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Motivation

Large labeled (pixel- Very _good performance
wise) datasets in many tasks



Motivation

Pixel-wise annotation is a
time-consuming task...

®
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Data-driven priors (cues)

Image tags

Original
Image

Image tags

» Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
» Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.



Data-driven priors (cues)

Image tags

Bounding boxes

Original
Image

Image tags Bounding
boxes

Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.



Data-driven priors (cues)

Image tags

Bounding boxes

Scribbles

Tumor

Original
Image

Image tags Bounding Scribbles
boxes

Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.
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Data-driven priors (cues)

Image tags
Bounding boxes
Scribbles

Points

Original
Image

Image tags Bounding Scribbles
boxes

Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.

Points
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Data-driven priors (cues)

Another data-driven priors

Extreme
points

Image
captions

A boy Jumplng on a Skateboard Image from Maninis et al, CVPR'18

Maninis et al. Deep extreme cut: From extreme points to object segmentation. CVPR 2018 12



Knowledge-driven priors

Common priors in natural images

Target Size

Incorrect sizes Correct sizes

» Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
* Xu etal., Learning to Segment Under Various Forms of Weak Supervision, CVPR 2015
* Zhang et al., Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes. ICCV’'17
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Knowledge-driven priors

Common priors in natural images

Incorrect
location

Target Location

Correct
location

Remez et al. Learning to segment via cut-and-paste. ECCV 2018
Georgakis et al Synthesizing training data for object detection in indoor scenes. RSS 2017



Knowledge-driven priors

Common priors in natural images

Contrast
Foreground/Background

Hou et al. Deeply supervised salient object detection with short connections. CVPR 2017
Li et al. Instance-level salient object segmentation. CVPR 2017

Saliency

Images from Hou et al, CVPR'17
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Knowledge-driven priors

Common priors in natural images _
Motion

Images from the DAVIS Challenge Dataset

Tokmakov et al. Weakly-supervised semantic segmentation using motion cues. ECCV 2016 16
Pathak et al. Learning features by watching objects move. CVPR 2017



Knowledge-driven priors

What about priors in the
medical domain?

Plausible _
segmentations |

Anatomical priors Partial labeled data
(exploit target relationships)
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Recall of what learning means
(from a gradient descent standpoint)...

N\ N N\ N\ s



Knowledge vs data driven priors
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Knowledge vs data driven priors

Knowledge-driven
priors
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Knowledge vs data driven priors

’ Data-driven priors

Knowledge-driven
priors
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Knowledge vs data driven priors

’ Data-driven priors

Knowledge-driven
priors
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Knowledge vs data driven priors

’ Data-driven priors

Knowledge-driven
priors
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Knowledge vs data driven priors

’ Data-driven priors

Both constrain
the search space

Knowledge-driven
priors

24



From global cues to pixel labels

Original
Image

Image tags Bounding Scribbles Points
boxes




From global cues to pixel labels

Step 1: Get a classification CNN

Convolutional layers

FC Layers

Class
scores
O Cat
O  Dog
O Parrot

26



From global cues to pixel labels

Step 2: Modify the last layers

Class
e ~ scores
% GAP (& O ca
é )
= O Dog
- —— () Parrot
- AlAQ &/
Convolutional layers ~ \_ %




From global cues to pixel labels

Step 2: Modify the last layers

Class
e ~ scores
wca.t
SO ) S
/
‘ B
A, A, %
Convolutional layers ~ \_ %

(logits)

Class score

Cat

Dog

Parrot
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From global cues to pixel labels

Step 3: Get the CAMs

Class
/ Scores
ﬂ O cCcat
/
Dog
| (O  Parrot
- AIAQ

Convolutional layers ~ \_

Class Activation Mapping
f2

-+ ... + W“*

Class
Activation
Map

(Australian terrier)




From global cues to pixel labels

Step 3: Get the CAMs

Class
e ~ scores
% O cCat
. /
>® Dog
| (O Parrot
- AIAQ
Convolutional layers ~ \_ %

