

Semi/weakly-supervised Learning for Medical Image Segmentation

Christian Desrosiers

ÉTS Montreal, Canada

Outline

Part I: Semi-supervised learning

- 1. Introduction
- 2. Adversarial learning
- **3.** Pseudo-labeling & entropy min.
- 4. Consistency regularization
- 5. Self-supervised learning

Unlabeled images (many)

Part II: Weakly-supervised learning

- 1. Introduction
- 2. Pixel-level annotations
- 3. Image-level annotations

Bounding boxes

Scribbles

Part I: Semi-supervised learning

Importance of unlabeled data

Training deep neural nets requires <u>lots</u> of labeled data

ImageNet

- Over 14M annotated images
- More than 20,000 classes

Source: https://cs.stanford.edu/people/karpathy/cnnembed/

Importance of unlabeled data

However, annotating data can be <u>hard</u> and <u>expensive</u> in some applications...

Challenges:

- Volumetric images
- Low contrast regions
- Can only be done by <u>trained experts</u>

... but unlabeled data is often available for **free**

Learning with unlabeled images

Labeled images (few)

. . .

Unlabeled images (many)

Learning with unlabeled images

Labeled images (few)

How can we use this information to learn segmentation ?

General formulation

Labeled images (few)Unlabeled images (many) $\mathcal{D}_s = \{(\mathbf{X}^{(i)}, \mathbf{Y}^{(i)})\}_{i=1}^{N_s}$ $\mathcal{D}_u = \{\mathbf{X}^{(u)}\}_{u=1}^{N_u}$

where:

 $\mathbf{X}^{(i)}, \mathbf{X}^{(u)} \in \mathbb{R}^{|\Omega|}$ are images on the set of pixels Ω $\mathbf{Y}^{(i)} \in \{0, 1\}^{|\Omega| \times |\mathcal{C}|}$ are ground-truth mask for classes \mathcal{C}

General formulation

Labeled images (few)Unlabeled images (many) $\mathcal{D}_s = \{(\mathbf{X}^{(i)}, \mathbf{Y}^{(i)})\}_{i=1}^{N_s}$ $\mathcal{D}_u = \{\mathbf{X}^{(u)}\}_{u=1}^{N_u}$

where:

 $\mathbf{X}^{(i)}, \mathbf{X}^{(u)} \in \mathbb{R}^{|\Omega|}$ are images on the set of pixels Ω $\mathbf{Y}^{(i)} \in \{0, 1\}^{|\Omega| \times |\mathcal{C}|}$ are ground-truth mask for classes \mathcal{C}

Objective:

$$\mathcal{L}_{tot}(\theta) = \frac{1}{N_s} \sum_{(\mathbf{X}^{(i)}, \mathbf{Y}^{(i)}) \in \mathcal{D}_s} \ell_s(\mathbf{S}_{\theta}^{(i)}, \mathbf{Y}^{(i)}) + \frac{\lambda}{N_u} \sum_{\mathbf{X}^{(u)} \in \mathcal{D}_u} \ell_u(\mathbf{S}_{\theta}^{(u)})$$
Supervised loss \mathcal{L}_s
Unsupervised loss \mathcal{L}_u

General formulation

Labeled images (few) $\mathcal{D}_{s} = \{ (\mathbf{X}^{(i)}, \mathbf{Y}^{(i)}) \}_{i=1}^{N_{s}} \qquad \qquad \mathcal{D}_{u} = \{ \mathbf{X}^{(u)} \}_{u=1}^{N_{u}}$

where:

 $\mathbf{X}^{(i)}, \mathbf{X}^{(u)} \in \mathbb{R}^{|\Omega|}$ are images on the set of pixels Ω $\mathbf{Y}^{(i)} \in \{0, 1\}^{|\Omega| \times |\mathcal{C}|}$ are ground-truth mask for classes \mathcal{C}

Adversarial learning for semi-supervised segmentation

Adversarial learning

Basic idea:

Learn the data distribution using a classifier (the discriminator)

Adversarial learning

Basic idea:

Learn the data distribution using a classifier (the discriminator)

Objective: Generate samples in the distribution of real data

Real training images

Real training images

How to make sure that generated images look real?

