

Jose Dolz

ÉTS, Montreal

Model Adaptation (few-shot learning)

Motivation

Standard training

DNN

Accuracy (Dog): 99%

Motivation

Standard training

DNN

Accuracy (Dog): 99%

What if we add novel classes?

Motivation

Standard training

Motivation

Learning (in human beings)

Motivation

Learning (in human beings)

Building labels for dense predictions is even worse!!

And it gets even more complex in some domains (e.g., medical imaging)

Dense 3D annotations: several hours (of radiologist time)

Labels not only expensive, but expert knowledge is required?

Not possible to do crowdsourcing

11

Distributional shifts make things even worse

Source domain (MRI)

No adaptation (bad generalization to the target)

Setting

Training on **base** classes

Setting

Training on **base** classes

Few-shot tasks at testing time

Setting

Training on **base** classes

Few-shot tasks at testing time

Query \mathbb{X}_q

Setting

Meta-Learning

Support X_s

Base training with enough labeled data

(base classes *different from the* test classes)

Setting

Meta-Learning

Standard Learning

$$\mathcal{D} = \{\mathcal{D}_{Train}, \mathcal{D}_{Test}\} \quad \Longrightarrow \quad \begin{array}{c} \mathcal{D}_{Train} \cap \mathcal{D}_{Test} = \emptyset \\ \mathcal{Y}_{Train} = \mathcal{Y}_{Test} \end{array}$$

Standard Learning

$$\mathcal{D} = \{\mathcal{D}_{Train}, \mathcal{D}_{Test}\} \longrightarrow \begin{array}{c} \mathcal{D}_{Train} \cap \mathcal{D}_{Test} = \emptyset \\ \mathcal{Y}_{Train} = \mathcal{Y}_{Test} \end{array}$$

Standard Learning

Meta-Learning

$$\mathcal{D} = \{\mathcal{D}_{Train}, \mathcal{D}_{Test}\}$$

$$\mathcal{D}_{Train} \cap \mathcal{D}_{Test} = \emptyset$$
$$\mathcal{Y}_{Train} \cap \mathcal{Y}_{Test} = \emptyset$$

Meta-Learning

$$\mathcal{D} = \{\mathcal{D}_{Train}, \mathcal{D}_{Test}\} \longrightarrow \begin{array}{c} \mathcal{D}_{Train} \cap \mathcal{D}_{Test} = \emptyset \\ \mathcal{Y}_{Train} \cap \mathcal{Y}_{Test} = \emptyset \end{array}$$

Training

1. From \mathcal{D}_{Train} sample $\mathcal{Y}_S \in \mathcal{Y}_{Train}$

 $\mathcal{Y}_{Train} = \{Horse, Bike, Dog, Cat, Lion\}$ $\mathcal{Y}_{S} = \{Dog, Cat\}$

Meta-Learning

$$\mathcal{D} = \{\mathcal{D}_{Train}, \mathcal{D}_{Test}\} \quad \Longrightarrow \quad \begin{array}{c} \mathcal{D}_{Train} \cap \mathcal{D}_{Test} = \emptyset \\ \mathcal{Y}_{Train} \cap \mathcal{Y}_{Test} = \emptyset \end{array}$$

Training

1. From \mathcal{D}_{Train} sample $\mathcal{Y}_S \in \mathcal{Y}_{Train}$

 $\mathcal{Y}_{Train} = \{Horse, Bike, Dog, Cat, Lion\}$ $\mathcal{Y}_{S} = \{Dog, Cat\}$

Meta-Learning

$$\mathcal{D} = \{\mathcal{D}_{Train}, \mathcal{D}_{Test}\} \longrightarrow \begin{array}{c} \mathcal{D}_{Train} \cap \mathcal{D}_{Test} = \emptyset \\ \mathcal{Y}_{Train} \cap \mathcal{Y}_{Test} = \emptyset \end{array}$$

Training

1. From \mathcal{D}_{Train} sample $\mathcal{Y}_{S} \in \mathcal{Y}_{Train}$

 $\mathcal{Y}_{Train} = \{Horse, Bike, Dog, Cat, Lion\}$ $\mathcal{Y}_{S} = \{Dog, Cat\}$

