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Model Adaptation

(few-shot learning)



Motivation

Standard training

Accuracy (Dog): 99%
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Why?

Motivation Learning (in human beings)

One image
(learning)

.

(generalization) ==



Why?

Motivation




Why is this interesting?

Building labels for dense predictions is even worse!!
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Why is this interesting?

And it gets even more complex in some domains (e.g., medical imaging)

Dense 3D annotations: several hours
(of radiologist time)
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Why is this interesting?

Labels not only expensive, but expert knowledge is required?

Select all images with

esophagus

Click verify once there are none left.

Not possible to do
crowdsourcing
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Why is this interesting?

Distributional shifts make things even worse

_ No adaptation
Source domain (MRI) (bad generalization to the target)

0 [
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Setting

Few-shot learning

Training on base classes
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Setting

Few-shot learning

Training on base classes

Few-shot tasks at
testing time

Classify
these
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Setting

Few-shot learning

Training on base classes

Few-shot tasks at
testing time

Classify
these
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Setting

Few-shot learning

Meta-Learning

Base training with enough
labeled data

(base classes different from
the test classes)
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Setting

Few-shot learning

Meta-Learning

Create artificial

episodes for episodic
training
(Learn initial model)

Vinyal et al, (Neurips ‘16),
Snell et al, (Neurips ‘17),
Sung et al, (CVPR “18),
Finnetal, (ICML*17),
Ravietal, (ICLR“17),
Leeetal, (CVPR"19),

Hu et al, (ICLR 20),

Ye etal, (CVPR “20), ...
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Few-shot learning

D = {DTrafma DTest} ‘

Standard Learning

DTTG.?',fn, M DTRSt — @

nyrn/in — yTesf.




D = {DTrafma DTest} ‘

Learning

DTro,in

Few-shot learning

Standard Learning

nyrrmIn — yTesf.

Jos ‘ ETra,ifn_

DTTG.?',fn, M DTest — @
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Few-shot learning

D = {DTrafma DTest} ‘

Learning

DT rain f@ .

Inference

Standard Learning

DTfrrm',n M DTe.qt — @

nyrmIn — yTesf.

‘ ETfra,in

—

Predictions

20



Few-shot learning

D = {DTrafma DTest} ‘

Meta-Learning

DTTG.?',fn, M DTRSt
yTTa,'i,n M yTRSf

=
=




Few-shot learning

D = {DTrafma DTest} ‘

Training

1. From DTra,lefn, sample Vs € Vrrain

Meta-Learning

DTTG.?',fn, M DTRSt — @
mia:n M y’Tes‘t — @

Vrrain = {Horse, Bike, Dog, Cat, Lion}

Vs = {Dog, Cat}
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Few-shot learning

Meta-Learning

DTfrrm',n M DTem‘, —

/
D = {DTrain; DTest} ‘
y’rrain M y'rest — @

Training

Vrrain = {Horse, Bike, Dog, Cat, Lion}
1. From Drpygin sample Vs € Vrrain Vs = {Dog, Cat}

2. Use )g to sample a support and a query set




Few-shot learning

Meta-Learning

DTfrrmn M DTP st —

= ()
D = {DTraina DTest} ‘
yTTann M yTPQf — @

Training

Vrrain = {Horse, Bike, Dog, Cat, Lion}
1. From Drpygin sample Vs € Vrrain Vs = {Dog, Cat}

2. Use )g to sample a support and a query set

EA iw o
Sl ) OREEIET TS

Support set S Query set Q

min L£(yo)
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Few-shot learning

Meta-Learning

DTfrrm',n M DTP,ST

/
D = {DTraina DTest} ‘
yTTann M yTPQf — @

Training

Vrrain = {Horse, Bike, Dog, Cat, Lion}
1. From Drpygin sample Vs € Vrrain Vs = {Dog, Cat}

2. Use )g to sample a support and a query set

L 4

-

Support set 5 Query set Q)

3. Repeat min £(3jo)
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Classification

Support set

Few-shot learn

Ing

Prototypical Networks

Lion

Bird

Feature extractor Feature Space

[Snell et al., NeurlPS’17]

Softmax of negative

distances of query
from prototypes

Prediction

Bird
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Few-shot learning

Classification Prototypical Networks

[Snell et al., NeurlPS’17]

Support set

Feature extractor Feature Space Softmax of negative
distances of query
._ from prototypes
S
e Prediction
fo| e ~0 [} (I
.9
Bird
A v
Backpropagation ( )
L3
)
i
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Classification

Support set

Few-shot learning

Lion

Bird

Feature extractor

Prototypical Networks

[Snell et al., NeurlPS’17]

Feature Space Softmax of negative

Jo

distances of query
from prototypes

e Prediction
J —~0 <~ (v -~
.9
° Bird
v
Backpropagation ( )

Output probability based on similarity of
to each class prototypes:

P(y = c|t) = softmax(—d(fo(T), ptc))
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Few-shot learning

Classification

MAML

[Finn et al., ICML'17]

Goal:
Learn a good initialization for a model, such that :

it can be adapted to new few-shot tasks with few
gradient steps to perform well with few training steps

meta-learning
...... learning / adaptation

g #Vks

NCVL
’—\2 2 9;
VL

1
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Classification

Few-shot learning

MAML

[Finn et al., ICML'17]

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters

Outer Loop

-

1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(7T)

4 for all 7; do _
5: Evaluate Vo L7 (fo) with respect to K examples Inner Loop:
6 Compute adapted parameters with gradient de-

scent: 0, = 0 — aVe LT (f9)
7:  end for
8:  Update 0 <~ 0 — BV 7 L7.(fo;)
9: end while




Few-shot learning
Classification MAML

[Finn et al., ICML'17]

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters

1: randomly initialize ¢
Outer Loop: 2: while not done do
Optimize for the 3: Sample batch of tasks 7; ~ p(T)
performance of all 4. forall 7; do . Inner Loop:
inner loop models J 2: gvaluate VoL (fo) with respect to K ex-amples Update for each task
on all tasks. ompute adapted parameters with gradient de- from an initialization
scent: 0, = 6 — aVo L1 (fs)
7:  end for
8: (Update § < 0 — BV > L7:(fa) |
9: end while




Few-shot learning

Classification MAML

[Finn et al., ICML17]

Copy model per task Update with support Calculate Query set Sum Task Losses
set Loss

fo § i— _’w—»’iif#:%(@)

=
A
<"
0
W=

Backpropagate



Few-shot learning
Classification MAML-Based
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Singh et al. MetaMed: Few-shot medical image classification using gradient-based meta-learning. Pattern Recognition. 2021 33



Few-shot learning

Classification

prototype calculation

Prototypes-Based

supports class 1
" prototypes class 1
prototypes ® query
_— —
®
D latent space
©
o \ 4
£
e
(]
] A
o AN COREL
i e loss
g
tumor muscle necrosis .o latent space
A
back propagation

Deuschel et al. Multi-prototype few-shot learning in histopathology. ICCVw’21
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Few-shot Segmentation

How does it work?