CAMpog(z,y) = Y wy* Ax(z,y) =
k

30



From global cues to pixel labels

Mushroom ~ Penguin Teapot

* Zhou et al., Learning deep features for discriminative localization. CVPR 2016

31



From global cues to pixel labels

Mushroom ~ Penguin Teapot

These activations maps can be used as pseudo-masks - Z Jilog(si)

* Zhou et al., Learning deep features for discriminative localization. CVPR 2016
32



From global cues to pixel labels

Problem: they focus only on highly discriminative regions

33



From global cues to pixel labels

How to improve CAMS?

Incorporate saliency maps

dense labelling from seed + saliency

I I forward —»
I
: . backprop «p
: seed . |
1 gu1de I
: . labeller
saliency dense
---------------------------------- classifier
person
table EESEEEEENES] @ I 1 o . loss
il > segmenter > PV
HMage convnet

Oh et al. Exploiting Saliency for Object Segmentation from Image Level Labels. CVPR 2017
Fan et al. Learning Integral Objects With Intra-Class Discriminator for Weakly-Supervised Semantic Segmentation. CVPR 2020
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From global cues to pixel labels

How to improve CAMs?

Region mining

Classification Classification Classification ¥
Network Network Network ' ‘ .

The Mined
Object Region

Wei et al. Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach. CVPR 2017
Wang et al. Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features. CVPR 2018



From global cues to pixel labels

How to improve CAMs?

Region mining

Classification Classification

Network Network

U

1 - Obtain CAM
2 - Mask image with that region
3 - Repeat

rd |

The Mined
Object Region

Wei et al. Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach. CVPR 2017

Wang et al. Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features. CVPR 2018
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From global cues to pixel labels

Region mining

Classification Classification

Network Network

How to improve CAMs?

1 - Obtain CAM
2 - Mask image with that region
3 - Repeat

rd |

The Mined
Object Region

Wei et al. Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach. CVPR 2017

Wang et al. Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features. CVPR 2018
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From global cues to pixel labels

Region mining

dog
Classification Classification
Network Network

4

Wei et al. Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach. CVPR 2017
Wang et al. Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features. CVPR 2018

How to improve CAMs?

Classification
Network

1 - Obtain CAM
2 - Mask image with that region
3 - Repeat

rd |

The Mined
Object Region
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From global cues to pixel labels

How to improve CAMs?

Image AE-Stpl AE-Sth | AE-Step3 Object Region

*  Wei et al. Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach. CVPR 2017

* Wang et al. Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features. CVPR 2018
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From global cues to pixel labels

How to improve CAMs?

Equivariant constraints

Wang et al. Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic segmentation. CVPR’20 40



From global cues to pixel labels

Integrating language- How to improve CAMS?
vision models

CAM -
—| gap :ro:
e [|20 (e
O

CLIMS X
o f e
= .
the CLIP -P:ﬁ:
--------------- IQ|

a train”, rallroad” i 10

Xie et al, CLIMS: Cross Language Matching for weakly supervised semantic segmentation 41



From global cues to pixel labels

Integrating language- How to improve CAMS?
vision models

"""""" m Text-driven Evaluator

(b) —"' Image Encoder —H'
. . = Lomm
a photo of train” —t» —!-P (Maximization)
\ /
SRR EIE
* .
‘. - wm s mm s omm o omm s omm g \- V;cb
—+>|Image Encoder |+
I 1 fi -
) e L o1
a photo of train” —+| Text Encoder |—» (Minimization)
\ J

“a photo of railroad” —|-b

Text Enco der

“a photo of tree”

l. Cosine similarity ~ § fixed & share weights !

___________________________________ ; Vi, (Minimization)

Xie et al, CLIMS: Cross Language Matching for weakly supervised semantic segmentation 42



CAMs in the medical domain

ASM

Healthy eyes L .
prior information

|

—{ Dense CRF> =P

Tumor location

Activation map

Tumor
segmentation

Tumor eyes

43
Nguyen et al. A novel segmentation framework for uveal melanoma based on magnetic resonance imaging and class activation maps. MIDL 2019.