2. Use \mathcal{Y}_S to sample a **support** and a **query** set

Meta-Learning

$$\mathcal{D} = \{\mathcal{D}_{Train}, \mathcal{D}_{Test}\} \longrightarrow \begin{array}{c} \mathcal{D}_{Train} \cap \mathcal{D}_{Test} = \emptyset \\ \mathcal{Y}_{Train} \cap \mathcal{Y}_{Test} = \emptyset \end{array}$$

Training

1. From \mathcal{D}_{Train} sample $\mathcal{Y}_{S} \in \mathcal{Y}_{Train}$

 $\mathcal{Y}_{Train} = \{Horse, Bike, Dog, Cat, Lion\}$ $\mathcal{Y}_{S} = \{Dog, Cat\}$

2. Use \mathcal{Y}_S to sample a **support** and a **query** set

3. Repeat

Classification

Prototypical Networks

[Snell et al., NeurIPS'17]

Classification

Prototypical Networks

27

Classification

Support set

Prototypical Networks

Output probability based on **similarity of query** embedding to each class prototypes:

 $P(y = c | \hat{x}) = softmax(-d(f_{\theta}(\hat{x}), \mu_c))$

Classification

MAML

[Finn et al., ICML'17]

Goal:

Learn a **good initialization for a model**, such that :

it can be adapted to new few-shot tasks with **few gradient steps** to perform well with few training steps

Classification

MAML

[Finn et al., ICML'17]

Classification

MAML

[Finn et al., ICML'17]

	Alg	orithm 1 Model-Agnostic Meta-Learning
	Req Req	uire: $p(\mathcal{T})$: distribution over tasks uire: α, β : step size hyperparameters
Outer Loop: Optimize for the performance of all inner loop models on all tasks.	1: 2: 3: 4: 5: 6: 7: 8:	randomly initialize θ while not done do Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$ for all \mathcal{T}_i do Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to <i>K</i> examples Compute adapted parameters with gradient de- scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ end for Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$

9: end while

Classification

MAML

[Finn et al., ICML'17]

Backpropagate

Classification

MAML-Based

Singh et al. MetaMed: Few-shot medical image classification using gradient-based meta-learning. Pattern Recognition. 2021 33

Classification

Prototypes-Based

Few-shot Segmentation

Few-shot Segmentation

37

Few-shot Segmentation

Prototype per class
$$p_c = \frac{1}{K} \sum_k \frac{\sum_{x,y} F_{c,k}^{(x,y)} \mathbb{1}[M_{c,k}^{(x,y)} = c]}{\sum_{x,y} \mathbb{1}[M_{c,k}^{(x,y)} = c]}$$

Softmax for class j $\tilde{M}_{q;j}^{(x,y)} = \frac{\exp(-\alpha d(F_q^{(x,y)}, p_j))}{\sum_{p_j \in \mathcal{P}} \exp(-\alpha d(F_q^{(x,y)}, p_j))}$
Segmentation loss $\mathcal{L}_{seg} = -\frac{1}{N} \sum_{x,y} \sum_{p_j \in \mathcal{P}} \mathbb{1}[M_q^{(x,y)} = j] \log \tilde{M}_{q;j}^{(x,y)}$

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV'19

Softmax for class j
$$\widehat{M}_{q;j}^{(x,y)} = \frac{\exp(-\alpha d(F_q^{(x,y)}, p_j))}{\sum_{p_j \in \mathcal{P}} \exp(-\alpha d(F_q^{(x,y)}, p_j))}$$

Improving prototypes

41

Improving prototypes

Improving prototypes

Limitations

Support

Query

Limitations

Support

Query

Chunk trick

Limitations

Support

Query

Chunk trick

Limitations

Support

Query

Chunk trick

The volume is pre-split into n chunks (n going from 3 to 12)

Limitations (both classification and segmentation)

Convoluted meta-learning approaches

Models trained under the learning-to-learn paradigm cannot be re-used with different models

Most meta-learning to learn

Vinyal et al, (Neurips '16), Snell et al, (Neurips '17), Sung et al, (CVPR ' 18), Finn et al, (ICML' 17), Ravi et al, (ICLR' 17), Lee et al, (CVPR' 19), Hu et al, (ICLR '20), Ye et al, (CVPR '20), Ouyang et al, (TMI'22),...

