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Motivation
Standard training

Accuracy (Dog): 99%

What if we add 

novel classes?

Fine-tunning

But, how many images 
are needed?
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(learning)
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Motivation
Learning (in human beings)

One image
(learning)

N images
(generalization)

-- Humans recognize easily with few examples

-- Modern ML generalize very poorly
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Building labels for dense predictions is even worse!!
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And it gets even more complex in some domains (e.g., medical imaging)

Dense 3D annotations: several hours
(of radiologist time)
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Labels not only expensive, but expert knowledge is required?

Not possible to do 

crowdsourcing
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Distributional shifts make things even worse

Source domain (MRI)
No adaptation

(bad generalization to the target)
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Training on base classes  
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Setting

Training on base classes  

Learn from a few examples per new class  

Few-shot tasks at 
testing time  

Classify 
these  

2 4
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Setting Meta-Learning

Base training with enough 
labeled data

(base classes different from 
the test classes)
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Setting Meta-Learning

Create artificial 
episodes for episodic 
training
(Learn initial model)

Vinyal et al, (Neurips ‘16),
Snell et al,  (Neurips ‘17), 
Sung et al,  (CVPR ‘ 18),
Finn et al,  (ICML‘ 17),
Ravi et al,  (ICLR‘ 17),
Lee et al,  (CVPR‘ 19),
Hu et al, (ICLR  ‘20),
Ye et al, (CVPR  ‘20), . . .
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Standard Learning
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Standard Learning

Learning
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Standard Learning

Learning

Inference

Predictions
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Meta-Learning
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Meta-Learning

Training

1. From                     sample 

2. Use        to sample a support and a query set

Support set Query set

3. Repeat
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Prototypical NetworksClassification

[Snell et al., NeurIPS’17]
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Prototypical NetworksClassification

[Snell et al., NeurIPS’17]

Compute class prototypes from support set:



Few-shot learning

28

Prototypical NetworksClassification

[Snell et al., NeurIPS’17]

Output probability based on similarity of query 
embedding to each class prototypes: 



Few-shot learning

MAML

[Finn et al., ICML’17]

Classification

Goal:
Learn a good initialization for a model, such that :

it can be adapted to new few-shot tasks with few 
gradient steps to perform well with few training steps
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MAML

[Finn et al., ICML’17]

Classification

Outer Loop

Inner Loop:



Few-shot learning

MAML

[Finn et al., ICML’17]

Classification

Outer Loop: 
Optimize for the 
performance of all
inner loop models 
on all tasks. 

Inner Loop:
Update for each task 
from an initialization



Few-shot learning

MAML

[Finn et al., ICML’17]

Classification
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Classification

Singh et al. MetaMed: Few-shot medical image classification using gradient-based meta-learning. Pattern Recognition. 2021

MAML-Based
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Classification

Deuschel et al. Multi-prototype few-shot learning in histopathology. ICCVw’21

Prototypes-Based
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How does it work?

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’19
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g et al. PANe How does it work?

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’19

Prototype per class

Over the k shots

Training
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g et al. PANe How does it work?

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’19

Prototype per class

Distance
(e.g., cosine)

Softmax for class j

Training
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g et al. PANe How does it work?

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’19

Prototype per class

Softmax for class j

Segmentation loss

Training
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g et al. PANe How does it work?

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’19

Softmax for class j

Inference
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Improving prototypes

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’19
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Li et al. Adaptive Prototype Learning and Allocation for Few-Shot Segmentation. CVPR’21

Superpixels on the 
mask regions

Improving prototypes
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Ouyang et al. Self-supervised learning for few-shot medical image segmentation. IEEE TMI’22

Improving prototypes
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Wang et al. Few-shot Medical Image Segmentation Regularized with Self-reference and Contrastive Learning. MICCAI’22

Improving prototypes
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Limitations

Support Query

Chunk trick

The volume is pre-split into n 
chunks (n going from 3 to 12)
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Limitations

(both classification and segmentation)

Convoluted meta-learning approaches

They are tailored to the same-task paradigm (e.g., models trained under 1-
shot do not perform well when 5-shots are available)

Significant performance degradation under domain shift

Most meta-learning to learn

Vinyal et al, (Neurips ‘16),
Snell et al,  (Neurips ‘17), 
Sung et al,  (CVPR ‘ 18),
Finn et al,  (ICML‘ 17),
Ravi et al,  (ICLR‘ 17),
Lee et al,  (CVPR‘ 19),
Hu et al, (ICLR  ‘20),
Ye et al, (CVPR  ‘20), 
Ouyang et al, (TMI’22),...