Masked By
Average | ! .
///// Pooling : [ ! segmentation
/// : :
T : —
; \ prototypes ]

VGG-16 support features
Support Set share weights
//////// » > (cos) — N, .

query
features

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV'19 ¢



Few-shot Segmentation

How does it work?

Query

segmentation

)

. VGG-16 |
Support Set | share weights

B —
"
Query Set

Protot | p > Yay Far UMY =
rototype per class # c = - z,
K k Ea},y ]]'[M(E,ky) = C]

Training

features

Over the k shots

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’'19
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Few-shot Segmentation

B s | | Query How does it work?

~ ™ Average | ' .
.| Pooling ! ; segmentation
. y —> !
=> — y | |
, prototypes | (
Y Hy2Z0Z292AA . W’ teeeeeeceaaa
. VGG-16 | support features

Support Set | share weights

| ‘ Training
@@ > COoS —>
_ —_—
! . query
features

Query Set

Distance

F(w,y)]l[Mg;i,y) o c] (e.g., cosine)

Protot | pe= 5 > Y
rototype per class |:> c= o x,
K X, MY = /

:> M(w,y) eXp(—Oéd(Fq(x’y),pj))
Y, epexp(—ad(F{TY, p;)

Softmax for class j

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’'19
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Few-shot Segmentation

eskos | D | qwery How does it work?

I N Average | )
Pooling ! =| segmentation
, | —>
=> — j  — 5
! prototypes | x
P ey @020 w5 lssemesewwens!
. VGG-16 | supportfeatures

Support Set | share weights

Training
» COS —> y
; _ —
] . query
features

Query Set

Z yFﬁ’y)ﬂ[Mﬁm = (]
Prototype per class |:> Pec = 7= 2 T
Yoy LMY = d

(z,y)
Softmax for class j |:> M(w’y) = eXp(_a(d(Fz(F(;I;J>)) y
p;ep EXPl—aallq ™, p;

1 . “r(x
Segmentation loss |:> Loeg = _ﬁz Z ]I[Mfgw’y) = j]log Mé;j,y)

z,Yy PJEP

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’'19
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Few-shot Segmentation

- Bl How does it work?
" ™ Average | ! )
| Pooling ; segmentation
w 5
- — f’ | — |
| PP |
. VGG-16 | support features

Support Set | share welghts

e ; Inference
¥ query
Query Set features

(z,y)
| (:n,y) exp(—()éd(Fq 7p_7))
Softmax for class | |:> M,g T exp(—ad(Fém’w pj))
p;€P e

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV'19



Few-shot Segmentation

Improving prototypes

(b) Query — Support

(a) Support — Query

y

77/ |

—

VGG-16
Support Set I share weights

support features

& Masked |
Average ;
Pooling :

support features

y ‘.
AL > —»
,;'.., ¥
Lt

Masked | :
Average ! :
Pooli | :
ng | i |
query query — 5
features features |_prototypes : support GT

Query Set

Image from Wang et al. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment. ICCV’'19
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Few-shot Segmentation

Improving prototypes

Highest Similarity

Superpixels on the =
mask regions (b) GPA is adaptive to object shape variation

Support Mask :

Allocate [

Cluster

Li et al. Adaptive Prototype Learning and Allocation for Few-Shot Segmentation. CVPR’21



Few-shot Segmentation

Improving prototypes

g A b
a. ! [ cos : Cosine similarity (\0 / : Softmax function .
yi(c™) N~ ~t
—  Adaptive -
Foreground
S label
Feature upport 2be local protoi. - e ,.4
) (b} 7z N e N T o |
”extractor pn;t;::ne _— {])A_,(( )} e cos)» = _’,(\ p ) -: 7, /Class-level
fo(*) P ‘ o e / proto.
Support image 8 ‘/-// L /9l
x° Support feature map m {SI«_,(" )} ;P
s Background
Feature protoh
N extractor {P’\'/(C )} 7N F Q dicti Local
7 uery prediction
—cos }» (o S008IV P proto, - MMMMMEENE  proto.
fo(") N 42 -7 Eaaasaas ‘ Pi;(¢) (Ly, L) p(c”)
Queryqimage Query fea(}:ure map Local similar(i)ty maps Class-wise similarity maps Support feature map Z'S
X Z {Sk.(c")} S’
J
./.
Extract : Match
I/
l/
Local
representations
43

Ouyang et al. Self-supervised learning for few-shot medical image segmentation. IEEE TMI'22



Few-shot Segmentation

Improving prototypes

Support images

E:>4——*'\.
F 4

-~

|

1

I

I

|

I

I

1

| s 1

Contrastive o o o E— : @

o o o ]
1

1

|

}

)

)

I

I

I

learning

Siamese
encoder

:Foreground-related features
Query images Query features /

2%
P «* ‘Background-related features

Wang et al. Few-shot Medical Image Segmentation Regularized with Self-reference and Contrastive Learning. MICCAI'22 4



Few-shot Segmentation

Limitations

B \
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Support

Few-shot Segmentation

Chunk trick

Query
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Support

Few-shot Segmentation

Chunk trick

Query
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Few-shot Segmentation

Chunk trick

The volume is pre-split into n
chunks (n going from 3 to 12)

b
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Few-shot Segmen

tation

(both classification and segmentation)

Limitations

Most meta-learning to learn

X

Convoluted meta-learning approaches

Models trained under the learning-to-learn paradigm
cannot be re-used with different models

They are tailored to the same-task paradigm (e.g.,

Vinyal et al, (Neurips ‘16),
Snell et al, (Neurips ‘17),
Sung etal, (CVPR “18),
Finnetal, (ICML*17),
Ravi et al, (ICLR"17),

Lee etal, (CVPR"19),

Hu et al, (ICLR ‘20),

Ye et al, (CVPR ‘20),
Ouyang et al, (TMI'22),...

models trained under 1-

shot do not perform well when 5-shots are available)

Significant performance degradation under domai

n shift
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Few-shot learning

A few steps backwards

Inductive fine-tuning baseline

[Chen et al., ICLR’19]; [Tian et al., ECCV’20]; [Veilleux et al., NeurlPS'21];
[Dhillon et al., ICLR’20]; [Ziko et al., ICML’20]; [Boudiaf et al., NeurlPS’20];
[Boudiaf et al., CVPR’21]; [Hajimiri et al., CVPR’23] \

Entropy Manifold Mutual-information
regularization regularization regularization
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Few-shot learning