They are tailored to the same-task paradigm (e.g., models trained under 1shot do not perform well when 5-shots are available)

Significant performance degradation under domain shift

A few steps backwards

Query \mathbb{X}_q

A few steps backwards

No need to meta-train

Support X_s

A few steps backwards

Surprising results

Same domain

1111.				<i>mini</i> -ImageNet		tiered-ImageNet		CUB	
	Method	Transd.	Backbone	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
	MAML [9]		ResNet-18	49.6	65.7	-	-	68.4	83.5
	RelatNet [40]		ResNet-18	52.5	69.8	-	-	68.6	84.0
	MatchNet [45]		ResNet-18	52.9	68.9	-	-	73.5	84.5
	ProtoNet [38]		ResNet-18	54.2	73.4	-	-	73.0	86.6
	MTL [39]	×	ResNet-12	61.2	75.5	-	-	-	-
	vFSL [50]		ResNet-12	61.2	77.7	-	-	-	-
	Neg-cosine [26]		ResNet-18	62.3	80.9	-	-	72.7	89.4
	MetaOpt [22]		ResNet-12	62.6	78.6	66.0	81.6	-	-
	SimpleShot [46]		ResNet-18	62.9	80.0	68.9	84.6	68.9	84.0
	Distill [41]		ResNet-12	64.8	82.1	71.5	86.0	-	-
	RelatNet + T [14]		ResNet-12	52.4	65.4	-	-	-	-
	ProtoNet + T [14]		ResNet-12	55.2	71.1	-	-	-	-
	MatchNet+T [14]		ResNet-12	56.3	69.8	-	-	-	-
	TPN [28]		ResNet-12	59.5	75.7	-	-	-	-
	TEAM [34]	/	ResNet-18	60.1	75.9	-	-	-	-
	Ent-min [7]	•	ResNet-12	62.4	74.5	68.4	83.4	-	-
	CAN+T [14]		ResNet-12	67.2	80.6	73.2	84.9	-	-
	LaplacianShot [51]		ResNet-18	72.1	82.3	79.0	86.4	81.0	88.7
	TIM-ADM		ResNet-18	73.6	85.0	80.0	88.5	81.9	90.7
	TIM-GD		ResNet-18	73.9	85.0	79.9	88.5	82.2	90.8

Surprising results

Domain shift

	<i>mini</i> -ImageNet $ ightarrow$ CUB
Backbone	5-shot
ResNet-18	53.1
ResNet-18	51.3
ResNet-18	62.0
ResNet-18	57.7
ResNet-18	64.0
ResNet-10	66.9
ResNet-18	67.0
ResNet-18	65.6
ResNet-18	66.3
ResNet-18	70.3
ResNet-18	71.0
	Backbone ResNet-18 ResNet-18 ResNet-18 ResNet-18 ResNet-10 ResNet-10 ResNet-18 ResNet-18 ResNet-18 ResNet-18 ResNet-18

Example of a non metalearning approach Segmentation task

* The initial model is trained over the base classes following standard segmentation training (i.e., CE)

Example of a non metalearning approach

Segmentation task

* The initial model is trained over the base classes following standard segmentation training (i.e., CE)

$$\min \quad -\frac{1}{|\mathcal{L}|} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta}) - \lambda_{\mathcal{H}} \frac{1}{|\mathcal{Q}|} \sum_{j \in \mathcal{Q}} \mathbf{s}^j_{\theta} \log(\mathbf{s}^j_{\theta}) + \lambda_{KL}(\hat{\mathbf{s}}^{\mathcal{Q}}_{\theta} \log(\frac{\hat{\mathbf{s}}^{\mathcal{Q}}_{\theta}}{\tau}))$$