Real training images

Training the discriminator (cross-entropy):

$$\min_{D} \mathbb{E}_{\mathbf{X} \sim P_{X}} \left[-\log D(\mathbf{X}) \right] + \mathbb{E}_{\mathbf{z} \sim P_{z}} \left[-\log(1 - D(G(\mathbf{z}))) \right]$$

Output '0' for generated images

Real training images

Training the generator:

$$\max_{G} \mathbb{E}_{\mathbf{z} \sim P_{z}} \Big[-\log(1 - D(G(\mathbf{z})) \Big]$$

Fool the discriminator into predicting '1' for fake images

Real training images

Training the whole architecture:

$$\min_{G} \max_{D} \mathbb{E}_{\mathbf{X} \sim P_{X}} \left[\log D(\mathbf{X}) \right] + \mathbb{E}_{\mathbf{z} \sim P_{z}} \left[\log(1 - D(G(\mathbf{z}))) \right]$$

Corresponds to a minimax problem (more on this later...)

GANs for segmentation

GAN for image generation:

GANs for segmentation

GAN for image generation:

GANs for segmentation

We are now modeling the distribution of *segmentation masks*

The generator is a segmentation network (encoder-decoder)

Basic idea: Learn to generate segmentation masks which can't be differentiated from ground-truth (GT)

Data =

Basic idea: Learn to generate segmentation masks which can't be differentiated from ground-truth (GT)

$$\mathcal{L}_{sup}(G) = \frac{1}{N_s} \sum_{(\mathbf{X}^{(i)}, \mathbf{Y}^{(i)}) \in \mathcal{D}_s} \ell_s(G(\mathbf{X}^{(i)}), \mathbf{Y}^{(i)})$$

Basic idea: Learn to generate segmentation masks which can't be differentiated from ground-truth (GT)

Basic idea: Learn to generate segmentation masks which can't be differentiated from ground-truth (GT)

Both labeled and unlabeled:

$$\min_{G} \max_{D} \mathcal{L}_{adv}(G, D) = \mathcal{L}_{sup}(G) - \lambda \mathcal{L}_{dis}(G, D)$$
Supervised loss
Discriminator loss

Adversarial network for semi-supervised segmentation of histological images

Image from Zhang, Y., et al. "Deep adversarial networks for biomedical image segmentation utilizing unannotated images." Int. Conf. on Medical Image Computing and Computer-Assisted Intervention. 2017.

Challenges of adversarial learning

Ghosh, A., et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. Chang, Mark. "Generative Adversarial Networks", published online, 2016

Challenges of adversarial learning

2)

Ghosh, A., et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. Chang, Mark. "Generative Adversarial Networks", published online, 2016

Challenges of adversarial learning

Mode collapse problem 2)

- Spectral normalization (Miyato et al., 2018)
- Wasserstein GANs (Arjovsky et al., 2017)
- LSGANs (Mao et al., 2017)
- etc.

Ghosh, A., et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. Chang, Mark. "Generative Adversarial Networks", published online, 2016

 M_2

Pseudo-labeling & entropy minimization for semi-supervised segmentation

Pseudo-labeling (self-training):

$$\ell_{u}(\mathbf{X}^{(u)}) = \frac{\sum_{p \in \Omega} \mathbb{1} \left(Conf(\mathbf{s}_{p}^{(u)}) \geq \tau \right) \cdot \mathcal{H}(\hat{\mathbf{y}}_{p}^{(u)}, \mathbf{s}_{p}^{(u)})}{\sum_{p \in \Omega} \mathbb{1} \left(Conf(\mathbf{s}_{p}^{(u)}) \geq \tau \right)}$$

$$\hat{y}_{p,k}^{(u)} = \begin{cases} 1, & \text{if } k = \arg \max_{k'} s_{p,k'}^{(u)} \\ 0, & \text{else} \end{cases}$$

Key idea:

- Convert confident predictions for unlabeled samples into pseudo-labels
- Use the pseudo-labeled samples in a standard loss (e.g., cross-entropy)
- Example of confidence score: $Conf(\mathbf{s}_p^{(u)}) = \max_k s_{p,k}^{(u)}$.