A few steps backwards

No need to
meta-train

51



Few-shot learning

A few steps backwards

e WW '
o 878 I i
P Conventional
training
Nearest prototype

[SimpleShot, Wang et al., Arxiv'19]

Cross-Entropy fine-tuning
[Closer look at FSC, Chen et al., ICLR’19]

AL,




Few-shot learning

Surprising results

Same domain

mini-ImageNet fiered-ImageNet CUB
Method Transd.  Backbone I-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML [9] ResNet-18 49.6 65.7 - - 68.4 83.5
RelatNet [40] ResNet-18 52.5 69.8 - - 68.6 84.0
MatchNet [45] ResNet-18 52.9 68.9 - - 73.5 84.5
ProtoNet [38] ResNet-18 54.2 73.4 - - 73.0 86.6
MTL [39] X ResNet-12 61.2 75.5 - - - -
vFSL [50] ResNet-12 61.2 77.7 - - - -
Neg-cosine [26] ResNet-18 62.3 80.9 - - 72.7 89.4
MetaOpt [22] ResNet-12 62.6 78.6 66.0 81.6 - -
SimpleShot [46] ResNet-18 62.9 80.0 68.9 84.6 68.9 84.0
Distill [41] ResNet-12 64.8 82.1 71.5 86.0 - -
RelatNet + T [14] ResNet-12 52.4 65.4 - - - -
ProtoNet + T [14] ResNet-12 55.2 71.1 - - - -
MatchNet+T [14] ResNet-12 56.3 69.8 - - - -
TPN [28] ResNet-12 59.5 75.7 - - - -
TEAM [34] v ResNet-18 60.1 75.9 - - - -
Ent-min [7] ResNet-12 62.4 74.5 68.4 83.4 - -
CAN+T [14] ResNet-12 67.2 80.6 73.2 84.9 - -
LaplacianShot [51] ResNet-18 72.1 82.3 79.0 86.4 81.0 88.7
TIM-ADM ResNet-18 73.6 85.0 80.0 88.5 81.9 90.7
TIM-GD ResNet-18 73.9 85.0 79.9 88.5 82.2 90.8
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Few-shot learning

Surprising results

Domain shift

mini-ImageNet — CUB

Methods Backbone 5-shot
MatchNet [45] ResNet-18 53.1
MAML [9] ResNet-18 51.3
ProtoNet [38] ResNet-18 62.0
RelatNet [40] ResNet-18 57.7
SimpleShot [46] ResNet-18 64.0
GNN [42] ResNet-10 66.9
Neg-Cosine [26] ResNet-18 67.0
Baseline [5] ResNet-18 65.6
LaplacianShot [S1] ResNet-18 66.3
TIM-ADM ResNet-18 70.3
TIM-GD ResNet-18 71.0




Few-shot learning

Example of a non meta- Segmentation task
learning approach

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE)

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021
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Few-shot learning

Example of a non meta- Segmentation task
learning approach

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE)

min |£|Zlyp — |Q|Z log(sy, —I—)\KL( 2 log (

peL JEQ

| |cbw£)

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021
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Few-shot learning

Example of a non meta-
learning approach

Segmentation task

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE)

CE on supervised
images (i.e., support)

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021
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Few-shot learning

Example of a non meta- Segmentation task
learning approach

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE)

CE on supervised Entropy on unsupervised
images (i.e., support)  images (i.e., queries)

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021
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Few-shot learning

Example of a non meta- Segmentation task
learning approach

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE)

CE on supervised Entropy on unsupervised
images (i.e., support)  images (i.e., queries)

[ ] This bad solution also has

Problem if only the entropy is oo o o° 2 minimum entropy!!
minimized! Pr(ci|d,) =

yd AN
/ \‘

\

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 20.2.1
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Few-shot learning

Example of a non meta- Segmentation task
learning approach

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE)

CE on supervised Entropy on unsupervised
images (i.e., support)  images (i.e., queries)

A priori proportion — 7 € [0, 1]

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021
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Few-shot learning

Example of a non meta- Segmentation task
learning approach

Cross-entropy  + Entropy + KL(marginal| | P)

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021 §
1



Few-shot learning

Limitations of few-shot Class-ambiguity (in the context of
segmentation generalization)

Standard FSS training assumes what is not the target class is background.

leer #1 Liver #2 Liver #3

Novel Class 1 Novel Class 2 3

Pancreas #1

Spleen #1

. I\ s
/

Support Set




Few-shot learning

Limitations of few-shot
segmentation

They cannot keep the performance on base
classes (generalized segmentation)

Standard FSS setting:

v

Evaluation

Base Class Learning

(b) FS-Seg

Input: Query image, support
images/labels.

Output: Predictions on the novel
classes exactly provided by the
support labels.

Novel categories
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Few-shot learning

Limitations of few-shot
segmentation

Standard FSS setting:

They cannot keep the performance on base
classes (generalized segmentation)

v

Base Class Learning

(b) FS-Seg

Evaluation

Input: Query image, support
images/labels.

Output: Predictions on the novel

classes exactly provided by the
support labels.

Generalized FSS setting:

Evaluation

Base Class Learning

Novel Class Registration

A 4

v

Novel categories

Support
supervision
(novel
categories)

Novel + base
categories

(a) GFS-Seg

Input: Few support images/labels
containing the novel classes.
Output: The novel classes registered
classifier.

Input: Query image.

Output: Predictions on all possible
base and novel classes without any
prior knowledge.

64



Efficient adaptation

Foundation models Preliminaries
(CLIP)

For a given batch

Pepper the »
| svesis oo ||| g | —>Z¢
3 images

Corresponding texts

Image

Encoder Z 1




Efficient adaptation

Foundation models

For a given batch

Preliminaries
(CLIP)

We generate image-text paris with all the
images-texts

3 images

Corresponding texts
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Efficient adaptation

Foundation models

For a given batch

3 images

Corresponding texts

Preliminaries
(CLIP)

We generate image-text paris with all the
images-texts

Maximize the cosine distance (Zz‘, tz)

67



Efficient adaptation

Foundation models

For a given batch

3 images

Corresponding texts

Preliminaries
(CLIP)

We generate image-text paris with all the
images-texts

Minimize the cosine distance (Zz‘, tz)
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Efficient adaptation

Foundation models Preliminaries

(CLIP)

We generate image-text paris with all the
images-texts

Text ‘

Pepp th
SSSSSS pup Encoder l l l l
| T, T; T; - Ty
» L LTy | LTy | LTy ) [Ty
L > I LT | LT | 1T | . | Ty
Em%%eer [N IyTy | 13Ty | IyTy | .. | I3Ty

