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Learning with unlabeled images

Unlabeled images (many)




Learning with unlabeled images

How can we use this information
to learn segmentation ?




Outline

1) Adversarial learning
2) Consistency regularization

3) Unsupervised representation learning



Adversarial learning
for semi-supervised segmentation



Adversarial learning

Basic idea:
Learn the data distribution using a classifier (the discriminator)
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Adversarial learning

Basic idea:
Learn the data distribution using a classifier (the discriminator)
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Objective: Generate samples in the distribution of real data



Generative adversarial network (GAN)

Real training images
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Random noise

z ~py(2)

Generative adversarial network (GAN)

Real training images
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How to make sure that generated images look real ?
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Generative adversarial network (GAN)

Real training images
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Training the discriminator (cross-entropy):

mg’x E:L’diata(m) [logD(aj)] + Eszz (z) [log(l - D(G(Z))]

Output ‘0’ for generated images



Generative adversarial network (GAN)

Real training images

\ 7

Generator
Random noise
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Training the generator:

G

min K, , () [log(l — D(G(Z))]

Discriminator
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Fool the discriminator into predicting ‘1’ for fake images



Generative adversarial network (GAN)

Real training images

\ 7

Generator f
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Random noise

Training the whole architecture:

Discriminator
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—
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min max E,p,... () |10 D(z)] + E,wp.(2)|log(l — D(G(2))]

G D

Corresponds to a minimax problem (more on this later...)



GANs for segmentation

GAN for image generation:

Generator Fake image

Random noise G i




GANs for segmentation

GAN for image generation:

Generator Fake image

Random noise G i

GAN for image segmentation: 1

Generator (& Mask




GANs for segmentation

GAN for image generation:

Generator Fake image

Random noise G - I

!

Generator (G

GAN for image segmentation:

Image Mask

WA &

(/ 103 We are now modeling
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| (‘ ~ the distribution of
\/. segmentation masks

T

The generator is a segmentation network (encoder-decoder)



Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Labeled images X}, V)
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Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Unlabeled i images X,

Data = +
Label im
e age Genzrena (s Prediction
Segmentation
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seg




Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Labeled |mages X1, YV

Labeled image Discriminator
GT or prediction loss

D|scr|m|l|5ator . Labeled

Unlab. image N

Generator (5 Unlab. image _’O/,O—' =
prediction — Unlabeled

- o8

Loav(G, D) = By, [Lais(D(G(2)),0)] + Eapox, [Lais(D(G(21)),1)]




Adversarial semi-supervised segmentation

Basic idea: Learn to generate segmentation masks which can’t be differentiated from ground-truth (GT)

Both labeled and unlabeled: Controls the trade-off between the two losses

il / Ea EA

. A
minmax £(G,D) = mZﬁseg(c;(a:l),yl) SREAREA (;ﬁdis(D(G(wl)),l) + chiS(D(G(xu)),o))

=1

u=1

Adversarial loss



Adversarial semi-supervised segmentation

Adversarial network for semi-supervised segmentation of histological images

Input ‘Image Ground Truth SSAN [6] Ladder Networks [9] DAN (ours)

Image from Zhang, Y., et al. "Deep adversarial networks for biomedical image segmentation utilizing unannotated images." Int. Conf. on Medical Image Computing and
Computer-Assisted Intervention. 2017.



Domain adaptation

Before adaptation:
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Domain adaptation

Before adaptation:
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O O o O oNe) @ Objective
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model trained on Source
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Adversarial domain adaptation

Labeled images Xg, Vg Unlabeled images X

.

Target domain



Adversarial domain

adaptation

Labeled images Xg, Vs Unlabeled images X
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Tsai, Y.-H., et al. "Learning to adapt structured output space for semantic segmentation." IEEE Conf. on Computer Vision and Pattern Recognition. 2018.
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Adversarial domain

adaptation

Labeled images Xg, Vs Unlabeled images X
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Source
GT or prediction
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Target domain
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Like semi-supervised segmentation except target images are from a different domain
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Tsai, Y.-H., et al. "Learning to adapt structured output space for semantic segmentation." IEEE Conf. on Computer Vision and Pattern Recognition. 2018.
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Adversarial domain adaptation

Adversarial domain adaptation for brain lesion segmentation

............................................

