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Massive deployment of ML

Rise many questions
• Utility
• Privacy
• Security
• Fairness
• Explainability
• Energy Footprint

Challenge: 
Address globally these questions

2
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Sensitivity of Medical Data and Images

Personal Health Information

Confidentiality

Protected by Law

Vulnerability to Cyber Threats

Potential for Misuse

3
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Sensitivity of Medical Data and Images

Personal Health Information
Patient name, address, medical history, medications, etc.
Unauthorized access, use, or disclosure can harm patients

4
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Sensitivity of Medical Data and Images

Confidentiality
Disclosure can lead to discrimination, stigmatization, or social exclusion

5
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Sensitivity of Medical Data and Images

Protected by Law
HIPAA (US), GDPR (EU), and other laws and regulations
Breach can result in significant financial and legal penalties

6
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Sensitivity of Medical Data and Images

Vulnerability to Cyber Threats
Electronic storage makes medical data vulnerable to cyber-attacks

7
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Sensitivity of Medical Data and Images

Potential for Misuse
Medical data/images can be misused for fraudulent activities or identity theft
Misuse can lead to significant harm to patients and healthcare providers

8
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Threats to “anonymized” medical images
● Re-identification attacks

9

Schwarz et al. New England Journal of Medicine 381.17 (2019): 1684-1686.
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Threats to “anonymized” medical images
● Re-identification attacks
● Attribute disclosure attacks

10

Schwarz et al. New England Journal of Medicine 381.17 (2019): 1684-1686.
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Threats to “anonymized” medical images

11

Packhäuser et al. Scientific Reports 12.1 (2022): 14851.

● Data linkage attacks
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Threats to “anonymized” medical images

Several threats to the anonymity of medical images:

● Re-identification attacks

● Attribute disclosure attacks

● Data linkage attacks

Sanitize/minimize access to medical data to avoid unwanted sensitive inferences

12
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Directions to overcome the limits of anonymisation

● Limits of the anonymisation 
○ Difficult to break the individual fingerprints without drastically 

reducing the utility
○ Subject to General Data Protection Regulation

● New directions
○ Generation of synthetic data 
○ Exchange of learning models instead of data

13
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Agenda

• Centralized Learning 
• Generative Adversarial networks
• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]

• Federated Learning
• Personalization approaches
• Limitations: Security / Privacy
• Federated learning using personalized layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]

14
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Agenda

• Centralized Learning 
  > Generative Adversarial networks

• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
• Federated Learning

• Personalization approaches
• Limitations / Privacy
• Federated learning using personalized layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]

15
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Generative adversarial networks

● GANs use two neural networks that compete with each other
● GANs can create realistic-looking computer-generated photos of people’s faces
● Imitating any data distribution: GANs can imitate any data distribution, including 

images, text, and sound.

16Karras et al. arXiv preprint arXiv:1710.10196 (2017).

Realistic
yet
Fictional
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Basic structure of GANs

● Basic structure of a GAN, which consists of two neural networks
● The generator creates synthetic data from random noise
● The discriminator determines whether the data is real or fake.

17
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Training process

● Generator and discriminator networks are jointly trained in a two-player game formulation
● The respective loss functions are then used to update the generator and discriminator 

networks until they converge

18

https://www.tensorflow.org/tutorials/generative/dcgan
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Loss functions

● Generator loss encourages the generator to create data that is similar to the real data
● Discriminator loss encourages the discriminator to correctly classify the data as real or 

fake.