Example of a non metalearning approach

Segmentation task

* The initial model is trained over the base classes following standard segmentation training (i.e., CE)

$$\min \left(-\frac{1}{|\mathcal{L}|}\sum_{p\in\mathcal{L}}l(\mathbf{y}^{p},\mathbf{s}^{p}_{\theta})-\lambda_{\mathcal{H}}\frac{1}{|\mathcal{Q}|}\sum_{j\in\mathcal{Q}}\mathbf{s}^{j}_{\theta}\log(\mathbf{s}^{j}_{\theta})+\lambda_{KL}(\hat{\mathbf{s}}^{\mathcal{Q}}_{\theta}\log(\frac{\hat{\mathbf{s}}^{\mathcal{Q}}_{\theta}}{\tau}))\right)$$

CE on supervised images (i.e., support)

Example of a non metalearning approach

Segmentation task

* The initial model is trained over the base classes following standard segmentation training (i.e., CE)

CE on supervised En images (i.e., support)

Entropy on unsupervised images (i.e., queries)

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021

Example of a non metalearning approach

Segmentation task

* The initial model is trained over the base classes following standard segmentation training (i.e., CE)

CE on supervised images (i.e., support)

Entropy on unsupervised images (i.e., queries)

Problem if only the entropy is minimized!

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021

Example of a non metalearning approach

Segmentation task

* The initial model is trained over the base classes following standard segmentation training (i.e., CE)

$$\mathcal{H}\frac{1}{|\mathcal{Q}|}\sum_{j\in\mathcal{Q}}\mathbf{s}_{\theta}^{j}\log(\mathbf{s}_{\theta}^{j}) + \lambda_{KL}(\hat{\mathbf{s}}_{\theta}^{\mathcal{Q}}\log(\frac{\hat{\mathbf{s}}_{\theta}^{\mathcal{Q}}}{\tau}))$$

CE on supervised images (i.e., support)

Entropy on unsupervised images (i.e., queries)

KL (to impose target proportions)

$$\hat{\mathbf{s}}^{\mathcal{Q}}_{ heta} = rac{1}{|\mathcal{Q}|} \sum_{j \in \mathcal{Q}} \mathbf{s}^{j}_{ heta}$$

A priori proportion $\longrightarrow \tau \in [0,1]$

Example of a non metalearning approach

Segmentation task

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021

Limitations of few-shot segmentation

Class-ambiguity (in the context of generalization)

Standard FSS training assumes what is not the target class is background.

Limitations of few-shot segmentation

They cannot keep the performance on base classes (generalized segmentation)

Standard FSS setting:

Limitations of few-shot segmentation

They cannot keep the performance on base classes (generalized segmentation)

Standard FSS setting:

Foundation models

Preliminaries (CLIP)

We generate image-text paris with all the images-texts

Foundation models

Preliminaries (CLIP)

Inference (novel classes)

(2) Create dataset classifier from label text

Only that is adapted

Only that is adapted

Foundation models

Trained on a large set of labeled datasets

Efficient adaptation

Foundation models

Adaptation is done only using k shots

Take home message

- Few shot learning can alleviate the problem of scarce labeled data.
- Recent literature has taken a step-back (regarding the metalearning or *learning to learn* paradigm)
- If you have prior knowledge, use it.
- Foundation models with efficient adaptation could be a realistic alternative.

Calibration

Motivation

DNN

Which model would you choose?

Accuracy: 99%

Accuracy: 92%

Motivation

DNN

Which model would you choose?

Accuracy: 99%

Accuracy: 92%

Prediction: *'I do not know'*

Standard loss functions

Cross-entropy

The way we provide the labels (one-hot) encourages the network to have low-entropy predictions

$$\mathbf{s} = [s_0, s_1, ..., s_{N-1}]$$

Standard loss functions

Cross-entropy

Target objective when training a neural network with CE

The way we provide the labels (one-hot) encourages the network to have low-entropy predictions

Standard loss functions

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target classes in a multi-class scenario.