L3 Iy Ty | IyTa | IgTs In'Try



Efficient adaptation

Foundation models

B r th
eppe e Text ‘

aussie pup

e

Preliminaries
(CLIP)

Ty T, | T3 Ty
—> I LTy | 51Ty | Ty ['Ty
> I LTy | 1Ty | IpTs Ty

Image
—>» I I3T) | 13Ty | I3 T: 15T
Ercodar 3 3Ty | 13Ty | 13Ty 3TN
In‘Tw

—» Iy INTy | InT2 | In'T3

Inference (novel classes)

(2) Create dataset classifier from label text

Text ‘

A photo of |
a {object Encoder ‘
(3) Use for zero-shot prediction v v v v
T Ty Ta Ty Ty
I Elrr;noz%:r —» I I'Ty 1Ty | IpTa I} Ty

A

A photo of
a dog.
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Efficient adaptation

Foundation models Models that are trained on a large set of
labeled datasets

\:““';\ ACT of a text
e N, — S dor |
§mff\§ a[CLS]. encoder

Bl 100 3D-IRCADbD (13,0) e

Total=6162 1 1024 TotalSegmentator (104;0) classes prompt temp

CLIP embedding
@@ 5038 JHH (21;0) 1

— text-based controller

[=)]
: |
for testing 2
2 _% CE
Il 82 Pancreas-CT (1;0) § 8 1
28 201 LiTS (1:1) 8 E)
B B 300 KiTS (1;1) 5 i '
: @D 1000 AbdomenCT-1K (4:0) = vision |_| || _toxtdriven Segmentor E.
) B 140 CT-ORG (40) 3 encoder =3
BERi Total=3410 3 40 CHAOS (4,0) S
B 947 MSD (7:4) 3
i Il 50 BTCV (13;0) =
4 500 AMOS (15;0) ®
g | i 3 150 WORD (16,0)
for training public datasets

partial labels

72
Liu et al., CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection, Arxiv'23



Efficient adaptation

Foundation models Models that are trained on a large set of
labeled datasets

\:““';\ ACT of a text
e N, — S dor |
§mff\§ a[CLS]. encoder

Bl 100 3D-IRCADbD (13,0) e

Total=6162 1 1024 TotalSegmentator (104;0) classes prompt temp

CLIP embedding
@@ 5038 JHH (21;0) 1

— text-based controller

=]
: |
for testing 8 o
_E’ _% Param. & W
Bl 82 Pancreas-CT (1,0) § 2 1
B2 201 LiTS (1:1) S >
LR B 300 KiTS (1;1) o i '
: @D 1000 AbdomenCT-1K (4:0) = vision |_| || _toxtdriven Segmentor E.
) B 140 CT-ORG (40) 3 encoder =3
BERi Total=3410 3 40 CHAOS (4,0) S
Eadi 947 MSD (7:4) 3
i Il 50 BTCV (13;0) =
4 500 AMOS (15;0) 17
<= | B 1 150 WORD (16,0)
for training public datasets

partial labels

Only that is adapted

73
Liu et al., CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection, Arxiv'23



Efficient adaptation

Foundation models

Models that are trained on a large set of
labeled datasets

»

Total=6162 [ 1024 TotalSegmentator (104;0) classes prompt temp CLIP embedding
/1 _5Nna8 HH 21-0%

e — | ACT foxt | g I““ney NRNURIRS

\%—.—_—;:_-_,_:5_%{_{* a [CLS]. encoder Q B \\\}\j

Bl 100 3D-IRCADbD (13,0) - I~
]

htroller

for testing

Still requires a substantial amount
(.~ < of labeled samples for adaptation

mentor

= | P I 150 WORD (16;0) |
for training

public datasets

partial labels

Only that is adapted

Liu et al., CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection, Arxiv'23



Efficient adaptation

Foundation models

) Large-Scale
"-.. Foundation Model

Trained on a large set of labeled datasets

Silva-Rodriguez et al., Transductive few-shot adapters for medical image segmentation, Arxiv'23
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Efficient adaptation

Foundation models

i Large-Scale
Foundation Model

Adaptation is done only using k shots

gl =

S — LZZ}L S = Z};;rury

Silva-Rodriguez et al., Transductive few-shot adapters for medical image segmentation, Arxiv'23

\
|
|
|
|
|
|
|
|
|
|
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Take home message

Few shot learning can alleviate the problem of scarce labeled
data.

Recent literature has taken a step-back (regarding the meta-
learning or learning to learn paradigm)

If you have prior knowledge, use it.

Foundation models with efficient adaptation could be a realistic
alternative.

7



Calibration



Motivation

Which model would you

choose?

Accuracy: 99%

X ¥ o2

\ \ R oA v b
PN
\ AV
VISIRN p
..._.

DNN

Accuracy: 92%

g A

/ ¥ /
/
NSO AU P | P Y,
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Y LY RS, NNEANTAR
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X 4 Y / Y/

\ \ EAKAAL A S/
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\ AV x
ISR "
4%
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Motivation

Which model would you
choose?

X 4 X
A D D @ dy G @
Ve <\ \

/ P AP R Y
(. y W\

YL T !

N VLN
YL XY

B D @ dy G @
e <\ \

14 PP
Vs X /AN AX

Accuracy: 99%

Prediction:
“‘Tumour at 100%’

Accuracy: 92%

Prediction:
‘l do not know’
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Problem

Standard loss functions

Cross-entropy

The way we provide the labels (one-hot) encourages the network to have

low-entropy predictions

YT

N |k
/ XX 'v‘,:“,,'/_‘." Y \
XA A X Y \
KON KRS X
X ! \ \
,‘,’-‘, ( k 4 0 '
a7 Ay

oo

SoftMax probabilities




Problem

Standard loss functions

Cross-entropy

The way we provide the labels (one-hot) encourages the network to have
low-entropy predictions

Target objective when training a
neural network with CE

-
o

SoftMax probabilities
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Standard loss functions

Problem

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target

classes in a multi-class scenario.

SoftMax probabilities

Target class

83



Standard loss functions

Problem

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target
classes in a multi-class scenario.

SoftMax probabilities

n K
Target class 1
L ) = —— klog((F
opl) = — 303 y¥ log(i

1=1 k=1
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Problem

Standard loss functions

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target
classes in a multi-class scenario.

n K
Target class 1
L ) = —— klog((F
opl) = — 303 y¥ log(i

1=1 k=1

4

Lop(y,5) === (v log g +yi log i} +y7 log g + v} log )

=1

n

Assume
y=[0,1,0,0]

SoftMax probabilities
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Problem

Standard loss functions

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target
classes in a multi-class scenario.

n K
Target class 1
L ) = —— k¥ log(gF
o) = —~ 33 ot log(

1=1 k=1

¥

Lop(y,5) === (v log g +yi log i} +y7 log g + v} log )

=1
Assume :

y=[0,1,0,0] Lor(y, ) = —(y; logy;)

n

SoftMax probabilities
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Standard loss functions

Problem

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target
classes in a multi-class scenario.