19

θg and θd are respectively the parameters of G and D
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Discriminator training

1. The discriminator classifies both real data and fake data from the generator.
2. Loss penalizes the discriminator for misclassifying a real as fake or a fake as real
3. Weights update through backpropagation through the discriminator network

20
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Generator training

21

1. Produce generator output from sampled random noise
2. Get discriminator "Real" or "Fake" classification for generator output
3. Calculate loss from discriminator classification
4. Backpropagate through both the discriminator and generator to obtain gradients
5. Update generator weights
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Variations of GANs

● Conditional GANs, which can generate specific types of data based 
on conditioning variables

○ Generator takes in additional input, label or conditional vector, to guide 
the generation process

○ Discriminator takes in the same additional input to judge the realism of the 
generated sample

● CycleGANs, which can learn to transform data from one domain to 
another

○ CycleGAN uses four neural networks.
○ One generator is responsible for converting images from domain A to B
○ Other generator converts images from domain B to A
○ Each generator is paired with a discriminator that tries to distinguish 

between the generated images and the real images from the target 
domain 

22
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Variations of GANs
● Conditional GANs, which can generate specific types of data based on conditioning 

variables

● CycleGANs, which can learn to transform data from one domain to another

23

Neff et al. Proc. OAGM and ARW joint Workshop. Vol. 3. 2017

Santini et al. 16th International Symposium on Medical Information Processing and Analysis. Vol. 
11583. SPIE, 2020.
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Agenda

• Centralized Learning 
• Generative Adversarial networks

  > Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
• Federated Learning

• Personalization approaches
• Limitations / Privacy
• Federated learning using personalized layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]

24
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DYSAN: Dynamically sanitizing motion sensor 
data against sensitive inferences through 
adversarial networks

Objective: Sanitize motion sensor data to avoid unwanted sensitive inferences
25
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Only one scheme is not enough

Need a dynamic and personalized protection scheme to transform the data to avoid to 
leak unwanted sensitive attribute

● Heterogeneous users (including atypical ones) 

● Varying activities (with different inference capabilities)

26
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Objective

•   
 
•  
 
•  

•  

•  

• Any model             trained to predict      from      fails

• While             trained on      maintain accuracy

• Minimized the data distortion between       and 

Any model           trained to predict      from      fails
While             trained on      maintain accuracy
Minimized the data distortion between       and 
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Objective

•   
 
•  
 
•  

•  

•  

• Any model             trained to predict      from      fails

• While             trained on      maintain accuracy

• Minimized the data distortion between       and 

Any model           trained to predict      from      fails
While             trained on      maintain accuracy
Minimized the data distortion between       and 

28

Dynamically adapt the 
transformation function 
to the current raw data
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DYSAN: Dynamic Sanitizer

Overview

Two phases: a centralized training and an decentralized online phase

29

Raw
data

Sanitized
data

Sensors  models

Mobile
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DYSAN – Training

Generative Adversarial Networks (GANs)

30
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DYSAN – Training (offline)

Build a model for each set of possible value for α, β, λ
31
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DYSAN – Online (on the mobile)

Dynamic sanitizer model selection
• Utility and privacy assessment of all models

• Require a calibration step
• Selection of the model which provides the best privacy

32
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Experimental Setup

Datasets
• MotionSense (24 participants) – used to trained sanitizer models
• MobiAct (58 participants)

Baselines
• ORF [1]: (design to avoid user re-identification) 

• Analyse most relevant features from random forest
• Normalize features correlated to gender 

• GEN [2]: Guardian-Estimator-Neutralizer
• Adversarial approach but without iterative process
• Sensitive attribute learned on raw data
• Do not consider data distortion
• Hyper parameters static for all users

33

[1] Toward privacy in IoT mobile devices for activity recognition. Jourdan, Boutet, Frindel. Mobiquitous 2018.
[2] Protecting sensory data against sensitive inferences. Malekzadeh, Clegg, Cavallaro, Haddadi. W-P2DS 2018.
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Experimental Setup

Baselines
• Olympus [3]: (design to avoid user re-identification) 

• Adversarial approach
• Sensitive attribute learned on sanitized data
• Do not consider data distortion
• Hyper parameters static for all users

• MSDA [4]: (design to avoid user re-identification)
• Adversarial approach
• Sensitive attribute learned on sanitized data
• Account data distortion
• Hyper parameters static for all users

34

[3] Olympus: Sensor privacy through utility aware obfuscation. Raval, Machanavajjhala, Pan, PETS 2019.
[4] Mobile sensor data anonymization. Malekzadeh. Clegg,Cavallaro, Haddadi. IoTDI 2019.
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Experimental Setup