Which is the value of the CE in these two examples?

Standard loss functions

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target classes in a multi-class scenario.

Exactly the same!!

Post-processing

We change the distribution of the softmax vector

Temperature Scaling (Platts extension)

$$s_i = \frac{\exp(\hat{o}_i/T)}{\sum_{j=1}^{K} \exp(\hat{o}_j/T)}$$

Post-processing

SoftMax probabilities

We change the distribution of the softmax vector

Temperature Scaling (Platts extension)

$$s_i = \frac{\exp(\hat{o}_i/T)}{\sum_{j=1}^{K} \exp(\hat{o}_j/T)}$$

NLL = 0.021

ECE = 0.002

ECE = 0.001t = 5.034

0.75

0.5

0.25

0.75

0.25

observed frequency

observed frequency

Kock et al. Confidence Histograms for Model Reliability Analysis and Temperature Calibration, MIDL'22

Post-processing

Temperature Scaling (Platts extension)

We need an additional validation set to optimize T

Under distributional drift, Temperature scaling is suboptimal (Ovadia et al. NeurIPS'19)

T value very sensitive to the dataset and network employed

Post-processing

Temperature Scaling (Platts extension)

Optimal T value also varies with the number of training samples!

In the training (end-to-end)

Penalize high-entropies

In the training (end-to-end)

Penalize high-entropies

In the training (end-to-end)

Penalize high-entropies

In the training (end-to-end)

Penalize high-entropies

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017

In the training (end-to-end)

Penalize high-entropies

In the training (end-to-end)

$$\mathcal{H}(\mathbf{y}', \mathbf{s}) = -\sum_{k}^{K} y_{k}^{LS} \log(s_{k}) = -\sum_{k}^{K} ((1 - \alpha)y_{k} + \frac{\alpha}{K}) \log(s_{k})$$

In the training (end-to-end)

$$\mathcal{H}(\mathbf{y}', \mathbf{s}) = -\sum_{k}^{K} y_{k}^{LS} \log (s_{k}) = -\sum_{k}^{K} ((1 - \alpha)y_{k} + \frac{\alpha}{K}) \log (s_{k}) - \sum_{k}^{K} ((1 - \alpha)y_{k}) \log (s_{k}) - \sum_{k}^{K} \frac{\alpha}{K} \log (s_{k})$$

In the training (end-to-end)

$$\mathcal{H}(\mathbf{y}',\mathbf{s}) = -\sum_{k}^{K} y_{k}^{LS} \log(s_{k}) = -\sum_{k}^{K} ((1-\alpha)y_{k} + \frac{\alpha}{K}) \log(s_{k})$$

$$-\sum_{k}^{K} ((1-\alpha)y_{k})\log(s_{k}) - \sum_{k}^{K} \frac{\alpha}{K}\log(s_{k})$$
$$-\sum_{k}^{K} y_{k}\log(s_{k}) - \frac{\alpha}{(1-\alpha)}\sum_{k}^{K} \frac{1}{K}\log(s_{k})$$

In the training (end-to-end)

$$\mathcal{H}(\mathbf{y}', \mathbf{s}) = -\sum_{k}^{K} y_{k}^{LS} \log(s_{k}) = -\sum_{k}^{K} ((1 - \alpha)y_{k} + \frac{\alpha}{K}) \log(s_{k})$$
$$-\sum_{k}^{K} ((1 - \alpha)y_{k}) \log(s_{k}) - \sum_{k}^{K} \frac{\alpha}{K} \log(s_{k})$$
$$-\sum_{k}^{K} y_{k} \log(s_{k}) - \frac{\alpha}{(1 - \alpha)} \sum_{k}^{K} \frac{1}{K} \log(s_{k})$$
$$\mathcal{H}(\mathbf{y}, \mathbf{s}) + \frac{\alpha}{1 - \alpha} \mathcal{H}(\frac{1}{K}, \mathbf{s})$$

In the training (end-to-end)