Pseudo-labeling (self-training):

$$\ell_{u}(\mathbf{X}^{(u)}) = \frac{\sum_{p \in \Omega} \mathbb{1}\left(Conf(\mathbf{s}_{p}^{(u)}) \ge \tau\right) \cdot \mathcal{H}(\hat{\mathbf{y}}_{p}^{(u)}, \mathbf{s}_{p}^{(u)})}{\sum_{p \in \Omega} \mathbb{1}\left(Conf(\mathbf{s}_{p}^{(u)}) \ge \tau\right)}$$

Pseudo-label

$$\hat{y}_{p,k}^{(u)} = \begin{cases}
1, & \text{if } k = \arg \max_{k'} s_{p,k'}^{(u)} \\
0, & \text{else}
\end{cases}$$

Key idea:

- Convert confident predictions for unlabeled samples into pseudo-labels
- Use the pseudo-labeled samples in a standard loss (e.g., cross-entropy)
- Example of confidence score: $Conf(\mathbf{s}_p^{(u)}) = \max_k s_{p,k}^{(u)}$.

Pseudo-labeling (self-training):

$$\ell_{u}(\mathbf{X}^{(u)}) = \frac{\sum_{p \in \Omega} \mathbb{1}\left(Conf(\mathbf{s}_{p}^{(u)}) \ge \tau\right) \cdot \mathcal{H}(\hat{\mathbf{y}}_{p}^{(u)}, \mathbf{s}_{p}^{(u)})}{\sum_{p \in \Omega} \mathbb{1}\left(Conf(\mathbf{s}_{p}^{(u)}) \ge \tau\right)}$$

Pseudo-label

$$\hat{y}_{p,k}^{(u)} = \begin{cases}
1, & \text{if } k = \arg \max_{k'} s_{p,k'}^{(u)} \\
0, & \text{else}
\end{cases}$$

Key idea:

- Convert confident predictions for unlabeled samples into pseudo-labels
- Use the pseudo-labeled samples in a standard loss (e.g., cross-entropy)
- Example of confidence score: $Conf(\mathbf{s}_p^{(u)}) = \max_k s_{p,k}^{(u)}$.

Problem: incorrect predictions are reinforced leading to <u>collapse</u>

Pseudo-labeling (with teacher):

Key idea:

- Use the predictions of a <u>Teacher</u> network to generate pseudo-labels
- More stable, lower chances of collapse
- Teacher is typically pre-trained on labeled images and/or updated using EMA (more on this later...)

SSL methods using entropy minimization

Key idea:

• Can be seen as a <u>soft</u> version of pseudo-labeling where all predictions are considered as confident and the pseudo-label is the prediction itself. i.e. $\hat{\mathbf{y}}_p^{(u)} = \mathbf{s}_p^{(u)}$

SSL methods using entropy minimization

Key idea:

• Can be seen as a <u>soft</u> version of pseudo-labeling where all predictions are considered as confident and the pseudo-label is the prediction itself. i.e. $\hat{\mathbf{y}}_p^{(u)} = \mathbf{s}_p^{(u)}$

<u>Problem</u>: incorrect predictions that are confident will remain « stuck » <u>**Solution**</u>: increase the entropy loss slowly during training
Consistency regularization for semi-supervised segmentation

Consistency regularization for SSL

How to better use <u>unlabeled data</u>?

