Michaël Sdika CREATIS - CNRS

Deep Learning State of the Art Convolutional Architectures

Michaël Sdika ¹

¹CNRS, CREATIS UMR 5220

Machine learning

nput
$$\longrightarrow$$
 Mapping \longrightarrow Answe

. . .

Unstructured data

- physiological parameters
- Yes/No
- Category
- ...

Introduction

Supervized Deep Learning

- How to represent the mapping?
 - Deep learning : Neural network
 - Which architecture for the network?
- How to estimate the network coefficient?
 - Loss functions?
 - Optimization?
 - Generalization ?

Introduction

5 classes of architectures adressed in this course

Outline

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers Encoder / Decoder architectures Detection Instance Segmentation Image Registration

Extra

What about memory?

Deep Neural Network

Basic Layers :

- Linear Layers : Fully Connected / Convolution :
- Activation layers :
- Pooling layers :
- Normalization layers :

n : mixing features introducing nonlinearity spatial aggregation, subsampling stabilizing the training Short reminder on MLP and CNN

Multi Layer Perceptron

Short reminder on MLP and CNN

Michaël Sdika CREATIS - CNRS

Multi Layer Perceptron

CNN

Activation functions

Pooling

Normalization

• deep network : need to normalize input x such that x N(0, 1)

Z-normalization

what about features within the network?

Batch Normalization

$$x \longrightarrow$$
 BatchNorm $y = \gamma \hat{x} + \beta$
with $\hat{x} = \frac{x-\mu}{\sigma}$

- \blacktriangleright μ , σ : mean, std of x over a minibatch
- \triangleright γ , β : trainable parameters
- Inference : use average μ , σ from training

Related Normalization

Short reminder on MLP and CNN

Squeeze and Excitation

Hu et al CVPR 2018, Squeeze-and-excitation networks Roy et al, MICCAI 2018, Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers

Encoder / Decoder architectures Detection Instance Segmentation Image Registration

Extra

Le Net

LeCun et al., Neural Computation 1989, "Backpropagation Applied to Handwritten Zip Code Recognition" LeCun et al., 1998, Proceedings of the IEEE, Gradient-based learning applied to document recognition.

Image Net

SUN, 131K [Xiao et al. '10]

LabelMe, 37K

PASCAL VOC, 30K Everingham et al. '06-'12]

Caltech101, 9K [Fei-Fei, Fergus, Perona, '03]

Image Net

Architecture for some important applications

Krizhevsky etal. ImageNet classification with deep convolutional neural networks

Image Net

Simonyan & Zisserman, ICLR 2015, Very Deep Convolutional Networks for Large-Scale Image Recognition

Image Net

Inception Block

Szegedy et al, CVPR 2015, Going Deeper With Convolutions

1x1 Convolution

3x3 convolution receptive field

1x1 convolution receptive field

GoogLe Net

Image Net

Architecture for some important applications

Going Deeper??

He et al, CVPR 2016, Deep Residual Learning for Image Recognition

Residual Block

observation :

- more layers \Rightarrow higher train errors
- Problem is training

Architecture easier to train

Vanishing gradient

He etal, CVPR 2016, Deep Residual Learning for Image Recognition.

Residual Block Input 256 Input 256 Conv1x1 -> 64 BatchNorm Conv3x3 -> 256 ReLU BatchNorm Conv3x3 -> 64 ReLU Regular BatchNorm Residual **Bottleneck** Conv3x3 -> 256 Block ReLU BatchNorm Conv1x1 -> 256 BatchNorm Addition Addition ReLU ReLU Output Output

He et al, CVPR 2016, Deep Residual Learning for Image Recognition

Image Net

Dense Block

$$x_0 \rightarrow H_1 \rightarrow x_1 \rightarrow H_2 \rightarrow x_2 \rightarrow H_3 \rightarrow x_3 \rightarrow H_4 \rightarrow x_4 \cdots$$

Res block : $x_{l} = x_{l-1} + H_{l}(x_{l-1})$

Dense block : $x_l = H_l([x_0, x_1, ..., x_{l-1}])$

Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks

Dense Block

$$x_0 \rightarrow H_1 \rightarrow x_1 \rightarrow H_2 \rightarrow x_2 \rightarrow H_3 \rightarrow x_3 \rightarrow H_4 \rightarrow x_4 \cdots$$