SoftMax probabilities

y N
(7))
Q
B
®
o)
ScostV----mmm--
o
X
(0]
=
=
(@]
(7))
(v3) <
L & & 8
Qo X Q9 &
L Q

Which is the value of the
CE in these two examples?

87



Problem

Standard loss functions

Cross-entropy

The supervision provided by cross-entropy is suboptimal for non-target
classes in a multi-class scenario.

SoftMax probabilities

0.5

SoftMax probabilities

Exactly the same!!

38



Existing methods

Post-processing

We change the distribution of the softmax vector

?::

exp(0;/T)

Temperature Scaling
(Platts extension)

> i1 exp(6;/T)

89



Existing methods

Post-processing

SoftMax probabilities

We change the distribution of the softmax vector

i:

exp(0;/T)

> i1 exp(6;/T)

T>1
Softens distributions

Temperature Scaling
(Platts extension)

T=1
(softmax standard)

T<1

Shrinks distributions
A
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Post-processing

KiTS Dice (uncalibrated) on 42 test cases

0.75 4

observed frequency
o
o

0.25

0.75 4

observed frequency
=
&

0251 -

NLL = 0.021
ECE =0.002

0.25 05 0.75
confidence

KiTS Dice (ECE-calibrated) on 42 test cases

NLL = 0.012
ECE = 0.001
t=5.034

025 05 0.75
confidence

Existing methods

KiTS CCE (uncalibrated) on 42 test cases

NLL = 0.015
ECE = 0.002
0751
B
i
g
£ ]
- 05
T
}
=
025
0 ! . .
0 025 05 0.75
confidence
N KiTS CCE (ECE-calibrated) on 42 test cases
NLL =0.012
ECE =0.001
t=1475
0.75 4
-
]
1
&
e 054
T
i
=
0.25
1] T T T
025 05 0.75

confidence

Temperature Scaling
(Platts extension)

KiTS Dice+CCE (uncalibrated) on 42 test cases

NLL =0.018
ECE = 0.002
0.75 1
B
g
£
5 05
E
2
El
0.25
0+ T T T
0.25 0.5 0.75

observed frequency

confidence

KiTS Dice+CCE (ECE-calibrated) on 42 test cases

0.75 4

o
o

0.25

NLL =0.011
ECE = 0.000
t=2.293

0.25 05 0.75
confidence

Uncalibrated

Calibrated

Kock et al. Confidence Histograms for Model Reliability Analysis and Temperature Calibration, MIDL’22

91



Existing methods

Post-processin
P J Temperature Scaling

(Platts extension)

We need an additional validation set to optimize T

Under distributional drift, Temperature scaling is suboptimal (Ovadia et al. NeurlPS’19)

T value very sensitive to the dataset and network employed

Ovadia et al. Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. NeurlPS’19 92



Existing methods

Post-processing

10—1_

10—2-

103 4

104

Liver Dice (5 cases)

———

2 4 6
temperature

10

10—1-

10—2-

103 4

104

Temperature Scaling
(Platts extension)

Liver Dice (240 cases)

: —— NLL
: ——— ECE

——— Brier

temperature

Optimal T value also varies with the number of training samples!

Kock et al. Confidence Histograms for Model Reliability Analysis and Temperature Calibration, MIDL’22 93



Existing methods

In the training (end-to-end) — :
Penalize high-entropies

High confident predictions (low-entropy) NOT DESIRED!

SoftMax probabilities

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017
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Existing methods

In the training (end-to-end) — :
Penalize high-entropies

High confident predictions (low-entropy) NOT DESIRED!

For each example in the training set:

I(y",sp) — BH(s)

7 N

Classification loss Entropy
(e.g., cross-entropy)

SoftMax probabilities

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017
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Existing methods

In the training (end-to-end) — :
Penalize high-entropies

High confident predictions (low-entropy) NOT DESIRED!

I(y" sp) — BH(sp)

10 [

SoftMax probabilities

Q@ o
L & 9 8
Q F &

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017
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Existing methods

In the training (end-to-end)

Penalize high-entropies

High confident predictions (low-entropy) NOT DESIRED!

I(y" sp) — BH(sp)

10 [

1/K

SoftMax probabilities

Q@ o
L & 9 8
Q F &

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017
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Existing methods

In the training (end-to-end)

Penalize high-entropies

High confident predictions (low-entropy) NOT DESIRED!

I(y" sp) — BH(sp)

\

- The difference
depends on 3

Pereyra et al., Regularizing Neural Networks by penalizing confident output distributions. ICLR 2017
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Existing methods
In the training (end-to-end)

Label Smoothing

v = y(l—a) +
\ One-hot encoding

™[0




Existing methods

In the training (end-to-end)

v =yl — o)+ &

Label Smoothing

(neannn

A D D @ dy S @y
Y7 <7\ \

A \
/) Y X YN X \
x

\ ’ y 1 P
W\ R AR/ A
VN EREARS XA OO '
\ X DRSS 4D P e o @ y
&b D - « @ B &
/\ XA S N AN
V | A 5% Rt X}
[ INAISO TN K TR TSI XA
/ A X 70 1420 TS TR WY
} .
/ ¥ /
\ $ . 4 /
\ ! (| / \ /

DNN

)
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Existing methods
In the training (end-to-end)

Label Smoothing

K

H(y',s) == wi®log(sk) = = > ((1—a)yr+ %) log (s%)

k

Madller et al.,, When does label smoothing help. NeurlPS’19 101



Existing methods
In the training (end-to-end)

Label Smoothing

K

Zy log (sx) = — > _((1 — a)yx + %) log (s)

" O

K

— Z((l — a)yx) log (si) — Z % log (sg)

k

Madller et al.,, When does label smoothing help. NeurlPS’19



Existing methods
In the training (end-to-end)

Label Smoothing

K

Zy log (sx) = = (1 = @)y + ) log (si)

k
K Ko
— Z((l — a)yr) log (sk) — % log (sk)
- Q S|
_ Zyk log (sk) — i—a) Z % log (sg)

Madller et al.,, When does label smoothing help. NeurlPS’19
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Existing methods
In the training (end-to-end)

Label Smoothing

K

H(y',s) == wi®log(sk) = = > ((1—a)yr+ %) log (s%)

k

=3 (1 — a)ye) log (si) Z% g (sk)

K
/ > yrlog (s) — ¥ fa) > % log (sr)
1

- (87
emeenyands — H(Y,8) + ——H(3,8)

Miller et al.,, When does label smoothing help. NeurlPS’19 104



Existing methods
In the training (end-to-end)