Bseg : Normal resolution pathway Segmenter
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e SWI, FLAIR, T2, MPRAGE, PD

Image from Kamnitsas, K., et al. "Unsupervised domain adaptation in brain lesion segmentation with adversarial networks." Int. Conf. on Information Processing in
Medical Imaging, 2017.



Adversarial domain adaptation

Adversarial domain adaptation for brain lesion segmentation

............................................

Bseg : Normal resolution pathway Segmenter
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Source domain (Database 1):
e GE, FLAIR, T2, MPRAGE, PD

Target domain (Database 2):
e SWI, FLAIR, T2, MPRAGE, PD

Image from Kamnitsas, K., et al. "Unsupervised domain adaptation in brain lesion segmentation with adversarial networks." Int. Conf. on Information Processing in
Medical Imaging, 2017.



Adversarial domain adaptation

Adaptation on feature representation or softmax output. What else ?

Vu, T.-H., et al. "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation." IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2019.



Adversarial domain adaptation

Adaptation on feature representation or softmax output. What else ?

7 Adversarial entropy minimization
I \
: c 9 : ® The discriminator must differentiate between
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Vu, T.-H., et al. "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation." IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2019.



Adversarial model for self-training

How can we leverage discriminator predictions at the pixel-level ?

Hung, W.-C. et al. "Adversarial learning for semi-supervised semantic segmentation." British Machine Vision Conference (BMVC), 2018.



Adversarial model for self-training

How can we leverage discriminator predictions at the pixel-level ?

g L

: > ~SeMmi t——
Segmentation Network |

—— Ladv

—»LD

Confidence Map

Label Map

The discriminator must discriminate between prediction and ground-truth (GT) at each pixel

® Consider the discriminator GT-class probabilities as confidence scores

Use high-confidence predictions on unlabeled images as pseudo-labels for self-training

Hung, W.-C. et al. "Adversarial learning for semi-supervised semantic segmentation." British Machine Vision Conference (BMVC), 2018.



Adversarial model for self-training

How can we leverage discriminator predictions at the pixel-level ?

| > Lsemi —

Segmentation Network

—— Ladv

—>LD

Confidence Map

Y, =1if c* = argmaxCS(Xn)(h,w,C)

Hung, W.-C. et al. "Adversarial learning for semi-supervised semantic segmentation." British Machine Vision Conference (BMVC), 2018.



Adversarial model for self-training

How can we leverage discriminator predictions at the pixel-level ?

. » Lsemi —
Segmentation Network |

—— Ladv

—>LD

Confidence Map

Label Map

Use class with highest probability as pseudo-label
A I
Loemi ==Y, Y I(D(S(X))*") > Timi)» M) 10g(S(X,,) B0
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Hung, W.-C. et al. "Adversarial learning for semi-supervised semantic segmentation." British Machine Vision Conference (BMVC), 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

Source domain Target domain

Image Ground-truth Unlabeled Image

Hoffman, J., et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." Int. Conf. on Machine Learning (ICML). 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

Source domain Target domain

Image Ground-truth Unlabeled Image

Learn an unpaired style transfer model from source to target domain

Hoffman, J., et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." Int. Conf. on Machine Learning (ICML). 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

Source domain Target domain

Ground-truth

Unlabeled Image

Image

! Ground-truth

Use the same ground-truth

Image stylized as target

Hoffman, J., et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." Int. Conf. on Machine Learning (ICML). 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

Source domain Target domain

o e o W

Image Ground-truth Unlabeled Image

______________________ -------

i I
| I
" I
| I
| - - = — = = Learn the network for segmenting target images
: :
| I
| I

Image stylized as target Ground-truth How to learn the unpaired style transfer network ?