Metrics
• Utility

• Accuracy of the prediction of the activity recognition [1,0]
• Number of steps detected from the signals
• Impact of the number of sanitizer models

• Privacy
• Accuracy of inferring the sensitive attribute [1,0] (accuracy of 0.5 = random guess)
• Uniqueness of the model selection

• Performance
• Overhead / computational cost
• Energy consumption

Methodology
• Transfert learning (training on Motionsense and testing on MobiAct)
• Average over 10 repetitions of each experiment
• Done on a GPU/CPU computing farm 35
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Utility and Privacy trade-off

DYSAN: Inferences from sanitized data

36

• GB (Gradient Boosting)

• MLP (Multi-Layer Perceptron)

• DT (Decision Tree)

• RF (Random Forest)

• LR (Logistic Regression)

• DySan Discriminator and Predictor
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Utility and Privacy trade-off

DYSAN: Inferences from sanitized data

• Protection is needed
• Whatever the classifier, small decrease of the activity detection while drastically 

reducing the inference of the gender
37

Motionsense MobiAct
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Utility and Privacy trade-off

Detection of the number of steps

DYSAN keeps relevant information in the signal 
(less than 5% of errors for steps detection)

[1] D.J.Berndt and J.Clifford, Using Dynamic Time Warping to Find Patterns in Time Series, AAAIWS, 359-370, 12, (1994)
38

Steps Dynamic Time Warping 
[1]

Raw data 14387 -
DYSAN 15321 (+6.49 %) 12.96
GEN 12817 (-12.25%) 14.28
Olympus 23658 (+64.44%) 156.03
MSDA 18624 (+29.45%) 23.37
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Utility and Privacy trade-off

Comparison against baselines (MobiAct)

DYSAN provides the best utility-privacy trade-off

39



40

Dynamic Sanitizer Model Selection (MobiAct)

• DYSAN does not significantly impact the activity recognition
• By dynamically selecting the best sanitizer model, DYSAN greatly improves the 

protection against gender inference

40
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Performance (overhead)

• Xiaomi Redmi Note 7
• Qualcom Snapdragon 660
• 3 GB of memory
• Pytorch 1.6

• Trade-off between the overhead and the number of considered sanitizing models

41
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Take away

Dynamic sanitizer model selection successfully adapts the protection to incoming raw 
data

• Prevent unwanted inference of sensitive information

• Preserve useful information for activity recognition and other estimator of physical 
activity monitoring

• Compliant with mobile phone capability 

42



43

Agenda

• Centralized Learning 
• Generative Adversarial networks
• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]

• Federated Learning
• Personalization approaches
• Limitations / Privacy
• Federated learning using personalized layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]

43
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Federated Learning (FL)

44

Sharing a global 
model with all 
participants

Personalization of 
model on local data

Personalization of 
model on local data

Personalization of 
model on local data

Aggregation of 
local models
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Local learning

● We consider a set of C parties (clients, users or data silos)
● Each party c holds a dataset D

c

● We denote by 𝛉 the local model parameters (e.g. the weights of a neural 
network)

45

The resulting models may not achieve good generalization as the number of 
examples that the local models are exposed to are limited
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Baseline FL algorithm (FedAVG)

● We consider a set of C parties (clients, users or data silos)
● Each party c holds a dataset D

c

● We denote by w the model parameters (e.g. the weights of a neural network)
● We want to find parameters that minimize an overall prediction loss :

46



47

Baseline FL algorithm (FedAVG)

47
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Baseline FL algorithm (FedAVG)

48

Wang, Hongyi, et al. arXiv preprint arXiv:2002.06440 (2020).
Tan et al. IEEE Transactions on Neural Networks and Learning 
Systems (2022).

● When IID data, FedAVG efficiently tends towards the centralized model 
● FedAVG does better than a collection of independent local models
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Baseline FL algorithm (FedAVG)

● When non IID data, FedAVG suffers from client drift
● To avoid this drift, use fewer local updates and/or smaller learning rates, 

which hurts convergence 

49

Non IID

Tan et al. IEEE Transactions on Neural Networks and Learning 
Systems (2022).