Label Smoothing

K

H(y',s) == wi®log(sk) = = > ((1—a)yr+ %) log (s%)

k

=3 (1 — a)ye) log (si) Z% g (sk)

K
_ Zyk log (si) — 1 fa) Z % log (sg)
1

87
Cross-entropy
between 1/K and s %(Y7S) T 1 — Q%(E’S)

Madller et al.,, When does label smoothing help. NeurlPS’19 105



Existing methods
In the training (end-to-end)

Label Smoothing

K

H(y',s) == wi®log(sk) = = > ((1—a)yr+ %) log (s%)

k
= 22— chye)log () =3 7 log (s

This measures the similarity of s wrt to the — Z yi. log (Sk) —
uniform distribution 1/K

(1fa)z%log(8’“]
Q 1

%(E’S)

Cross-entropy
between 1/K and s %(Y7 S) T

1 — o

Madller et al.,, When does label smoothing help. NeurlPS’19 106



Existing methods
In the training (end-to-end)

Label Smoothing

Q 1
H(y,s) + H S
We can replace the second
Q term with an entropy
maximization objective
H(y:s) — H(s)

Maximizes the
entropy of s

Madller et al.,, When does label smoothing help. NeurlPS’19 107



Existing methods
In the training (end-to-end)

Focal Loss

CE(p.y) — log(p) ify=1
Y= - log(1 —p) otherwise.

Lin et al., Focal loss for dense object detection. ICCV’17

108



Existing methods
In the training (end-to-end)

Focal Loss
CE(p.y) — log(p) ify=1
Y= - log(1 —p) otherwise.
D= p ity =1 We introduce p_t
1 —p otherwise,

Lin et al., Focal loss for dense object detection. ICCV’'17 109



Existing methods
In the training (end-to-end)

Focal Loss
CE(p.y) = 4 log(p) ify=1
Y= - log(1 —p) otherwise.
P = p ity =1 We introduce p_t
1 —p otherwise,

We rewrite CE as

CE(p,y) = CE(p:) = — log(p\)

Lin et al., Focal loss for dense object detection. ICCV’17 110



Existing methods
In the training (end-to-end)

Focal Loss
e = { e
P = {p ity = 1 We introduce p_t
1 —p otherwise,
We rewrite CE as We add an additional term
CE(p,y) = CE(p) = — log(pr) FL(pt) — _(1 — Pt)fy log(pt)

Lin et al., Focal loss for dense object detection. ICCV’17
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Existing methods
In the training (end-to-end)

Focal Loss
5
CE(p:) = — log(pt) — = g -
— 0.
4 FL(p:) = —(1 — p:)" log(p) v =1
— = 2
3 =9
W
(Vp]
©
2 -
well-classified
examples
1 L
A .
0 e ——— e —
0 0.2 0.4 0.6 0.8 1

probability of ground truth class

Lin et al., Focal loss for dense object detection. ICCV’'17 12



Existing methods

In the training (end-to-end)

Focal Loss

Lrr > Drr(ylls) — YH(s)

Mukhoti et al., Calibrating deep neural networks using focal loss. NeurlPS’20
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Existing methods

In the training (end-to-end)

Focal Loss

Lrr > Drr(ylls) — yH(s)

Minimize the differences
between network predictions
and ground truth (like CE)

—k
o

SoftMax probabilities

g8 ¢

Q

Mukhoti et al., Calibrating deep neural networks using focal loss. NeurlPS’20
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Existing methods

In the training (end-to-end)

Lrr, > Drr(ylls) —yH(s)

Minimize the differences
between network predictions
and ground truth (like CE)

-*

—k
o

SoftMax probabilities

g8 ¢

Q

Mukhoti et al., Calibrating deep neural networks using focal loss.

Focal Loss

Maximize the entropy (i.e.,
pushing uniform distributions)

&
Q

Ho’be
0

NeurlPS’20
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Existing methods

In the training (end-to-end) :
Margin-based LS

d(1) = (max(l;) — Ix)i<k<x € R®

d(l) = [2,5.5,0,3.7

Logit values

Y S—

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 116



Existing methods

In the training (end-to-end) :
Margin-based LS

Maximizing the entropy can be seen as a
constraint that forces the distance vector

d(l) to be zero. H(y7 S) — ?‘[(S)

Pereyra, ICLR’17

d(l) — [07 0’ 0’ 0] =0 Miiller, NeurlPS’19

Mukhoti, NeurIPS’20

H(y,s) s.t. d(1)=0

Logit values

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 17



Existing methods

In the training (end-to-end) :
Margin-based LS

Maximizing the entropy can be seen as a
constraint that forces the distance vector

d(l) to be zero. H(y7 S) — 7‘[(8)

d(l) — [0, 0, 0, 0] — O Pereyra, ICLR’17
Miiller, NeurIPS’19

A
Mukhoti, NeurIPS’20

Penalty

H(y,s) s.t. d(1)=0

Logit values

Logit distance

Derivative

Logit distance

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 18



Existing methods

In the training (end-to-end) :
Margin-based LS

H(y,s) s.t. d(l) <m

Let’s allow a margin

Logit values

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 119



Existing methods
In the training (end-to-end)

Margin-based LS

H(y,s) s.t. d(I) <m

2 'z
© I '®
A S 1§
o o
1
- . 1
Let’s allow a margin i
" !
Q I
> I
('U I
> I
= Logit distance | Margin Logit distance
o @ |1 ©
— £ k-
: i
] | ®
(m] =]
I
1
1
1
1
1
I
I
— l
Logit distance | Margin Logit distance

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 120



Existing methods

In the training (end-to-end) :
Margin-based LS

H(y,s) s.t. d(l) <m

min ECE + A Z maX(O, ma,x(lj) — lk — m)
. J
(5 | .