Models trained under the learning-to-learn paradigm 
cannot be re-used with different models



Few-shot learning

50

A few steps backwards

[Chen et al., ICLR’19]; [Tian et al., ECCV’20]; [Veilleux et al., NeurIPS’21];  
[Dhillon et al., ICLR’20]; [Ziko et al., ICML’20]; [Boudiaf et al., NeurIPS’20]; 

[Boudiaf et al., CVPR’21]; [Hajimiri et al., CVPR’23]  

Entropy 
regularization 

Manifold 
regularization 

Mutual-information 
regularization 

Inductive fine-tuning baseline 
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A few steps backwards
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A few steps backwards
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!!!!!

!!!!!

Surprising results Same domain
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Surprising results Domain shift
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Example of a non meta-

learning approach

Segmentation task

* The initial model is trained over the base classes following 
standard segmentation training (i.e., CE )

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021 
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Example of a non meta-

learning approach

Segmentation task

* The initial model is trained over the base classes following 
standard segmentation training (i.e., CE )

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021 
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Example of a non meta-

learning approach

Segmentation task

* The initial model is trained over the base classes following 
standard segmentation training (i.e., CE )

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021 

Problem if only the entropy is 
minimized! 
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Example of a non meta-

learning approach

Segmentation task

* The initial model is trained over the base classes following 
standard segmentation training (i.e., CE )

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021 
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Example of a non meta-

learning approach

Segmentation task

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021 
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Limitations of few-shot 

segmentation
Class-ambiguity (in the context of 

generalization)

Standard FSS training assumes what is not the target class is background.
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classes (generalized segmentation)

Standard FSS setting:

Novel categories
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Limitations of few-shot 

segmentation
They cannot keep the performance on base 

classes (generalized segmentation)

Standard FSS setting:

Novel categories

Generalized FSS setting:

Support 

supervision 

(novel 

categories)

Novel + base 

categories
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Corresponding texts



Efficient adaptation

66

Foundation models Preliminaries

(CLIP)

For a given batch

3 images

Corresponding texts

We generate image-text paris with all the 

images-texts



Efficient adaptation

67

Foundation models Preliminaries

(CLIP)

For a given batch

3 images

Corresponding texts

We generate image-text paris with all the 

images-texts

Maximize the cosine distance
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Foundation models Preliminaries

(CLIP)

For a given batch

3 images

Corresponding texts

We generate image-text paris with all the 

images-texts

Minimize the cosine distance
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Foundation models Preliminaries

(CLIP)

We generate image-text paris with all the 

images-texts
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Foundation models Preliminaries

(CLIP)

Inference (novel classes)
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Foundation models Models that are trained on a large set of 

labeled datasets

Liu et al., CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection, Arxiv’23
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Liu et al., CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection, Arxiv’23

Only that is adapted
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Foundation models Models that are trained on a large set of 

labeled datasets

Liu et al., CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection, Arxiv’23

Only that is adapted

Still requires a substantial amount 

of labeled samples for adaptation
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Foundation models
Trained on a large set of labeled datasets

Silva-Rodriguez et al., Transductive few-shot adapters for medical image segmentation, Arxiv’23
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Foundation models
Adaptation is done only using k shots

Silva-Rodriguez et al., Transductive few-shot adapters for medical image segmentation, Arxiv’23
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Take home message

- Few shot learning can alleviate the problem of scarce labeled 

data.

- Recent literature has taken a step-back (regarding the meta-

learning or learning to learn paradigm)

- If you have prior knowledge, use it.

- Foundation models with efficient adaptation could be a realistic 

alternative.
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Calibration
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Which model would you 

choose?

Accuracy: 99%

Accuracy: 92%
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Accuracy: 99%

Accuracy: 92%

Prediction:

‘Tumour at 100%’

Prediction:

‘I do not know’

Motivation

Which model would you 

choose?
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Standard loss functions
Cross-entropy

The way we provide the labels (one-hot) encourages the network to have 
low-entropy predictions 
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Standard loss functions
Cross-entropy

The way we provide the labels (one-hot) encourages the network to have 
low-entropy predictions 

Target objective when training a 

neural network with CE
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Standard loss functions
Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target 
classes in a multi-class scenario.

Target class

Assume 

y=[0,1,0,0]
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Which is the value of the 
CE in these two examples?

Problem

Standard loss functions
Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target 
classes in a multi-class scenario.
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Exactly the same!!