McMahan et al. PMLR, 2017

B: batch size 
E : local epochs
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Agenda

• Centralized Learning 
• Generative Adversarial networks
• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]

• Federated Learning
> Personalization approaches
• Limitations / Privacy
• Federated learning using personalized layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]

50
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Global model personalization

Data-based approaches: reduce the statistical heterogeneity of client data 
distributions

51Tan et al. IEEE Transactions on Neural Networks and Learning Systems (2022).
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Data augmentation

● Data augmentation requires some form of data sharing or a proxy dataset 
representative of the overall data distribution

● FAug trains a GAN model in the FL server, which generates additional data 
for each client to produce an IID dataset

52
Jeong et al. arXiv preprint arXiv:1811.11479 (2018).

Non IID

IID



53

Client selection

● Client selection help to make the data more similar across all clients
● Multi-Armed Bandit choose which clients should participate in each 

round of training
● Selects clients subset with minimal class imbalance based on the estimated 

local class distributions

53

Yang et al. 29th European Signal Processing Conference

(EUSIPCO). IEEE, 2021.
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Global model personalization

Model-based approaches : learning a strong global FL model for future personalization 

on individual clients

54Tan et al. IEEE Transactions on Neural Networks and Learning Systems (2022).
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Regularized local loss

● We denote by w the global model parameters
● We denote by 𝛉 the local model parameters
● Instead of just minimizing the local function f

c
(), each client c minimizes the 

following objective:

where l
reg
(𝛉;w) is the regularization loss, which is a function of the global model 

w and the local model 𝛉
c
 of client c

55
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Regularized local loss

● SCAFFOLD uses the difference between the update directions of the 
global (v) and local (vc) models, (v-vc), which is added as a component of the 
local loss function to correct local updates

56

Karimireddy et al. International Conference on Machine Learning. PMLR, 2020.
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Meta-learning

● Meta-learning improves learning through exposure to a variety of tasks
● Per-FedAvg is a variant of FedAvg to learn a good initial global model that 

performs well on a new heterogeneous task after it is updated with a few 
steps of gradient descent

57

where α > 0 is the step size. 
The cost function is written as the average of meta-functions F1, · · · , Fc 

Dinh et al. Advances in Neural Information Processing Systems 33 (2020).
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Transfer learning

● Lower layers of the global model 
are reused directly in the local 
models

● Other layers of the local model 
are fine-tuned with the local data 

58

Chen et al. IEEE Intelligent Systems 35.4 (2020): 83-93.
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Knowledge distillation

59

● Knowledge distillation communicates learned knowledge with class scores
● In FedMD, the central server then computes and updates the consensus, 

which is the average of the class scores
● The updated consensus is the baseline for further federated training

Li et al. arXiv preprint arXiv:1910.03581 (2019).
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Take away

60

Method Advantages Disadvantages

Data augmentation Pre-processing before FL training procedure ● Possibility of privacy leakage
● May require a representative proxy dataset

Client selection Modifies client selection strategy of FL training 
procedure 

● Increasing computational overhead
● May require a representative proxy dataset

Regularization Slight modification of FedAvg algorithm Single global model setup

Meta-learning Optimizes global model for fast client 
personalization

● Single global model setup
● Needs computing of second-order gradients 

Transfer Learning Reduces the impact of local data in the model ● Single global model setup
● May require a representative proxy dataset

Knowledge distillation High degree of architecture design for each client Difficult to determine the optimal architecture design
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Agenda

• Centralized Learning 
• Generative Adversarial networks
• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]

• Federated Learning
• Personalization approaches
> Limitations: Security / Privacy
• Federated learning using personalized layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]
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Massive deployment of ML

Rise many questions
• Utility
• Privacy
• Security
• Fairness
• Explainability
• Energy Footprint

Challenge: 
address globally these questions

62
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Limitations: security / privacy

63
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Limitations: security / privacy