In the training (end-to-end)

$$\mathcal{H}(\mathbf{y}', \mathbf{s}) = -\sum_{k}^{K} y_{k}^{LS} \log(s_{k}) = -\sum_{k}^{K} ((1 - \alpha)y_{k} + \frac{\alpha}{K}) \log(s_{k})$$
$$-\sum_{k}^{K} ((1 - \alpha)y_{k}) \log(s_{k}) - \sum_{k}^{K} \frac{\alpha}{K} \log(s_{k})$$
This measures the similarity of \mathbf{s} writ to the uniform distribution $1/\mathbf{K}$
$$-\sum_{k}^{K} y_{k} \log(s_{k}) - \frac{\alpha}{(1 - \alpha)} \sum_{k}^{K} \frac{1}{K} \log(s_{k})$$
$$-\sum_{k}^{K} y_{k} \log(s_{k}) - \frac{\alpha}{(1 - \alpha)} \sum_{k}^{K} \frac{1}{K} \log(s_{k})$$
$$\mathcal{H}(\mathbf{y}, \mathbf{s}) + \frac{\alpha}{1 - \alpha} \mathcal{H}(\frac{1}{K}, \mathbf{s})$$

In the training (end-to-end)

In the training (end-to-end)

Focal Loss

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise.} \end{cases}$$

In the training (end-to-end)

Focal Loss

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise.} \end{cases}$$

$$p_{\rm t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise,} \end{cases}$$

We introduce p_t

In the training (end-to-end)

Focal Loss

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise.} \end{cases}$$

$$p_{t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise,} \end{cases}$$

We introduce p_t

We rewrite CE as

$$CE(p, y) = CE(p_t) = -\log(p_t)$$

In the training (end-to-end)

Focal Loss

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise.} \end{cases}$$

$$p_{\rm t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise,} \end{cases}$$

We introduce p_t

We rewrite CE as

$$\operatorname{CE}(p, y) = \operatorname{CE}(p_{\mathsf{t}}) = -\log(p_{\mathsf{t}})$$

We add an additional term

$$\mathrm{FL}(p_{\mathrm{t}}) = -(1-p_{\mathrm{t}})^{\gamma} \log(p_{\mathrm{t}})$$

Lin et al., Focal loss for dense object detection. ICCV'17
In the training (end-to-end)

Focal Loss

In the training (end-to-end)

Focal Loss

 $\mathcal{L}_{FL} \geq \mathcal{D}_{KL}(\mathbf{y}||\mathbf{s}) - \gamma \mathcal{H}(\mathbf{s})$

In the training (end-to-end)

Focal Loss

In the training (end-to-end)

In the training (end-to-end)

Margin-based LS

 $\mathbf{d}(\mathbf{l}) = [2, 5.5, 0, 3.7]$

In the training (end-to-end)

Logit values

4

2

0.3

Maximizing the entropy can be seen as a constraint that forces the distance vector d(l) to be zero.

 $\mathbf{d}(\mathbf{l}) = [0, 0, 0, 0] = \mathbf{0}$

Margin-based LS

$$\mathcal{H}(\mathbf{y},\mathbf{s}) - \mathcal{H}(\mathbf{s})$$

0

Pereyra, ICLR'17 Müller, NeurIPS'19 Mukhoti, NeurIPS'20

 $\mathcal{H}(\mathbf{y},\mathbf{s})$

s.t.

 $\mathbf{d}(\mathbf{l})$

In the training (end-to-end)

Maximizing the entropy can be seen as a constraint that forces the distance vector **d(I) to be zero.**

Margin-based LS

$$\mathcal{H}(\mathbf{y},\mathbf{s}) - \mathcal{H}(\mathbf{s})$$

In the training (end-to-end)

Margin-based LS

$\mathcal{H}(\mathbf{y},\mathbf{s}) \quad \mathrm{s.t.} \quad \mathbf{d}(\mathbf{l}) \leq \mathbf{m}$

In the training (end-to-end)