Problem

Standard loss functions
Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target 
classes in a multi-class scenario.
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(Platts extension)We change the distribution of the softmax vector
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Post-processing

T = 1
(softmax standard)

S
o
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T > 1
Softens distributions

T < 1
Shrinks distributions

Existing methods

Post-processing
Temperature Scaling

(Platts extension)We change the distribution of the softmax vector
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Existing methods

Temperature Scaling

(Platts extension)

Kock et al. Confidence Histograms for Model Reliability Analysis and Temperature Calibration, MIDL’22

Post-processing

Uncalibrated

Calibrated
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We need an additional validation set to optimize T

Ovadia et al. Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. NeurIPS’19

Under distributional drift, Temperature scaling is suboptimal (Ovadia et al. NeurIPS’19)

T value very sensitive to the dataset and network employed

Existing methods

Temperature Scaling

(Platts extension)

Post-processing
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Optimal T value also varies with the number of training samples!

Existing methods

Temperature Scaling

(Platts extension)

Post-processing

Kock et al. Confidence Histograms for Model Reliability Analysis and Temperature Calibration, MIDL’22
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In the training (end-to-end)
Penalize high-entropies

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017 

High confident predictions (low-entropy) NOT DESIRED!
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Penalize high-entropies

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017 

For each example in the training set:

Classification loss
(e.g., cross-entropy)

Entropy

High confident predictions (low-entropy) NOT DESIRED!

In the training (end-to-end)
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In the training (end-to-end)
Penalize high-entropies

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017 

High confident predictions (low-entropy) NOT DESIRED!
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In the training (end-to-end)
Penalize high-entropies

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017 

1/K

High confident predictions (low-entropy) NOT DESIRED!
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In the training (end-to-end)
Penalize high-entropies

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017 

The difference 

depends on β 

High confident predictions (low-entropy) NOT DESIRED!
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In the training (end-to-end)
Label Smoothing

One-hot encoding
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Müller et al., When does label smoothing help. NeurIPS’19 
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In the training (end-to-end)
Label Smoothing

Müller et al., When does label smoothing help. NeurIPS’19 
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In the training (end-to-end)
Label Smoothing

Müller et al., When does label smoothing help. NeurIPS’19 

Cross-entropy 

between y and s
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In the training (end-to-end)
Label Smoothing

Müller et al., When does label smoothing help. NeurIPS’19 

Cross-entropy 

between 1/K and s
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In the training (end-to-end)
Label Smoothing

Müller et al., When does label smoothing help. NeurIPS’19 

This measures the similarity of s wrt to the 

uniform distribution 1/K

Cross-entropy 

between 1/K and s
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In the training (end-to-end)
Label Smoothing

Müller et al., When does label smoothing help. NeurIPS’19 

We can replace the second 

term with an entropy 

maximization objective

Maximizes the 

entropy of s
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In the training (end-to-end)
Focal Loss

Lin et al., Focal loss for dense object detection. ICCV’17 
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We introduce p_t

We rewrite CE as 



Existing methods

111

In the training (end-to-end)
Focal Loss

Lin et al., Focal loss for dense object detection. ICCV’17 

We add an additional term

We introduce p_t

We rewrite CE as 
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In the training (end-to-end)
Focal Loss

Lin et al., Focal loss for dense object detection. ICCV’17 
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In the training (end-to-end)
Focal Loss

Mukhoti et al., Calibrating deep neural networks using focal loss. NeurIPS’20 
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In the training (end-to-end)
Focal Loss

Mukhoti et al., Calibrating deep neural networks using focal loss. NeurIPS’20 

Minimize the differences 

between network predictions 

and ground truth (like CE)
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In the training (end-to-end)
Focal Loss

Mukhoti et al., Calibrating deep neural networks using focal loss. NeurIPS’20 

Maximize the entropy (i.e., 

pushing uniform distributions)

Minimize the differences 

between network predictions 

and ground truth (like CE)
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In the training (end-to-end)
Margin-based LS

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 
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In the training (end-to-end)
Margin-based LS

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 

L
o
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 v
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s

Pereyra, ICLR’17
Müller, NeurIPS’19

Mukhoti, NeurIPS’20

Maximizing the entropy can be seen as a 

constraint that forces the distance vector 

d(l) to be zero.
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In the training (end-to-end)
Margin-based LS

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 
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Pereyra, ICLR’17
Müller, NeurIPS’19

Mukhoti, NeurIPS’20

Maximizing the entropy can be seen as a 

constraint that forces the distance vector 

d(l) to be zero.
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In the training (end-to-end)
Margin-based LS

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 
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Let’s allow a margin
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In the training (end-to-end)
Margin-based LS

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 
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In the training (end-to-end)
Margin-based LS

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 
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In the training (end-to-end)
Margin-based LS

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 

L
o

g
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a
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e
s