Res block : $x_{l} = x_{l-1} + H_{l}(x_{l-1})$

Dense block : $x_l = H_l([x_0, x_1, ..., x_{l-1}])$

Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks

Dense Block

Res block : $x_{l} = x_{l-1} + H_{l}(x_{l-1})$

Dense block : $x_l = H_l([x_0, x_1, ..., x_{l-1}])$

Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks
Dense Block

Res block : $x_l = x_{l-1} + H_l(x_{l-1})$

Dense block : $x_l = H_l([x_0, x_1, ..., x_{l-1}])$

Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks

Res block : $x_l = x_{l-1} + H_l(x_{l-1})$

Dense block : $x_l = H_l([x_0, x_1, ..., x_{l-1}])$

Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks

Dense Net

Gao, et al. CVPR 2017, Densenet : densely connected convolutional networks

Mobile Net V1 : depthwize conv

L. Sifre. Rigid-motion scattering for image classification. PhD thesis, Ph. D. thesis, 2014. 1, 3 Howard et al, arxiv 2017, MobileNets : Efficient Convolutional Neural Networks for Mobile Vision Applications

Mobile Net V1 : depthwize conv

L. Sifre. Rigid-motion scattering for image classification. PhD thesis, Ph. D. thesis, 2014. 1, 3 Howard et al, arxiv 2017, MobileNets : Efficient Convolutional Neural Networks for Mobile Vision Applications

Mobile Net V2 : inverted bottleneck

Sandler et al, CVPR 2018, MobileNetV2 : Inverted Residuals and Linear Bottlenecks

Efficient Net : compound scaling of networks

Tan and Le. PMLR 2019, Efficientnet : Rethinking model scaling for convolutional neural networks

Efficient Net : compound scaling of networks

- depth, width, resolution for B1
 - $d_1 = \alpha d_0$
 - $w_1 = \beta w_0$
 - $r_1 = \gamma r_0$
- grid search for α , β , γ
- $\blacktriangleright \ \mathsf{Bk}: \alpha^k, \, \beta^k, \, \gamma^k$

Efficient Net v2 : architecture grid search fo B0

Efficient Net

Tan and Le. PMLR 2019, Efficientnet : Rethinking model scaling for convolutional neural networks

ConvNext

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers

Encoder / Decoder architectures

Detection Instance Segmentation Image Registration

Extra

Michaël Sdika CREATIS - CNRS

Encoder/Decoder architecture

Image Synthesis, Domain adaptation

. #2m

co

Upsampling Layer

- transpose of strided conv matrix
- learn the upsampling coefficient
- unpool :
 - upsample on maxpool indices
- interpolation
 - bi/tri linear
 - no chessboard artifact

Michaël Sdika CREATIS - CNRS

Fully Convolutional Network : FC as convolution

5x5 conv

Fully Convolutional Network : FC as convolution

use kernels that cover their entire input regions

Long et al., CVPR 2015, Fully convolutional networks for semantic segmentation

Fully Convolutional Network

deconv layer + pixelwize cross entropy

Long et al., CVPR 2015, Fully convolutional networks for semantic segmentation

Fully Convolutional Network

progressive upsampling + reuse fine scale features

Long et al., CVPR 2015, Fully convolutional networks for semantic segmentation

Michaël Sdika CREATIS - CNRS

Architecture for some important applications

Unet

Unet

Ronneberger et al, MICCAI 2015. U-net : Convolutional networks for biomedical image segmentation

Encoder / Decoder

Jegou et al, CVPR 2017, The One Hundred Layers Tiramisu : Fully Convolutional DenseNets for Semantic Segmentation Baheti et al, CVPR 2020, Eff-UNet : A Novel Architecture for Semantic Segmentation in Unstructured Environment

nn-Unet : self configuration

Isensee, et al. Nature 2021, nnU-Net : a self-configuring method for deep learning-based biomedical image segmentation

nn-Unet : self configuration

Isensee, et al. Nature 2021, nnU-Net : a self-configuring method for deep learning-based biomedical image segmentation

nn-Unet : self configuration

Isensee, et al. Nature 2021, nnU-Net : a self-configuring method for deep learning-based biomedical image segmentation

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers Encoder / Decoder architectures Detection

Detection

Instance Segmentation Image Registration

Extra

Michaël Sdika CREATIS - CNRS

Object Detection

R-CNN

- regions extractor (non deep)
- for each region
 - deep feature
 - classif + box regression