64
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Limitations: security / privacy

65
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Limitations: security / privacy

Federated Learning
• Poisoning / Backdoors
• Privacy leakage
• Give more power to participants

66
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Limitations: security / privacy

Federated Learning
• Poisoning
• Privacy leakage
• Give more power to participants

Countermeasures
• Perturbation (e.g., differential privacy)

• Drastically reduces accuracy
• Crypto (e.g., secure aggregation) 

• Important overhead

67
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Data Privacy: Attribute Inference Attacks
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Data Privacy: Attribute Inference Attacks

Adversary: Use ML attack model (fadv) to infer sensitive attributes

• Exploit distinguishability in predictions for different values of sensitive 
attribute [6]

[6] Song and Shmatikov. Overlearning Reveals Sensitive Attributes. ICLR’20.
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Data Privacy: Membership inference attack

70
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Data Privacy: Membership inference attack

71
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Agenda

• Centralized Learning 
• Generative Adversarial networks
• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]

• Federated Learning
• Personalization approaches
• Limitations / Privacy
> Federated learning using private layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]

72
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Federated Learning using private layers

73

Objective: minimizing the information exchanged with the aggregation server while improving the 
personalization 
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Experimental setup

Datasets
• MotionSense: 24 participants, 4 activities, 20 minutes of data per subject
• MobiAct: 58 participants, 4 activities, 6 minutes of data per subject

Baslines
• Vanilla: the most common FL scheme using SGD training on the device and average aggregation
• FedPer: FL scheme using private personalized layers
• LDP: FL scheme with an introduction of noise following a Gaussian distribution to the local 

model

Metrics
• Utility:  activity recognition
• Privacy: Gender and BMI (Body Mass Index) attribute inference, membership inference

74
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Utility evaluation

By using personalized layers instead of aggregated information, the learning is 
drastically speeds up

75
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Privacy: attribute inference

FedPer and LDP increase the number of users with a small inference accuracy

76
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Privacy: membership inference

FedPer and LDP significantly decrease the accuracy of the membership inference 
attack compare to Vanilla method

77
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FL using private layers - Take away

• Prevent unwanted inference of sensitive information (attribute or membership)
• Preserve useful information for activity recognition and personalizing classification 

locally
• Less sensitive to poisoning
• Ongoing work

• Generalize these results with other benchmark datasets
• Impact of NN architectures
• DP on shared layers
• Quantify the benefit in terms of bandwidth consumption

78
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Agenda

• Centralized Learning 
• Generative Adversarial networks
• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]

• Federated Learning
• Personalization approaches
• Limitations / Privacy
• Federated learning using personalized layers [MLSP’ 21]
> MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]

79
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MixNN: Protection of Federated Learning Against 
Inference Attacks by Mixing Neural Network 
Layers
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MixNN: Protection of Federated Learning Against 
Inference Attacks by Mixing Neural Network 
Layers

Objective: 
● No compromise on utility
● A better privacy against a 

curious server
● Deployment in a existing 

system
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Experimental setup
Datasets

• Cifar10
• MotienSense
• MobiAct
• Labeled Faces in the Wild

Baslines
• Vanilla: the most common FL scheme using SGD training on the device and average aggregation
• Pruning: FL scheme using private pruned layers
• LDP: FL scheme with an introduction of Gaussian noise to the local model
• MixNN

Metrics
• Utility:  model activity
• Privacy: updates linkability, attribute inference, MixNN robustness
• System performance: computational cost

82
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Utility evaluation

No compromise on utility
83
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Privacy: updates linkability

MixNN prevents the server to link clients to their model updates
84
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Privacy: attribute inference

MixNN protects against attribute inference attacks
85
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Privacy: robustness

MixNN protection is hard to break

86
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System performance: latency

MixNN can manage a large number of users

87
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MixNN - Take away

• MixNN: a proxy-based privacy-preserving framework mixing layers between 
multiple participants

• Prevent inference attacks from a curious aggregation server exploiting model 
updates

• Efficiency breaks the attribute footprint leaked in the model updates without any 
trade-off with utility