CAMs in the medical domain

Refined Mask

Mask Generation

VGG16-CAM [m=>

== >| S-Model

Probability Map

+— Image-level label (0: prostate not exist, 1: prostate exist)

Prostate Segmentation

Residual U-Net

¥

Size constraint

\_
[ We will come to this later }/

Prediction

a4

Chen et al. Exploiting confident information for weakly supervised prostate segmentation based on image-level labels. SPIE Medical Imaging 2020



CAMs in the medical domain

Equivariant constraints

fC) fC)

Y
X
™ B

CAMs not equivariant to spatial
transformations




CAMs in the medical domain

Equivariant constraints

T1c FLAIR

CAMs not consistent across modalities

CAMs not equivariant to spatial
transformations

Patel and Dolz, Weakly supervised segmentation with equivariant constraints. MedlA’22




CAMs in the medical domain

Equivariant constraints

Same-modality equivariant Cross-modality equivariant
constraints constraints

Lreg(T(f(M1)), f(1(M1))) Lreg(T(f(M1)), f(T(M2)))
W / X /

transformations transformations

Modality 2

Patel and Dolz, Weakly supervised segmentation with equivariant constraints. MedlA’22



CAMs in the medical domain

Equivariant constraints

Same-modality equivariant
constraints

Lreg(T(f(M1)), f(1(M1)))

Classification loss

/

Cross-modality equivariant
constraints

Lreg(T(f(M1)), f(T(M2)))

£class + Ereg(T(f(Ml))7 f(T(Ml))) + £”F69(7—(f(M1))? f(T(M2)))

Inter-modal regularization

Patel and Dolz, Weakly supervised segmentation with equivariant constraints. MedlA’22




CAMs in the medical domain

Equivariant constraints

Baseline

Baseline
+ equivariant constraints

Patel and Dolz, Weakly supervised segmentation with equivariant constraints. MedlA’22



Constrained optimization (CNN)

Optimize (A) such that (B)

Task Set of constraints

51



Constrained optimization (CNN)

Optimize (A) such that (B)

Task Set of constraints

S

How we can go
from point A to B?
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Constrained optimization (CNN)

Optimize (A) such that (B)

Task Set of constraints

O

How we can go
from point A to B?
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Constrained optimization (CNN)

Optimize (A) such that (B)

Task Set of constraints

How we can go
from point A to B?
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Constrained optimization (CNN)

Optimize (A) such that (B)

Task Set of constraints How we can go

from point A to B?
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Constrained optimization (CNN)

[ Optimize (A) such that (B)
! !
Task Set of constraints How we can go

from point A to B?

0
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Constrained optimization (CNN)

[ Optimize (A) such that (B)
! !
Task Set of constraints How we can go

from point A to B?

1

1
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Constrained optimization (CNN)

Optimize (A) such that (B)

N
min H(S,Y) s.t. Z ISy Il Constrained problem
6

n=_0»
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Constrained optimization (CNN)

Optimize (A) such that (B)
N
] — Constrained problem
DRI SR -+~
n=(
N
m@m?—l(S, Y)+ )\(Z Sp — A) [ ]

n=0

59



Smaller

Equality constraints

A=B

Known size

CNN predictions

Larger
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Equality constraints

A=B

Known size

Constrain the CNN predictions

61



Equality constraints

General definition

mgin H(S)

s.t.

g(s)

C

Constraint
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Equality constraints

General definition

mgin’H(S) it. g(s) =

mgin’H(S) + A(g(s) — O)

C

Constraint

Penalty
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Equality constraints A=B

General definition

IIlgiIl %(S) s.t. g(s) =C Constraint
méill H(S) -+ A(g(S) — C) Penalty

x This can be modeled with

linear/quadratic penalties,
KL divergence, etc

64



Equality constraints
L2 Penalty

Input
(Histology image)