Vanilla supervised learning

- Considers only *labeled* samples
- Overfits when few training samples

Consistency regularization for SSL

How to better use <u>unlabeled data</u>?

Vanilla supervised learning

- Considers only *labeled* samples
- Overfits when few training samples

Data augmentation

- Transforms *labeled* samples to augment the training set
- Better generalization, but not enough for semi-supervised learning

Consistency regularization for SSL

How to better use unlabeled data ?

Vanilla supervised learning

- Considers only *labeled* samples
- Overfits when few training samples

- Transforms <u>labeled</u> samples to augment the training set
- Better generalization, but not enough for semi-supervised learning

Consistency regularization

- Perturbs <u>unlabeled</u> samples with noise or guided transformations
- Imposes the network to have consistent outputs for perturbed samples

Basic transformation consistency (Γ-model)

$$\mathcal{L}(\theta) = \frac{1}{N_l} \sum_{(\mathbf{X}^{(i)}, \mathbf{Y}^{(i)}) \in \mathcal{D}_l} \ell_{sup} \left(f(\mathbf{X}^{(i)}), \mathbf{Y}^{(i)} \right) + \frac{\lambda}{N_u} \sum_{\mathbf{X}^{(u)} \in \mathcal{D}_u} \mathbb{E}_{T \sim P_T} \left[\ell_{reg} \left(T(f(\mathbf{X}^{(u)})), f(T(\mathbf{X}^{(u)})) \right) \right]$$

Basic transformation consistency (Γ-model)

$$\mathcal{L}(\theta) = \frac{1}{N_l} \sum_{(\mathbf{X}^{(i)}, \mathbf{Y}^{(i)}) \in \mathcal{D}_l} \ell_{sup} (f(\mathbf{X}^{(i)}), \mathbf{Y}^{(i)}) + \frac{\lambda}{N_u} \sum_{\mathbf{X}^{(u)} \in \mathcal{D}_u} \mathbb{E}_{T \sim P_T} \Big[\ell_{reg} (T(f(\mathbf{X}^{(u)})), f(T(\mathbf{X}^{(u)}))) \Big]$$

Cross-entropy, Dice, etc.

Basic transformation consistency (Γ-model)

$$\mathcal{L}(\theta) = \frac{1}{N_l} \sum_{(\mathbf{X}^{(i)}, \mathbf{Y}^{(i)}) \in \mathcal{D}_l} \ell_{sup}(f(\mathbf{X}^{(i)}), \mathbf{Y}^{(i)}) + \frac{\lambda}{N_u} \sum_{\mathbf{X}^{(u)} \in \mathcal{D}_u} \mathbb{E}_{T \sim P_T} \left[\ell_{reg}(T(f(\mathbf{X}^{(u)})), f(T(\mathbf{X}^{(u)}))) \right]$$
Random transformation: Regularization loss imposing transformation equivariance equivariance

$$\ell_{reg}^{KL}(\mathbf{S},\mathbf{S}') = \sum_{p \in \Omega} \sum_{k \in \mathcal{C}} s_{p,k} \log\left(\frac{s_{p,k}}{s'_{p,k}}\right) \qquad \ell_{reg}^{L_2}(\mathbf{S},\mathbf{S}') = \sum_{p \in \Omega} \|\mathbf{s}_p - \mathbf{s}'_p\|_2^2$$

Application to chest X-ray segmentation:

Transformations are random elastic deformations

Bortsova, G., et al.. "Semi-supervised medical image segmentation via learning consistency under transformations." MICCAI, 2019.