Margin-based LS

 $\mathcal{H}(\mathbf{y}, \mathbf{s})$ s.t. $\mathbf{d}(\mathbf{l}) \leq \mathbf{m}$

$$\min \mathcal{L}_{CE} + \lambda \sum_{k} \max(0, \max_{j}(l_{j}) - l_{k} - m)$$

$$\max_{j} l_{j} - l_{k} \leq m \longrightarrow \operatorname{ign}_{p} \operatorname{ign}_{p} \qquad m$$

In the training (end-to-end)

Margin-based LS

 $\mathcal{H}(\mathbf{y}, \mathbf{s})$ s.t. $\mathbf{d}(\mathbf{l}) \leq \mathbf{m}$

This will violate the constraint, and there will be a penalty

In the training (end-to-end)

Margin-based LS

In the training (end-to-end)

Margin-based LS

In the training (end-to-end)

Pairwise contraints

In the training (end-to-end)

Posterior probability

For the pairs containing the target class:

$$\mathcal{L}_{ij}^{1v1}(\mathbf{x}, y; \Theta) = -\mathbb{1}_{y=i} \log \beta_{ij}(\mathbf{x}) - \mathbb{1}_{y=j} \log \beta_{ji}(\mathbf{x}).$$

In the training (end-to-end)

Posterior probability

Pairwise contraints

For the pairs containing the target class:

$$\mathcal{L}_{ij}^{1v1}(\mathbf{x}, y; \Theta) = -\mathbb{1}_{y=i} \log \beta_{ij}(\mathbf{x}) - \mathbb{1}_{y=j} \log \beta_{ji}(\mathbf{x}).$$

For the pairs that DO NOT contain the target class:

$$\beta_i^*(\mathbf{x}) = \beta_j^*(\mathbf{x}) = 1/2.$$

Is this familiar to you??

Designed for the segmentation task

Post-processing

Local TS

Ding et al., Local Temperature Scaling for Probability Calibration. ICCV'21

Post-processing

Local TS

$$T^* = \underset{T}{\operatorname{arg\,min}} \left(-\sum_{i=1}^{n} \sum_{x \in \Omega} \log \left(\sigma_{SM} \left(\mathbf{z}_i(x) / T \right)_{(S_i(x))}^{(S_i(x))} \right) \right)$$
$$s.t. \quad T > 0,$$

In standard *Temperature Scaling*, T value is the same

Post-processing

Local TS

$$T^* = \underset{T}{\operatorname{arg\,min}} \left(-\sum_{i=1}^n \sum_{x \in \Omega} \log \left(\sigma_{SM} \left(\mathbf{z}_i(x) / T \right)_{i=1}^{(S_i(x))} \right) \right)$$

s.t. $T > 0,$

In standard *Temperature Scaling*, T value is the same

In the training (end-to-end)

Key idea

Instead of maximizing the entropy over all the samples (i.e., pixels), do it **only for those pixels that produce erroneous predictions**

MEEP

Extension of Pereyra et al., ICLR'17 but in a smarter manner

1.0

In the training (end-to-end)

MEEP

Formal definition

Instead of maximizing the entropy over all the samples (i.e., pixels), do it only for those pixels that produce erroneous predictions

Global objective

$$\mathcal{L} = \mathcal{L}_{Seg}(\mathbf{y}, \mathbf{s}) - \lambda \mathcal{L}_{me}(\mathbf{s}_w)$$

Standard segmentation loss over ALL the pixels

Regularization term over wrong predictions

In the training (end-to-end)

MEEP

Formal definition

Instead of maximizing the entropy over all the samples (i.e., pixels), do it only for those pixels that produce erroneous predictions

Global objective

$$\mathcal{L} = \mathcal{L}_{Seg}(\mathbf{y}, \mathbf{s}) - \lambda \mathcal{L}_{me}(\mathbf{s}_w)$$

$$\mathcal{H}(\mathbf{s}_w) = -\frac{1}{|\mathbf{s}_w|} \sum_{k,i \in \mathbf{s}_w} s_{i,k} \log s_{i,k}$$

Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation, Arxiv'21

In the training (end-to-end)

MEEP

Formal definition

Instead of maximizing the entropy over all the samples (i.e., pixels), do it **only for those pixels that produce erroneous predictions**