U

-

~

Any CNN architecture

\

)

Jia et al. Constrained deep weak supervision for histopathology image segmentation. IEEE TMI 2017

~/

- Output
(Pixel-wise prediction)
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Equality constraints

L2 Penalty

Input
(Histology image)

U

-

™ loe = I(Y; = 1)

Any CNN architecture

\

)

Jia et al. Constrained deep weak supervision for histopathology image segmentation. IEEE TMI 2017

@ Predicted relative Vi
size (%)
&

- Output
(Pixel-wise prediction)

(’Ut a'

/

N DA

pE)

2

Predicted size
given by experts
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Kullback-Leibler
(KL) Divergence

Liver #1

» v &

‘ f

(ol e
2

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19]

Equality constraints

Partial annotations

67



Equality constraints
Kullback-Leibler Partial annotations

(KL) Divergence

Figure 1. 3D Visualization of several abdominal organs (liver,
spleen, left kidney, right kidney, aorta, inferior vena cava) to show
the similarity of patient-wise abdominal organ size distributions.

Liver #1 Spleen #2

Prior on the proportion

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 68



Equality constraints

Kullback-Leibler Partial annotations
(KL) Divergence

mzn—z (¥?,s5) + A1 = Z y?,85) + AT ()
Main objective: |£| peL |P| qEP I \

— ¥

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 69



Equality constraints

Kullback-Leibler Partial annotations
(KL) Divergence

p,0 p,1 p,| K|
| Sp 1Sy s Sg ]
Averaged predicted 1
distribution p=— Sg On partially labeled images
peEP

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 70



Equality constraints
Kullback-Leibler Partial annotations
(KL) Divergence

Liver #1

» v &

‘ f

G0
2

Embed prior knowledge

KL(q|p)
PN

[Zhou et al., Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation, ICCV’19] 71



Equality constraints

At pixel level

Imposing Consistency across image modalities

fC) f()

CAMSs not equivariant to spatial
transformations

&
2

T1c

CAMSs not consistent across
modalities

Patel and Dolz, Weakly supervised segmentation with equivariant constraints. MedIA’22
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Equality constraints

At pixel level

— ASPP !

= I B -

Il - - )

9 g é rl‘g '—i CAM HNormahze I—

i o 2 | e B e .
~ Il Il 1l 1 H

i sro-are(3i | o : _ rf quulgf?zr;irgn
o i I Ii |1 i i
Ha = = fi i mg = mZ PG, 7) | g
(0= - T <y S 1
1= 2 > EHE meay
1> = = R H

g crmoxmoxen ]| 8] | (8] | L8l ey 64.64,K—1.P—1,D-0)|:
BRSO i el

Chikontwe et al. Weakly Supervised Segmentation on Neural Compressed Histopathology with Self-Equivariant Regularization. MedlA’'22



Inequality constraints [
B,

B,

[ Prior size knowledge [
Plausible I
segmentations I

I

I

I I
I I
I I
I I

CNN predictions
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[ Prior size knowledge [
Plausible I
segmentations I

I

I

I

I I
I I
I

Smaller \ CNN predictions

Inequality constraints [
B,
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Inequality constraints

B, B,
[ Prior size knowledge

Plausible
segmentations

Smaller \

CNN predictions Larger
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Smaller

B,

Inequality constraints

B,

Prior size knowledge
Plausible
segmentations

CNN predictions

Larger
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Inequality constraints

Prior size knowledge

5 Plausible

segmentations

Smaller

CNN predictions




Inequality constraints

Information is given in
the form of image-tags

. ,C
Suppression Z 33; <0 VecgC
pe?