Self-ensembling (□-model):

- Applying <u>different dropouts</u> on the <u>same network</u> gives an ensemble of models
- Also leverages random image transformations

Self-ensembling (□-model):

- Applying <u>different dropouts</u> on the <u>same network</u> gives an ensemble of models
- Also leverages random image transformations

- Consistency between the predictions of a Teacher and a Student network
- The Teacher's weights are an EMA of the Student's at previous training iterations (lphapprox 1)

- Consistency between the predictions of a Teacher and a Student network
- The Teacher's weights are an EMA of the Student's at previous training iterations (lphapprox 1)

Application of Mean Teacher to segmenting MRI spinal cord gray matter

Perone, C.S. and Cohen-Adad, J. "Deep semi-supervised segmentation with weight-averaged consistency targets." Deep learning in medical image analysis and multimodal learning for clinical decision support, 2019 (*extended version in Neuroimage*)

Uncertainty-aware self-ensembling

Uncertainty-aware self-ensembling

Muti-view co-training

- Supposes the existence of separate, complementary views of the data
- Use high-confidence predictions for a given view as pseudo-labels in other views

- Supposes the existence of separate, complementary views of the data
- Use high-confidence predictions for a given view as pseudo-labels in other views

Application of multi-view co-training for pancreas and liver tumor segmentation

Self-supervised learning for segmentation

Traditional semi-supervised learning

• Trains a model simultaneously with both labeled and unlabeled data

Trains a model simultaneously with both labeled and unlabeled data

Self-supervised representation learning

Learns a data representation by solving an auxiliary task that does not require labels

Self-supervsied

auxiliary task

Learned

representation

- Uses this representation to solve a downstream task
- A light weight fine-tuning of the model can generally be done

Traditional semi-supervised learning

• Trains a model simultaneously with both labeled and unlabeled data

Self-supervised representation learning

- Learns a data representation by solving an auxiliary task that <u>does not</u> require labels
- Uses this representation to solve a downstream task
- A light weight fine-tuning of the model can generally be done

Approaches for URL

Self-supervised learning:

Basic idea:

- Learn to solve a pretext task which does not require annotations
- <u>Example</u>: find the correct order of permuted patches (see left)

Taleb, A., et al. "Multimodal self-supervised learning for medical image analysis." arXiv preprint (2019).

Approaches for URL

Application to brain tumor MRI

Taleb, A., et al. "Multimodal self-supervised learning for medical image analysis." arXiv preprint (2019).

Constrastive learning

- Generate two augmentations for each image
- Pull closer the representations of the <u>same image</u> and push away those of <u>different ones</u>

Approaches for URL

Contrastive learning:

Basic idea:

- Train with pairs of images that <u>match</u> (e.g., same position in volume, same image under different transformations, etc.) or not
- Find a representation that is similar for matching pairs and different for non-matching ones

Chaitanya, K., et al. "Contrastive learning of global and local features for medical image segmentation with limited annotations." NeurIPS 2020.

Approaches for URL

Contrastive learning:

Basic idea:

- Matching pairs for <u>global loss</u> are slices in the same volume position or same subsject
- Matching pairs for <u>local loss</u> are feature vectors from the same image under two transformations

Chaitanya, K., et al. "Contrastive learning of global and local features for medical image segmentation with limited annotations." NeurIPS 2020.

Clustering based on mutual information (MI)

- Project features to a discrete K-cluster probability distribution
- Enforce transformation invariance to clusters using MI maximization

Boundary-aware Information Maximization for Self-supervised Medical Image Segmentation

Jizong Peng* ETS Montreal jizong.peng.1@etsmtl.net Ping Wang ETS Montreal ping.wang.1@ens.etsmtl.ca

Christian Desrosiers ETS Montreal christian.desrosiers@etsmtl.ca Marco Pedersoli ETS Montreal marco.pedersoli@etsmtl.ca