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22

Logit values

mJE_],le—lkSm |:>
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Existing methods

In the training (end-to-end) :
Margin-based LS

H(y,s) s.t. d(l) <m

This will violate the constraint,
and there will be a penalty

min ECE + A Z maX(O, ma,x(lj) — lk — m)
. J

A

Logit values

|

max!l; —lx >m
j

Liu et al., The devil is in the margin: Margin-based label smoothing for network calibration. CVPR’22 122



Existing methods
In the training (end-to-end)

Margin-based LS

CE + DICE

Expected
— Actual

Expected
— Actual

Expected
— Actual

Expected
— Actual

Accuracy

ECE=0.141 ECE=0.13 ECE=0.032 ECE=0.052 ECE=0.039

Confidence Confidence Confidence Confidence Confidence Corfidence Confidence

Murugesan et al., Calibrating Segmentation Networks with Margin-based Label Smoothing. MedIA’23 125



Existing methods

In the training (end-to-end)

20-

15-

10-

Logits
o

-10-

-15-

-20-

20-

15-

10-

Logits
<)

-10

-=15

-20

CE
Predictions
s RV
s MYO
W
RV MYO v
Target labels

Predictions

B Liver

m Kidney

W Spleen
B Pancreas

Liver Kidney Spleen Pancreas
Target labels

Logits

Logits

20-

15-

10-

-10-

-15-

-20-

20-

15-

10-

-15-

-20-

Margin-based LS

Ours

Predictions
RV
s MYO
Y

- e [

RV MYO v
Target labels

Predictions
s Liver
m Kidney
W Spleen
s Pancreas

| N e

.—10_

Li\ller Kidlney Spléen Panéreas
Target labels

Murugesan et al., Calibrating Segmentation Networks with Margin-based Label Smoothing. MedIA’23
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Existing methods

In the training (end-to-end)

Pairwise contraints

Pyix(y|x) Pyx(ylx)

Softmax

Regression

Feature ’ Feature
Extractor Extractor
x e X XEX

Cheng et al., Calibrating Deep Neural Networks by Pairwise Constraints. CVPR’22
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Existing methods

In the training (end-to-end) — :
Pairwise contraints

Posterior probability

/

Uy

/Bij —

5 —+ 7Tj

For the pairs containing the target class:

Li71(x,y;0) = —1y=ilog Bij(x) — L= log Bji ().

Cheng et al., Calibrating Deep Neural Networks by Pairwise Constraints. CVPR’22
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Existing methods
In the training (end-to-end)

Pairwise contraints

Posterior probability

/

Uy

/Bij —

5 —+ 7Tj

For the pairs containing the target class:

Li71(x,y;0) = —1y=ilog Bij(x) — L= log Bji ().

For the pairs that DO NOT contain the target class:

Bi (x) = Bj(x) = 1/2.

Is this familiar to you??

Cheng et al., Calibrating Deep Neural Networks by Pairwise Constraints. CVPR’22 129



Designed for the
segmentation task

Ground truth

Prediction by w2-cce*

Prediction by w2-gdl

Dice: 0.763

130



Existing methods

Post-processing Local TS

A0, | |

= 'g " s

v"‘w

T value (Temperature Scaling) is not the
same for all the pixels

Ding et al., Local Temperature Scaling for Probability Calibration. ICCV’21

25

20

15

10

05
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Existing methods

Post-processing Local TS

T — arg min ( Z Z log (O'SM zZ )/T)(Si(m)))>

1=1 € N
sit. T >0, In standard Temperature

Scaling, T value is the same

Ding et al., Local Temperature Scaling for Probability Calibration. ICCV’21 132



Existing methods

Post-processing Local TS

T* — arg min ( Z Z log (O'SM zZ )/T)(Si(w)))>

i=1 € N
sit. T >0, In standard Temperature

Scaling, T value is the same

92 mla me

T Z/T osm(z/T) 0

Ding et al., Local Temperature Scaling for Probability Calibration. ICCV’21 133



In the training (end-to-end)

Key idea
Pereyra et al.
ALL Samples
0.7 -
0.6 -
0.5-
0.4-
0.3-
0.2 -
0.1-
—— Entropy
0.0- —— Min-Entropy
0.‘0 0‘.2 Oj4 0j6
o}

Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical

image segmentation, Arxiv’'21

Existing methods

MEEP

Extension of Pereyra et al., ICLR’17 but in a smarter manner

0.8

1.0

0.7 -

0.6 -

0.5-

0.4-

0.3-

0.2-

0.1-

0.0-

0.0

0.2

MEEP
Only wrong predictions

Good predictions \

—— Entropy
—— Min-Entropy

0.4

0.6

0.8

Instead of maximizing the entropy over all the samples (i.e., pixels), do
it only for those pixels that produce erroneous predictions

1.0

136



Existing methods

In the training (end-to-end)

MEEP

Formal definition Instead of maximizing the entropy over all the samples (i.e., pixels), do
it only for those pixels that produce erroneous predictions

Global objective L = ﬁSeg (y, S) — Ao (Sw)
Standard segmentation loss Regularization term over
over ALL the pixels wrong predictions

Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical

image segmentation, Arxiv’'21
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Existing methods

In the training (end-to-end) MEEP

Formal definition Instead of maximizing the entropy over all the samples (i.e., pixels), do
it only for those pixels that produce erroneous predictions

Global objective L = ESeg (y, S) — )\ﬁme (Sw)
1
H(sw) = —— Z Si,k l0g Si k
|Sw| k,iGSw

Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical
image segmentation, Arxiv’'21



Existing methods

In the training (end-to-end) MEEP

Formal definition Instead of maximizing the entropy over all the samples (i.e., pixels), do
it only for those pixels that produce erroneous predictions

Global objective L = ESeg (y, S) — )\ﬁme (Sw)
1
H(sw) = —— Z Si,k l0g Si k
Sl k,i€sy
K
Drr(ul[sw) = H(u,sy)

Larrazabal et al., Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical
image segmentation, Arxiv’'21
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Existing methods
In the training (end-to-end)

Label

0.16

1.00

0.16

0.00|0.00 {0.00{0.00 | [1.00{1.00/0.00[0.00| [0.00|0.00 [1.00]1.00
" 10.00{0:00 | 0.00 [1.00| [1.00[1.00[1.00]0.00] |0.00{0.00]0.00|0.00
1.00 1.00{1.00 [ 1.00| |0.00 [0.00|0.00|0.00 | |0.00 [0.00|0.00 |0.00
1.00{1.00 | 1.00 | 1.00| |0.00{0.00|0.00 [0.00| [0.00{0.00 0.00|0.00
. w2d_svls L w2dsvis . wdsvis

y
0.00{0.00{0.05|0.13| |1.00|0.880.25[0.05 | [0.00|0.13 |0.71 |0.83
0.17|0.17 {0.250.75 | |0.830.78 [0.63|0.08 | [0.00|0.05[0.13|0.17
0.830.83|0.8810.96| (0.17/0.17]10.1310.05| |0.00(0.00 | 0.00|0.00
1.00 {1.00 {1.00 | 1.00'| (0.00 [0.00 |0.00|0.00| [0.00|0.00|0.00|0.00

One-hot

SVLS

Spatially Varying Label Smoothing
(SVLS)

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21
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Existing methods

In the training (end-to-end)

Spatially Varying Label Smoothing

(SVLS)

------------------------------

WZd_svls

Label SVLS LS(0.1) OH

Example 1

WZd_svls

Example 2

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21
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EXistin
In the training (end-to-end)

g methods

Spatially Varying Label Smoothing

(SVLS)

