a silver bullet, can be very challenging at times (e.g., adversarial instability)

Lots of exciting opportunities for future research !!!
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Many thanks to

Jose Dolz

Ismail Ben Ayed
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