	ACDC-LV				ACDC-RV				ACDC-Myo				PROMISE12			
Methods	<i>n</i> =1	<i>n</i> =2	<i>n</i> =4	avg	<i>n</i> =1	<i>n</i> =2	<i>n</i> =4	avg	<i>n</i> =1	<i>n</i> =2	<i>n</i> =4	avg	<i>n</i> =4	<i>n</i> =6	<i>n</i> =8	avg
Partial supervision	67.13 74.49 84.81 75.48			51.82 60.50 64.18 58.84			54.05 67.56 76.00 65.87			49.91 71.53 78.04 66.49						
Full supervision	92.26			86.80			88.07			89.65						
Contrast (Enc+Dec)	77.98	85.97	88.42	84.12	66.47	72.82	76.69	71.99	64.96	76.98	78.76	73.57	60.68	77.97	80.53	73.06
Ours (pre-train)	84.48	87.85	90.04	87.45	75.42	79.73	78.89	78.01	74.30	78.43	82.82	78.52	69.76	80.47	82.09	77.44
Entropy minimization	73.79	80.26	86.84	80.30	56.18	62.09	66.27	61.51	57.23	71.10	76.28	68.20	$59.78 \\ 52.09 \\ 84.71 \\ \overline{66.16} \\ 63.97 \\ 71.50$	76.09	78.98	71.62
MixUp	73.30	76.30	84.42	78.01	61.23	63.60	63.14	62.66	55.74	69.80	73.84	66.46		75.59	81.11	69.60
Mean Teacher (MT)	83.13	87.02	87.70	85.95	61.61	68.76	67.21	65.86	61.55	75.32	78.42	71.76		<u>85.97</u>	<u>86.93</u>	<u>85.87</u>
UA-MT	81.08	85.03	87.19	84.43	62.06	67.91	66.64	65.54	59.26	73.68	78.61	70.52		81.79	84.40	77.45
ICT	76.87	78.41	86.34	80.54	60.31	63.42	68.35	64.03	55.91	71.77	77.90	68.53		77.92	81.39	74.43
Adversarial learning	75.31	74.85	85.85	78.67	55.29	62.25	64.58	60.71	57.68	70.39	75.94	68.00		78.63	81.35	77.16
MT + Contrast (<i>Enc</i> + <i>Dec</i>) MT + Ours (<i>pre-train</i>)	86.37 90.25	<u>89.57</u> 91.36	<u>90.40</u> 91.04	<u>88.78</u> 90.88	<u>75.53</u> 80.16	<u>78.42</u> 81.50	<u>77.22</u> 78.97	<u>77.06</u> 80.21	76.11 78.71	<u>80.21</u> 83.33	<u>82.00</u> 83.61	<u>79.44</u> 81.88	76.16 85.64	82.89 85.60	84.85 88.45	81.30 86.56

Domain adaptation

Domain adaptation

Objective

Align the distributions (input, output or representation) so that a model trained on Source data also works on Target data

Unsupervised domain adaptation (UDA)

Unsupervised domain adaptation (UDA)

- Like semi-supervised segmentation except target images are <u>from a different</u> <u>domain</u>
- Most semi-supervised learning methods (*adversial learning, pseudo-label, consistency learning, etc.*) <u>can also be used for UDA</u>

Adversarial domain adaptation

Adversarial domain adaptation for brain lesion segmentation

Source domain (Database 1):

• GE, FLAIR, T2, MPRAGE, PD

Target domain (Database 2):

• SWI, FLAIR, T2, MPRAGE, PD

Image from Kamnitsas, K., et al. "Unsupervised domain adaptation in brain lesion segmentation with adversarial networks." Int. Conf. on Information Processing in Medical Imaging, 2017.

Part II: Weakly-supervised learning

From full to weak supervision

Different levels of supervision

Idea:

Weak labels like image tags, bounding boxes and scribbles are cheaper to obtain

Challenge:

How can we use this partial information to train the segmentation network?