Hoffman, J., et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." Int. Conf. on Machine Learning (ICML). 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

Source domain Target domain

Image Image stylized as target Real target image

\ 4
Cycle-consistency Semantic | |
loss consistency loss

a

| K Discriminator
Reconstructed image Rea Fake loss

Hung, W.-C. et al. "Adversarial learning for semi-supervised semantic segmentation." British Machine Vision Conference (BMVC), 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

Source domain Target domain

[ ? Image Image stylized as target Real target image

Semantic | |
consistency loss

loss

| K Discriminator
Reconstructed image Rea Fake loss

Cycle consistency loss:  Lcycle(Gs—1, GT5) = EprS(w)[||IE — Grs (GS—>T(3U))||1]

Hoffman, J., et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." Int. Conf. on Machine Learning (ICML). 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

Source domain Target domain

Image stylized as target Real target image

V.l e e e e e e e e o o e o o o
Cycle-consistency Semantic | |
loss

consistency loss

a

| K Discriminator
Reconstructed image Rea Fake loss

Semantic consistency loss: Segmentation for the source image and its stylized target version should be consistent

Hoffman, J., et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." Int. Conf. on Machine Learning (ICML). 2018.



Cycle GANs for domain adaptation

How can we learn a model to segment target images without paired images or GT ?

\ 4

Cycle-consistency
loss

a

Source domain

Image

Semantic
consistency loss

Reconstructed image

Target domain

Image stylized as target

Real target image

Discriminator
| loss

Discriminator loss: Target images generated from source should look like real target ones

Hoffman, J., et al. "CyCADA: Cycle-Consistent Adversarial Domain Adaptation." Int. Conf. on Machine Learning (ICML). 2018.



Challenges of adversarial learning

1) Unstable optimization of minimax problem

V(D,G) V(D,G)

max V (G, D)
D

Global Optimum Global Optimum

Current V (D, G)

Current V(D, G) '\//
2 min V (G, D)
G

Ghosh, A., et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
Chang, Mark. “Generative Adversarial Networks”, published online, 2016



Challenges of adversarial learning

1) Unstable optimization of minimax problem

V(D,G) V(D,G)

max V (G, D)
D

Global Optimum Global Optimum

Current V (D, G)

’ Current V (D, G) '\_//
2 min V (G, D)
G

2) Mode collapse problem

Ghosh, A., et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
Chang, Mark. “Generative Adversarial Networks”, published online, 2016



Challenges of adversarial learning

1) Unstable optimization of minimax problem

V(D,G) V(D,G)

max V (G, D)
D

Global Optimum Global Optimum

Current V (D, G)

Current V(D, G) '\//
2 min V (G, D)
G

2) Mode collapse problem Various solutions:
® Spectral normalization (Miyato et al., 2018)
e Wasserstein GANs (Arjovsky et al., 2017)
® LSGANs (Maoetal., 2017)
e etc.
[ J J
.M2 LU

Ghosh, A., et al. "Multi-agent diverse generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
Chang, Mark. “Generative Adversarial Networks”, published online, 2016



Consistency regularization
for semi-supervised segmentation



Consistency regularization for SSL

How to better use unlabeled data ?

Vanilla supervised learning

e Consider only labeled samples

e Overfits when few training
samples



Consistency regularization for SSL

How to better use unlabeled data ?

Vanilla supervised learning

/

/
® /

e Consider only labeled samples

e Overfits when few training
samples

Data augmentation

e Transform labeled samples to
augment the training set

® Better generalization, but not
enough for semi-supervised
learning



Consistency regularization for SSL

How to better use unlabeled data ?

Vanilla supervised learning

/

/
® /

e Consider only labeled samples

e Overfits when few training
samples

Data augmentation

Transform labeled samples to
augment the training set

Better generalization, but not
enough for semi-supervised
learning

Consistency regularization

Perturb unlabeled samples with
noise or guided transformations

Impose the network to have
consistent outputs for perturbed
samples



SSL methods using consistency regularization

Basic transformation consistency (I-model)

LO: DuD) = o 3 Lan(@)) + e ZETNPT lees (T(f(2)), [(T(@))]

(a: y)€ED; ‘ u €D,



SSL methods using consistency regularization

Basic transformation consistency (I-model)

Standard supervised loss

L(0; Dy, D,) =§ - Z loup (f(2),y) i—l— A

D

> Ernpr |fres (T(/(@)), F(T(@)))

x€eD,,

Cross-entropy, Dice, etc.