88



89

Agenda

• Centralized Learning 
• Generative Adversarial networks
• Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]

• Federated Learning
• Personalization approaches
• Limitations: Security / Privacy
• Federated learning using personalized layers [MLSP’ 21]
• MixNN: Protection of Federated Learning Against Inference Attacks by Mixing 

Neural Network Layers [Middleware’22]
• Fairness / Explainability

89
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Massive deployment of ML

Rise many questions
• Utility
• Privacy
• Security
• Fairness
• Explainability
• Energy Footprint

Challenge: 
address globally these questions

90
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Data Privacy: Attribute Inference Attacks

Prior attacks: Use ML attack model (fadv) to infer sensitive attributes

• Exploit distinguishability in predictions for different values of sensitive 
attribute [6]

[6] Song and Shmatikov. Overlearning Reveals Sensitive Attributes. ICLR’20.
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Distinguishable output predictions

→Idea: remove distinguishability through a fair 
treatment between two populations
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Defence based on Fairness Regularization
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Defence based on Fairness Regularization

• Individual fairness vs group fairness

• In-processing algorithm satisfying a fairness condition:

• Demographic parity: P (ftarget (X) = ŷ) = P (ftarget (X) = ŷ|S = s)

• Equality of odds: P (ftarget (X) = ŷ|Y = y) = P (ftarget (X) = ŷ|S = s, Y = y)
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Defence based on Fairness Regularization
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Impact on utility
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Fairness - Take away

• Fairness regulation successfully prevents attribute inference attacks while limiting 
the impact on utility

• Theoretical guarantees for demographic parity but theoretical bound for equality of 
odds fairness condition

97
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Massive deployment of ML

Rise many questions
• Utility
• Privacy
• Security
• Fairness
• Explainability
• Energy Footprint

Challenge: 
address globally these questions

98
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Explainability

Need algorithmic transparency into complex blackbox models to understand predictions 
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Explainability vs Privacy

Data Privacy
Algorithmic 

Transparency

What are the data privacy risks of releasing additional 
information for transparency? 

[1] Shokri et al. On the Privacy Risks of Model Explanations. AIES’ 21.

Membership 
privacy risks[1]

Attribute 
privacy risks?
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Data Privacy: Attribute Inference Attacks
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Algorithmic Transparency: Model Explanations
Explanations estimate the influence of different input attributes to model utility

Gradient based Explanations
• Compute gradients using backpropagation for different input attributes
• IntegratedGradients [1] and DeepLift [2]

Perturbation based Explanations
• Add noise/remove attributes to estimate change in output
• GradientSHAP [3] and SmoothGrad [4]

Explanations for sensitive attributes ɸ(s) and non-sensitive attributes ɸ(x) 

[1] Sundararajan et al. Axiomatic Attribution for Deep Networks. ICML’17.
[2] Shrikumar et al. Learning Important Features Through Propagating Activation Differences. ICML’17.
[3] Lundberg and Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS’17.
[3] Smilkov et al. SmoothGrad: Removing Noise by Adding Noise. ArXiv’17.
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Threat Models
• Threat Model 1 (TM 1): sensitive attribute included in training data and input

• Adversary cannot choose inputs to query
• Threat Model 2 (TM 2): sensitive attribute censored

• Adversary can choose inputs to query

Adversary observes only the predictions ftarget() and explanations ɸ()
Auxiliary data available to adversary from same distribution as ftarget’s training data

TM1: w/ sensitive attribute TM2: w/o sensitive attribute
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Explainability - Take away
Yet another trade-off between data privacy and algorithmic transparency!

Model explanations opens a new attack surface for adversary
• Attacks on explanations are stronger than on predictions

Future work: impact of mitigation schemes
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Conclusion

Developing ethical and trustworthy ML needs to combine multiple topics:
• Utility
• Privacy
• Security
• Fairness
• Explainability
• Energy Footprint
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Thank you for your attention

carole.frindel@insa-lyon.fr, antoine.boutet@insa-lyon.fr 
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