83

[Pathak et al., Constrained Convolutional Neural Networks for Weakly Supervised Segmentation, ICCV’15]



Inequality constraints

Information is given in
the form of image-tags

Inclusion

(or existence) Z s >1 VceC
pe

84

[Pathak et al., Constrained Convolutional Neural Networks for Weakly Supervised Segmentation, ICCV’15]



Inequality constraints

Information is given in
the form of image-tags

Target Size

a>1 ngjcza VCEC
pel

85

[Pathak et al., Constrained Convolutional Neural Networks for Weakly Supervised Segmentation, ICCV’15]



Inequality constraints

Image-tag information

> s <0
pe)
For negative image tags

Use case:
Size constraint

86



Inequality constraints

Image-tag information

> <0
pe)
For negative image tags

Use case:
Size constraint

Plausible ‘
segmentations

For positive image tags
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Inequality constraints

Use case:
Formal definition Size constraint

mgin H(S) st a< Z 5

A
o>~

pel2

Inequality constraint

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 88



Inequality constraints

Formal definition

o pel2

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]

Use case:
Size constraint

min H(S) st a < Z Sp, < b :> H(S) + AC (V)

Vs

\

Y’

p,C
Sp

89



Inequality constraints

Formal definition

o pel2

H(S)=—) log(sh

pel

CE on the labeled pixels (if any)

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]

Use case:
Size constraint

min H(S) st a< ) S,<b EE) H(S)+AC(Vs)

Vs

\

Y’

Sp

p,C

90



Inequality constraints

Use case:

Formal definition Size constraint

0

min H(S) st a< ) S,<b EE) H(S)+AC(Vs)
pel2 \
Vs = Sg’c
peR
H(S) = — ) log(s} (Vs—a)?, ifVs<a
pEL C(VS) = (VS — 5)2, if VS > b
CE on the labeled pixels (if any) 0, otherwise

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 91



Visual intuition

C(sS)

1

Inequality constraints

a

v

Constraint A satisfied

Use case:
Size constraint

v

Constraint B violated

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 92



Inequality constraints

Information (proportion) is
given as a prior

s T \
,7 7 77 Tsegmentationoutputs _ Entropymaps \ I £ent(mt)
I \ 5 S
: o : w Direct entropy minimization )
1% 3 G ..., O . S e ———————
'3 PR
(I 1
: J3: 1 I Pixel-wise aggregate
= fg 1 ._L @
: = kS : Weighted
\ / self-information
I’ ———————— \| g Pm
1 1 2 Soft-segmentation map
e o 1 %]

E e e B A N 1 ey S S S S S S S ——
e ' Loy, 1) Lol 0 l
. : - W D( ms’)+ D( :z:m)

e e o e / 1 ‘CS(’( (ws ys) l ‘CD(IEH 1) I
se 8y S
L 7 | L E88opy minimization with Adversarial training )

Images from [Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR’19]



Inequality constraints

Information (proportion) is
given as a prior

s T \

,7 7 77 Tsegmentationoutputs _ Entropymaps M I £ent(mt)
1 \ Y S e
T i N Direct entropy minimization )
12 8 kAN . 2000 | S
'3 PR
15 1
13 1 Pixel-wise aggregate
I § 5 I — I,
: k] : Weighted
\ / self-information
\ A s 7
f_::1::::::::::::11::::::::—\ g
1 : § Soft-segmentation map
5 B N M || o —————— —
L : __ oI, 1)+ LIz, 0) 1
I AR e ATRENE s il L i oy IR A / 1 E l ‘CD (Iz“ 1) I

] seg(msvys) B - : o

- | \ Eftropy minimization with Adversarial training )

We focus on this now

Images from [Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR’19]



Inequality constraints

Information (proportion) is
given as a prior

Target

c
Class-ratio priors ~ “en(®t) = Zmax (0. up{? —Ec(P5y))

P, It relaxes the class prior

Source

Soft-segmentation map constraint . . L
Estimated size on the prediction
~F———— ¢1-normalized histogram (source)
i L:seg(msa ys) l
| S ——

95

Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR'19



Inequality constraints

Information (proportion) is
given as a prior

Target

c
Class-ratio priors ~ “en(®t) = Zmax (0. up{? —Ec(P5y))

9 P, It relaxes the class prior

E Soft-segmentation map constraint . . .