 \rightarrow very slow

R-CNN

Girshick, et al. CVPR 2015, Rich feature hierarchies for accurate object detection and semantic segmentation (credit : jhui.github.io/2017/03/15/Fast-R-CNN-and-Faster-R-CNN)

Fast RCNN

all the feature computed at once

Girshick, ICCV 2015, Fast r-cnn (credit : jhui.github.io/2017/03/15/Fast-R-CNN-and-Faster-R-CNN)

Faster RCNN

- DEEP region proposal network : for each position in the feature map, output
 - k proba : object vs non object
 - k offset for bounding box proba

YOLO (You Only Look Once)

- ▶ yolo V1 : CNN \rightarrow pb with small object
- ▶ yolo V2, V3 : Unet

YOLO (You Only Look Once)

Bochkovskiy et al, arxiv 2020, Yolov4 : Optimal speed and accuracy of object detection

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers Encoder / Decoder architectures Detection Instance Segmentation

Image Registration

Extra

Instance Segmentation

Mask R-CNN

He, Kaiming, et al, ICCV 2017, Mask r-cnn

https://alittlepain833.medium.com/simple-understanding-of-mask-rcnn-134b5b330e95

Yolact

Bolya et al, ICCV 2019, YOLACT, Real-time Instance Segmentation Bolya et al, IEEE PAMI 2019, YOLACT++, Better Real-time Instance Segmentation

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Classifiers Encoder / Decoder architectures Detection Instance Segmentation Image Registration

Extra
Motion/Registration

Warping Layer

Architecture for some important applications

Spatial Transformer Networks

Jaderberg et al, NIPS 2015, Spatial Transformer Networks

Spatial Transformer Networks

Image registration with deep learning

Unsupervized learning, VoxelMorph

registration loss : no reference warp needed

Balakrishnan et al. IEEE TMI 2019, VoxelMorph : a learning framework for deformable medical image registration Dalca et al, MICCAI 2018, Unsupervised learning for fast probabilistic diffeomorphic registration

Unsupervized learning, VoxelMorph

registration loss : no reference warp needed

► T(x) = Exp(v): diffeomorphic \leftarrow scaling and squaring layers

Balakrishnan et al. IEEE TMI 2019, VoxelMorph : a learning framework for deformable medical image registration Dalca et al, MICCAI 2018, Unsupervised learning for fast probabilistic diffeomorphic registration Architecture for some important applications

Coarse to fine registration

Bob D. de Vos et al, MEDIA 2019, A Deep Learning Framework for Unsupervised Affine and Deformable Image Registration

Outline

Short reminder on MLP and CNN

Architecture for some important applications

Extra What about memory?

What about memory?

torch/nn/modules/conv.py", line 587, in forward return self._conv_forward(input, self.weight, self.bias) File "/home/conda/.conda/envs/cuda11.0/lib/python3.8/site-packages/ torch/nn/modules/conv.py", line 582, in _conv_forward return F.conv3d(RuntimeError: CUDA out of memory. Tried to allocate 9.79 GiB (GPU 0; 11.91 GiB total capacity; 730.73 MiB already allocated; 8.67 GiB free ; 1.21 GiB reserved in total by PyTorch)

Where is the memory?

Extra

Extra

Michaël Sdika CREATIS - CNRS

First Trick

Reduce the batch size !!!

Extra

Second Trick : Checkpointing

Michaël Sdika CREATIS - CNRS

Third Trick : Revertible Networks

Extra

do no store h_l in forward

recompute h_l in backprop

Third options : Revertible Networks

$$y_1 = x_1 + F(x_2) y_2 = x_2 + G(y_1) x_1 = y_1 - F(x_2)$$

Gomez et al, Neurips 2017, The reversible residual network : Backpropagation without storing activations

Michaël Sdika CREATIS - CNRS

Take home message

Do not start your new network from scratch !

Thank you !!

Efficient Net : compound scaling of networks

Tan and Le. PMLR 2019, Efficientnet : Rethinking model scaling for convolutional neural networks

Efficient Net : compound scaling of networks

- ► base network EffNet₁, ($\phi = 1$)
- find α, β, γ :
 - *ϕ* = 1
 - optimize accuracy/flops s.t. $\alpha\beta^2\gamma^2 \approx 2$

- $\blacktriangleright \text{ More Capacity : change } \phi : \text{EffNet}_{\phi}$
- flops = flops₁ × $(\alpha\beta^2\gamma^2)^{\phi}$

Tan and Le. PMLR 2019, Efficientnet : Rethinking model scaling for convolutional neural networks