SSL methods using consistency regularization

Basic transformation consistency (I-model)

Transformation consistency loss

- i
£(9, Dy, D — Z gsup + :W Z Il:‘:vap:r [Ereg (T(f(x))v f(T(x)))] !
(w,y)GDz T zep, |
|
Random transformation: Regularization loss
rotation, flip, crop, etc. imposing transformation

equivariance

L2 regularization loss:

leg(T(f(2)), F(T(2))) = |T(f(z)) — F(T ()]



SSL methods using consistency regularization

Application to chest X-ray segmentation:

Iabels

tout

t’l/l’L

|mages

tout

z
2

; D [’ﬂ > £(:0) >

i

U-Net

T HE ™

prediActions

Y1

>

b
Y2
- [

/

superwsed loss

Transformation

layer >
5" o (#544) "

SR

P

Y
unsupervised
consistency loss

Transformations are random elastic deformations

Bortsova, G., et al.. "Semi-supervised medical image segmentation via learning consistency under transformations." MICCAI, 2019.



SSL methods using consistency regularization

Self-ensembling (M-model):

v =17 (f(T1(2)))

Unlabeled images

Random | ."
augmentation Dropout condition 1 Consistency

regularization loss

Y2 = Tz_l(f(T2($)))

Dropout condition 2

Key idea:
e Applying different dropouts on the same network gives an ensemble of models

e Also leverages random image transformations



SSL methods using consistency regularization

Self-ensembling (M-model):

(751

T (f (Tl(w)))

Unlabeled images

Random | N A s ."
augmentation , Dropout condition 1! Consistency

regularization loss

Y2 = Tz_l(f(T2($)))

| Dropout condition 2 |

Key idea:
e Applying different dropouts on the same network gives an ensemble of models
® Also leverages random image transformations




SSL methods using consistency regularization

AIso trained with labeled data
Temporal-ensembling (Mean Teacher):

Random
augmentatlonj

Student

; Hstudent)

Unlabeled images

\ 4

Exponential moving average (EMA): Consistency

(t) (t 1) () regularization loss
teacher — teacher 1 — estudent g

a

x Hteacher ) )

Teacher

Key idea:
e Consistency between the predictions of a Teacher and a Student network

® The Teacher’s weights are an EMA of the Student’s at previous training iterations (¢ =~ 1)
® Note: original Temporal Ensembling computes the EMA on outputs for each sample



SSL methods using consistency regularization

] Also trained with labeled data
Temporal-ensembling (Mean Teacher): /

Student

f (T(w) : Hstudent)

Random \ T(x) _
augmentation / -

Unlabeled images B e itk
(t)ExponentlaI n(wtovllr)\g average (EMAE)t:) ! Consistency
— ; larization |
Hteacher — Hteacher (1 C‘5)9student | e

a

T (f(xa Hteacher))

Teacher
Key idea:

e Consistency between the predictions of a Teacher and a Student network

® The Teacher’s weights are an EMA of the Student’s at previous training iterations
® Note: original Temporal Ensembling computes the EMA on outputs for each sample



SSL methods using consistency regularization

Application of Mean Teacher to segmenting MRI spinal cord gray matter

Student Teacher
Prediction | Prediction

f(x;0) f(x;6")
.  eechr ool
Student Model Teacher Model

9(x;¢")

Input MRI data

Perone, C.S. and Cohen-Adad, J. "Deep semi-supervised segmentation with weight-averaged consistency targets." Deep learning in medical image analysis and multimodal
learning for clinical decision support, 2019 (extended version in Neuroimage)



SSL methods using consistency regularization

Uncertainty-aware self-ensembling

R D e
Noise & e
Student Model
~
L
< o Monte Carlo
L Dropout
§
%)
‘ Noise f !
Teacher Model

Yu, L et al.. "Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation." MICCAI, 2019.