------------------------------

WZd_svls

Label SVLS LS(0.1) OH

Example 1

WZd_svls

Example 2

Smoothed SVLS labels

Islam and Glocker, Spatially Varying Label Smoothing:

~k
Y Y; w
P |Z w| ; z

Kernel to smooth
labels

Capturing Uncertainty from Expert Annotations. IPMI’21
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Existing methods
In the training (end-to-end)

Spatially Varying Label Smoothing

(SVLS)
o wass o wass !
E Label SVLS LS(0.1) OH 1 Label SVLS LS(0.1) OH !
Example 1 Example 2
Uy Z
Smoothed SVLS labels Yp = Y; Wi. One hot encoded is
| Z w| i=1 smoothed by the class
distribution in the

patch

Integrated in the standard CE ‘ L=— E gjg log S';‘;’
k:

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21 143



Existing methods
In the training (end-to-end)

Spatially Varying Label Smoothing
(SVLS)

Islam and Glocker, Spatially Varying Label Smoothing: Capturing Uncertainty from Expert Annotations. IPMI’21 144



Existing methods

In the training (end-to-end) Limitations of SVLS

SVLS in the L
standard CE ‘ L= Z |Z wi| = Zyz w;) log Sp’

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23 145



Existing methods

In the training (end-to-end) Limitations of SVLS

SVLS in the L
standard CE ‘ L= Z |Z " | Zy"« Wi log Sp’
VA

L=- Zyp gp

d
1
I—d__| Z(Z yf’w@) log 8§,
|Z | ko i=1

| D wi

1F£p

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23
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Existing methods

In the training (end-to-end) Limitations of SVLS

SVLS in the L
standard CE ‘ L= Z |Z " | Zy"« Wi log Sp’
VA

d
1
L—— E " log s > () yFw;)log sk,

|z plog s, - || S !

Standard CE (wrt the GT)

1F£p

GT Predictions

.
o

SoftMax probabilities

z & &
&S ¢

Q

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23
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Existing methods

In the training (end-to-end) Limitations of SVLS

SVLS in the L
standard CE ‘ L= Z |Z " | Zy"« W; log Sp’
1

L=— IZ Zyp og sk — IZ Zzyw log s¥,

#p
Standard CE
(wrt the class-distribution value)
GT Predictions

—%
o

SoftMax probabilities

z & &
&S ¢

Q

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23
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Existing methods

In the training (end-to-end) Limitations of SVLS

SVLS in the L
standard CE ‘ L= Z |Z wzl Zy"« Wi log Sp’

L=~ Zyp gp

d
1
——— > O _yFw;)logsk,
|Z | kE i=1

| D wi

iFP
E yplogs E Tk logs
C"rE Constrglrnt onT

Distribution of each T = Zgl:l ysz
class within the patch i#£p v

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23 149



Existing methods

In the training (end-to-end) Limitations of SVLS

SVLS in the L
standard CE - L= Z |Z " | Zy"« W; log Sp’
1

L=~ Zyp gp

d
1
——— > O _yFw;)logsk,
|Z | kE i=1

| D wi

iFP
E yp log s~ Sp E 73, log s* Sp
Two main problems C"rE Constralnt on T

1 — No mechanism to control the
importance of the constraint

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23
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Existing methods

In the training (end-to-end) Limitations of SVLS

SVLS in the L
standard CE - L= Z |Z wi| = Zyz w;) log Sp’

L=~ Zyp gp

d
1
——— > O _yFw;)logsk,
|Z | kE i=1

| D wi

1F£p

= —Zyﬁlogsg—zmlogsg.

. gl
Two main problems CE Constraint on 7

2 — The a priori distribution
cannot be computed easily
1 — No mechanism to control the
importance of the constraint

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23 151



Existing methods

In the training (end-to-end) Proposed solution

Our solution ‘ l’l’lil’l »CCE S.t. T — 1
/S

A priori distribution Logit distribution

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23
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Existing methods

In the training (end-to-end) Proposed solution

Our solution ‘ l’l’lil’l »CCE S.t. T — 1
/S

A priori distribution Logit distribution

min  Lop+A Y max(0, |7 — k),
k

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23 153



In the training (end-to-end)

Existing methods

Proposed solution

FLARE | ACDC | BraTS
DSC HD ECE CECE | DSC HD ECE CECE | DSC HD ECE CECE
CE+DSC (A = 1) 0.846 554  0.058 0.034 0.828 3.14 0.137 0.084 0777 696 0.178 0.122
FL [10] (v = 3) 0.834 6.65 0.053 0.059 0.620 7.30 0.153 0.179 0.848 9.00 0.097 0.119
ECP[21](A =0.1) | 0.860 530 0.037 0.027 0.782 444  0.130 0.094 0.808 8.71 0.138 0.099
LS [22] (o = 0.1) 0.860 533  0.055 0.049 0.809 3.30  0.083 0.093 0.820 7.78  0.112 0.108
SVLS [7] (o = 2) 0.857 5.72  0.039 0.036 0.824 281 0.091 0.083 0.801 8.44  0.146 0.111
MbLS [H] (m=5) 0.836 5.75 0.046 0.041 0.827 299 0.103 0.081 0.838 794 0.127 0.095
Ours (A = 0.1) 0.868 4.88 0.033 0.031 0.854 255 0.048 0.061 0850 5.78 0.112 0.097
Empirical validation of several choices
| FLARE | ACDC | BraTS
| DSC HD ECE CECE | DSC HD ECE CECE | DSC HD ECE CECE
Constraint on s 0862 S5.14 0.043 0.030 | 0.840 266 0.068 0.071 | 0.802 828 0.145 0.104
L2-penalty 0.851 548  0.065 0.054 0.871 1.78  0.059 0.080 0.851 7.90 0.078 0.091
Patch size: 5 x 5 | 0.875 5.96 0.032 0.031 0.813 3.50 0.078 0.077 0.735 7.45 0.119 0.092

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23
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In the training (end-to-end) Proposed solution

Logits

Existing methods

12- 12-
0 Liver [0 Spleen 0 Liver 1 Spleen

10- [0 Kidney [0 Pancreas 10- I Kidney [0 Pancreas
8- n 8
L~
6- o 6-
o
|
4- 4-
2- 2- I
0- " 0-
Liver Kldney Spleen Pancreas Liver Kldney Spleen Pancreas
SVLS Proposed

Murugesan et al. Trust your neighbours: Penalty-based constraints for model calibration. Arxiv’'23 155



Take home message

Precise uncertainty estimates are very important in a broad
span of problems.

Integrating a mechanism to control overconfidence predictions
during training seems to be an efficient alternative.

Strategies specifically designed for segmentation tasks are
required.

Despite the importance of the topic, calibrating segmentation

networks, and particularly in the medical domain is
underexplored.
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