Image from Dolz et al., Less-supervised Segmentation with CNNs, MICCAI Book Series, Springer 2025
Pixel-level annotations

Weakly-supervised loss:

$$\min_{\theta} \sum_{i=1}^{N} \sum_{p \in \Omega^{(i)}} \ell_s(\mathbf{y}_p^{(i)}, \mathbf{s}_p^{(i)}) + \lambda \sum_{i=1}^{N} \ell_u(\mathbf{S}^{(i)})$$

- For each image i, class labels are only known for a reduced set of pixels $\Omega^{(i)} \subset \Omega_{i}$
- Include a segmention prior in the form of a regularization loss

Pixel-level annotations

- For each image i, class labels are only known for a reduced set of pixels $\Omega^{(i)} \subset \Omega_{i}$
- Include a segmention prior in the form of a regularization loss

Examples of regularization losses

Entropy minimization:

$$\ell_{u}(\mathbf{S}^{(i)}) = -\sum_{p \in \Omega \setminus \Omega^{(i)}} \sum_{k \in \mathcal{C}} s_{p,k}^{(i)} \log s_{p,k}^{(i)}$$

Key idea:

• Push the predictions for unlabled **pixels** to be confident

Examples of regularization losses

Conditional random field (CRF):

$$\ell_u(\mathbf{S}^{(i)}) = \sum_{p,q \in \Omega} w_{pq} \ \ell_{\text{CRF}}(\mathbf{s}_p^{(i)}, \mathbf{s}_q^{(i)})$$

where
$$\ell_{\text{CRF}}(\mathbf{s}_p^{(i)}, \mathbf{s}_q^{(i)}) = \mathbb{1}\left[\arg\max_k s_{p,k}^{(i)} \neq \arg\max_{k'} s_{q,k'}^{(i)}\right]$$

- Penalize the assignement of different labels to related pixels
- Typically solved using graph-cuts or mean field approximation

Examples of regularization losses

Conditional random field (CRF):

$$\ell_u(\mathbf{S}^{(i)}) = \sum_{p,q \in \Omega} w_{pq} \ \ell_{\text{CRF}}(\mathbf{s}_p^{(i)}, \mathbf{s}_q^{(i)})$$

where
$$\ell_{\text{CRF}}(\mathbf{s}_p^{(i)}, \mathbf{s}_q^{(i)}) = \mathbb{1}\left[\arg\max_k s_{p,k}^{(i)} \neq \arg\max_{k'} s_{q,k'}^{(i)}\right]$$

$$w_{p,q} = \beta_2 \exp\left(-\frac{\|p-q\|^2}{2\sigma_1^2} - \frac{\|\mathbf{x}_p^{(i)} - \mathbf{x}_q^{(i)}\|^2}{2\sigma_2^2}\right) + \beta_1 \exp\left(-\frac{\|p-q\|^2}{2\sigma_3^2}\right)$$

- Penalize the assignement of different labels to related pixels
- Typically solved using graph-cuts or mean field approximation

Refining the segmentation

Iterative refinement:

Key idea:

- Use the output of the CRF prediction as pseudo-label for next iteration
- Repeat until convergence

Image from Dolz et al., Less-supervised Segmentation with CNNs, MICCAI Book Series, Springer 2025

Image-level annotations

Using Class Activation Maps (CAMs)

Key idea:

- Train a classifier with image-level annotations
- Use the CAMs of the classifier as pseudolabels for training the segmentation network

Image from Dolz et al., Less-supervised Segmentation with CNNs, MICCAI Book Series, Springer 2025

Take home messages

- Building large training set of labeled examples is not always possible...
- ... but unlabeled data is often available for <u>free</u>
- Semi-supervised methods (e.g., *adversarial learning, consistency regularization, knowledge distillation*) and self-supervised representation learning can boost performance when labeled data is limited
- Similar approaches can be used to adapt models across different domains (e.g., in *unsupervised domain adaptation or test-time adaptation*)
- Not a silver bullet, can be very challenging at times (e.g., adversarial instability)
- Lots of exciting opportunities for future research !!!

Many thanks to

Questions ?

Jose Dolz

Ismail Ben Ayed