Global objective

$$\mathcal{L} = \mathcal{L}_{Seg}(\mathbf{y}, \mathbf{s}) - \lambda \mathcal{L}_{me}(\mathbf{s}_w)$$
 $\mathcal{H}(\mathbf{s}_w) = -rac{1}{|\mathbf{s}_w|} \sum_{k,i \in \mathbf{s}_w} s_{i,k} \log s_{i,k}$

 $\mathcal{D}_{KL}(\mathbf{u}||\mathbf{s}_w) \stackrel{\mathrm{K}}{=} \mathcal{H}(\mathbf{u},\mathbf{s}_w)$

Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation, Arxiv'21

In the training (end-to-end)

Spatially Varying Label Smoothing (SVLS)

In the training (end-to-end)

Spatially Varying Label Smoothing (SVLS)

In the training (end-to-end)

Spatially Varying Label Smoothing (SVLS)

In the training (end-to-end)

Spatially Varying Label Smoothing (SVLS)

In the training (end-to-end)

Spatially Varying Label Smoothing (SVLS)

In the training (end-to-end)

In the training (end-to-end)

$$\mathcal{L} = -\frac{1}{|\sum_{i}^{d} w_{i}|} \sum_{k} y_{p}^{k} \log s_{p}^{k} - \frac{1}{|\sum_{i}^{d} w_{i}|} \sum_{k} (\sum_{\substack{i=1\\i \neq p}}^{d} y_{i}^{k} w_{i}) \log s_{p}^{k},$$

In the training (end-to-end)

In the training (end-to-end)

In the training (end-to-end)

In the training (end-to-end)

Proposed solution

		FLARE				ACDC			BraTS			
	DSC	HD	ECE	CECE	DSC	HD	ECE	CECE	DSC	HD	ECE	CECE
CE+DSC ($\lambda = 1$)	0.846	5.54	0.058	0.034	0.828 0.620 0.782 0.809 0.824	3.14	0.137	0.084	0.777	6.96	0.178	0.122
FL [10] ($\gamma = 3$)	0.834	6.65	0.053	0.059		7.30	0.153	0.179	0.848	9.00	0.097	0.119
ECP [21] ($\lambda = 0.1$)	0.860	<u>5.30</u>	0.037	0.027		4.44	0.130	0.094	0.808	8.71	0.138	0.099
LS [22] ($\alpha = 0.1$)	0.860	5.33	0.055	0.049		3.30	<u>0.083</u>	0.093	0.820	7.78	<u>0.112</u>	0.108
SVLS [7] ($\sigma = 2$)	0.857	5.72	0.039	0.036		2.81	0.091	0.083	0.801	8.44	0.146	0.111
MbLS [H] (m =5)	0.836	5.75	0.046	0.041	0.827	2.99	0.103	<u>0.081</u>	0.838	7.94	0.127	0.095
Ours ($\lambda = 0.1$)	0.868	4.88	0.033	<u>0.031</u>	0.854	2.55	0.048	0.061	0.850	5.78	0.112	<u>0.097</u>

Empirical validation of several choices

		FLARE			ACDC			BraTS				
	DSC	HD	ECE	CECE	DSC	HD	ECE	CECE	DSC	HD	ECE	CECE
Constraint on s L2-penalty Patch size: 5×5	0.862 0.851 0.875	5.14 5.48 5.96	0.043 0.065 0.032	0.030 0.054 0.031	0.840 0.871 0.813	2.66 1.78 3.50	0.068 0.059 0.078	0.071 0.080 0.077	0.802 0.851 0.735	8.28 7.90 7.45	0.145 0.078 0.119	0.104 0.091 0.092

In the training (end-to-end)

Proposed solution

Take home message

- Precise uncertainty estimates are very important in a broad span of problems.
- Integrating a mechanism to control overconfidence predictions during training seems to be an efficient alternative.
- Strategies specifically designed for segmentation tasks are required.
- Despite the importance of the topic, calibrating segmentation networks, and particularly in the medical domain is underexplored.