SSL methods using consistency regularization

Uncertainty-aware self-ensembling

R D e
Noise & e
Student Model
~
L
< o Monte Carlo
L Dropout
§
%)
‘ Noise f !
Teacher Model

Enforces consistency only in low-
uncertainty regions of the image

>, I(u, < H) ’i

Yu, L et al.. "Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation." MICCAI, 2019.



SSL methods using consistency regularization

Muti-view co-training

Network 1

= Tfl(fl(Tl(fBl)))

Unlabeled (view 1)

Random \Tl xl
augmentation /
Consistency

Unlabeled (view k) Network k regularization loss

.__( wandom Lk (T W Ty, 1(fk(Tk(5’5k)))
augmentation /

Key idea:
® Supposes the existence of separate, complementary views of the data
e Use high-confidence predictions for a given view as pseudo-labels in other views



SSL methods using consistency regularization

Muti-view co-training Typically based on

Network 1 Jensen-Shannon divergence (JSD)
Unlabeled (view 1)

Random \Tl xl
augmentation /

Unlabeled (view k) Network k

Random \Tk‘ CCk
augmentation /

Key idea:
® Supposes the existence of separate, complementary views of the data

= Tfl(fl(Tl(fBl)))

\ 4
Consistency
regularization loss

T, ! (fk (Tk(a:k))> “

e Use high-confidence predictions for a given view as pseudo-labels in other views



SSL methods using consistency regularization

Application of multi-view co-training for pancreas and liver tumor segmentation

Pseudo Real

Uncertainty-weighted Labels Label
Y Y

Label Fusion

r—>61

Input 3D data X
4 [ T.x) ﬁ T R
A

3DCNN f; e
- — CZ
\ R Rotations/ ' Y
> | Permutations ﬁ
—_— -
TZ (X) TZ
3DCNN f, :
°
°
°
uncertainty — forward = Y
estimation
P R—— supervision for ® multiply T.(X) @ ﬂ ﬁ oF
backward 3DCNN f,

Xia, Y., et al. "3D semi-supervised learning with uncertainty-aware multi-view co-training." WACV 2020



Unsupervised representation learning
for weakly-supervised segmentation



Unsupervised representation learning (URL)

Traditional SSL

O
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e Train a model simultaneously with
both labeled and unlabeled data



Unsupervised representation learning (URL)

Unsupervised

Traditional SSL representation learning
o
© O O
9 o © I o
@ _ - ©
/ ~ v
@ o S—=- @
/ ® ®
/ o @ O O
o O
e Train a model simultaneously with ® |nan upstream step, use only unlabeled
both labeled and unlabeled data data to learn a representation useful to

downstream tasks

e Examples:
o Self-supervised learning
O Contrastive learning



Unsupervised representation learning (URL)

Unsupervised

Traditional SSL representation learning
o
© O O
9 o © I o
@ -~ ©
/ ~ v
@ o S—=- @
/ ® ®
/ o @ O O
o O
Learned representation
e Train a model simultaneously with ® |nan upstream step, use only unlabeled
both labeled and unlabeled data data to learn a representation useful to

downstream tasks

e Examples:
o Self-supervised learning
O Contrastive learning



Approaches for URL

Self-supervised learning:

Puzzle Solver

Soft Permutation

Matrix (S)

Basic idea:
® Learn to solve a pretext task which does not require annotations

e Example: find the correct order of permuted patches (see above)

Taleb, A., et al. "Multimodal self-supervised learning for medical image analysis." arXiv preprint (2019).
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Contrastive learning:

Global contrastive learning
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Basic idea:
e Train with pairs of images that match (e.g., same position in volume, same image under different
transformations, etc.) or not

e Find a representation that is similar for matching pairs and different for non-matching ones

Chaitanya, K., et al. "Contrastive learning of global and local features for medical image segmentation with limited annotations." NeurlPS 2020.
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Contrastive learning:

Global contrastive learning
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Basic idea:
e Train with pairs of images that match (e.g., same position in volume, same image under different
transformations, etc.) or not

e Find a representation that is similar for matching pairs and different for non-matching ones

Chaitanya, K., et al. "Contrastive learning of global and local features for medical image segmentation with limited annotations." NeurlPS 2020.
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