A Estimated size on the prediction
=) ¢1-normalized histogram (source)
i ‘Cseg(mSa ys) " i ReLl
b S —— — _l

) Rz)=mazx(D, z)

96

Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. CVPR'19



Inequality constraints

Source-free Domain Adaptation

KL divergence

Source Training phase Target Adaptation phase T —
anatomical knowledge
Te(t, k)
Source Only Target Only ) )
Segmenter v

Class-ratio loss

| AKL (7(t, k,0), e(t, k) |

.

Segmenter

Direct entropy minimisation

g ()t‘nl(pl(i- 0))

Soft segmentation Entropy map

Bateson et al. Source-relaxed domain adaptation for image segmentation. MICCAI'20 97



Inequality constraints

Source Training phase Target Adaptation phase e
KL divergence . ——— ' N =
Source-free: no access to source data when adapting ... I ¢ miill ey
min ) U(y”,sf
0
peLl
98

/

Set of labeled
SOURCE pixels

Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI’19



Inequality constraints

Source Training phase Target Adaptation phase

KL divergence —

,  Softsegmentation Entropy map
iiization weights

Source-free: no access to source data when adapting

2-Adapt the model
without accessing
the source data

k k A
L"'H. — B Z ng logsg —I_DKL(T: Te)
peT k
99
~
Minimize entropy on predicted
TARGET pixels

Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI'19

onter
Segmenter = " > 7L, k, O) i
+image-level Tags pili,0) > - i

initializats

‘anatomical knowledge

Class-catio loss.



Inequality constraints

Source Training phase Target Adaptation phase

‘anatomical knowledge

KL divergence o o )
o -] bj
Source-free: no access to source data when adapting e e -
2-Adapt the model

without accessing

the source data ; . |
Estimated size by an auxiliary
Te (t )

network trained on the source

Ly = — Z ng’k log sg’k —I—DKL(f‘, Te) ) Z k
peT k T(t,k, 9) = =

Pl Mlzeﬂ

Minimize entropy on predicted

TARGET pixels : :
Size reqgularizer

Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI'19



Inequality constraints

L2 Penalty

But we can do more than simply the size

Shape moment u}ffg(sﬂ) — Z S((;’,k)mz(ﬂi)ya))

1€Q)
| “(k) p u(k) 1
Central moment ﬁgfg = Z sg ) (m(z’) - 213) (y(i) B (()kl)) '
i€Q H0.0 H0,0

[Kervadec et al., Beyond pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!. MIDL'21] 101



L2 Penalty

Inequality constraints

From shape and central moment

Volume

Centroid

Length

[Kervadec et al., Beyond pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!. MIDL'21]

D) (s6) = iy (so).

Q:(k)(SQ)

2(’“)(39)

__( 53(89) IJ
T (k)
00

= Z |8g',k)

But we can do more than simply the size

1,7€Gq

Laplacian

102



Inequality constraints

From shape and central moment

909

(a) Centroid €(sp) (b) Radius Ra(sg, @) (¢) Diameter D (sp)

But we can do more than simply the size

Camarasa et al. Differentiable Boundary Point Extraction for Weakly Supervised Star-shaped Object Segmentation. MIDL’22 103



Inequality constraints

L2 Penalty Test-Time Adaptation (TTA)

Source Training Test-Time Adaptation with Single Target Image

(— Entropy minimization )

One Target /
Subject = - —1 Z ent (Sn(

1€Qn
Moment Matching
L A (R) =
.*“"'”F B -_ rfI'Ill‘ MBSO KL(R(S.(0)), R)
“Nifees Softmax 5, ) MB) —AAF (MBS, (6), MY)

initialization weights 0 Shape Mement Estimation
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Take-home message

° weakly-supervised segmentation learning by
on weakly labeled and unlabeled images

° under low-labeled data regime

e Room for improvement (many opportunities beyond weakly supervised
segmentation)



Thank youl!