This will violate the constraint, 

and there will be a penalty
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In the training (end-to-end)
Margin-based LS

Murugesan et al., Calibrating Segmentation Networks with Margin-based Label Smoothing. MedIA’23 
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In the training (end-to-end)
Margin-based LS

Murugesan et al., Calibrating Segmentation Networks with Margin-based Label Smoothing. MedIA’23 
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In the training (end-to-end)
Pairwise contraints

Cheng et al., Calibrating Deep Neural Networks by Pairwise Constraints. CVPR’22 
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In the training (end-to-end)

Cheng et al., Calibrating Deep Neural Networks by Pairwise Constraints. CVPR’22 

Pairwise contraints

For the pairs containing the target class: 

Posterior probability



Existing methods

129

In the training (end-to-end)

Cheng et al., Calibrating Deep Neural Networks by Pairwise Constraints. CVPR’22 

Pairwise contraints

For the pairs containing the target class: 

For the pairs that DO NOT contain the target class: 

Posterior probability

Is this familiar to you??
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Designed for the 

segmentation task
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Local TS

Ding et al., Local Temperature Scaling for Probability Calibration. ICCV’21 

Post-processing

T value (Temperature Scaling) is not the 

same for all the pixels
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Local TS

Ding et al., Local Temperature Scaling for Probability Calibration. ICCV’21 

Post-processing

In standard Temperature 

Scaling, T value is the same
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Local TS

Ding et al., Local Temperature Scaling for Probability Calibration. ICCV’21 

Post-processing

In standard Temperature 

Scaling, T value is the same
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136Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical 
image segmentation, Arxiv’21 

In the training (end-to-end) MEEP

Key idea Instead of maximizing the entropy over all the samples (i.e., pixels), do 

it only for those pixels that produce erroneous predictions

Extension of Pereyra et al., ICLR’17 but in a smarter manner

Pereyra et al.
ALL Samples

MEEP
Only wrong predictions

Good predictions
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137Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical 
image segmentation, Arxiv’21 

MEEP

Formal definition Instead of maximizing the entropy over all the samples (i.e., pixels), do 

it only for those pixels that produce erroneous predictions

In the training (end-to-end)

Global objective

Standard segmentation loss 
over ALL the pixels

Regularization term over 
wrong predictions
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MEEP

Formal definition Instead of maximizing the entropy over all the samples (i.e., pixels), do 

it only for those pixels that produce erroneous predictions
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Global objective
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image segmentation, Arxiv’21 

MEEP

Formal definition Instead of maximizing the entropy over all the samples (i.e., pixels), do 

it only for those pixels that produce erroneous predictions

In the training (end-to-end)

Global objective
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In the training (end-to-end)
Spatially Varying Label Smoothing

(SVLS)

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21 
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In the training (end-to-end)
Spatially Varying Label Smoothing

(SVLS)

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21 
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In the training (end-to-end)
Spatially Varying Label Smoothing

(SVLS)

Smoothed SVLS labels

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21 

Kernel to smooth 

labels
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In the training (end-to-end)
Spatially Varying Label Smoothing

(SVLS)

Smoothed SVLS labels

Integrated in the standard CE

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21 

One hot encoded is 

smoothed by the class 

distribution in the 

patch
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In the training (end-to-end)
Spatially Varying Label Smoothing

(SVLS)

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21 
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Existing methods

In the training (end-to-end)

SVLS in the 

standard CE

GT Predictions 

Limitations of SVLS

Standard CE (wrt the GT)
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Existing methods

In the training (end-to-end)

SVLS in the 

standard CE

GT Predictions 

Limitations of SVLS

Standard CE 
(wrt the class-distribution value)
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Existing methods

In the training (end-to-end)

SVLS in the 

standard CE

Limitations of SVLS

Distribution of each 
class within the patch
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Existing methods

In the training (end-to-end)

SVLS in the 

standard CE

Limitations of SVLS

1 – No mechanism to control the 
importance of the constraint

Two main problems

2 – The a priori distribution 
cannot be computed easily 
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Existing methods

In the training (end-to-end)

Our solution

Proposed solution

A priori distribution Logit distribution
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Existing methods
Proposed solutionIn the training (end-to-end)

Empirical validation of several choices
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Existing methods

In the training (end-to-end) Proposed solution

SVLS Proposed
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Take home message

- Precise uncertainty estimates are very important in a broad 

span of problems.

- Integrating a mechanism to control overconfidence predictions 

during training seems to be an efficient alternative.

- Strategies specifically designed for segmentation tasks are 

required.

- Despite the importance of the topic, calibrating segmentation 

networks, and particularly in the medical domain is 

underexplored.


