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Massive deployment of ML

Rise many questions
Utility

Privacy

Security

Fairness
Explainability
Energy Footprint

Challenge:
Address globally these questions




Sensitivity of Medical Data and Images

Personal Health Information

Confidentiality
Protected by Law
Vulnerability to Cyber Threats

Potential for Misuse



Sensitivity of Medical Data and Images

Personal Health Information
Patient name, address, medical history, medications, etc.
Unauthorized access, use, or disclosure can harm patients

(0010,1005) PN Patient's Birth Name
(0010,1010) AS Patient's Age

(0010,1020) DS Patient's Size

(0010,1021) SQ Patient's Size Code Sequence
(0010,1030) DS Patient's Weight

(0010,1040) LO Patient's Address
(0010,1060) PN Patient's Mother's Birth Name
(0010,1080) LO Military Rank

(0010,1081) LO Branch of Service
(0010,1090) LO Medical Record Locator
(0010,1100) SQ Referenced Patient Photo Sequence
(0010,2000) LO Medical Alerts

(0010,2110) LO Allergies

(0010,2150) LO Country of Residence
(0010,2152) LO Region of Residence
(0010,2154) SH Patient's Telephone Numbers
(0010,2155) LT Patient's Telecom Information
(0010,2160) SH Ethnic Group

(0010,2180) SH Occupation

(0010,21A0) Cs Smoking Status

(0010,21B0O) LT Additional Patient History
(0010,21C0) US Pregnancy Status
(0010,21D0) DA Last Menstrual Date
(0010,21F0) LO Patient's Religious Preference




Sensitivity of Medical Data and Images

Confidentiality
Disclosure can lead to discrimination, stigmatization, or social exclusion




Sensitivity of Medical Data and Images

Protected by Law
HIPAA (US), GDPR (EU), and other laws and regulations
Breach can result in significant financial and legal penalties

Fuite massive de donnees medicales : 1a Cnil
inflige une amende de 1,5 million d'euros a
Dedalus 21 Avril 2022

Dedalus Biologie écope d'une amende de 1,5 million d'euros suite a un contréle de la
Cnil. L'organisme a été saisi suite a la publication dans la presse d'articles relatant une
fuite de données médicales. Dedalus Biologie édite le logiciel utilisé par les 28
laboratoires d'ou proviennent les données.



Sensitivity of Medical Data and Images

Vulnerability to Cyber Threats
Electronic storage makes medical data vulnerable to cyber-attacks

par LIBERATION et AFP

ACLIOIN-ICaCtll1Ol]

Faute de rancon, les données volées dans un
hopital de ’Essonne se retrouvent mises en ligne

Les hackeurs responsables d’une cyberattaque contre le centre hospitalier sud francilien de
Corbeil-Essonnes, ont commencé a diffuser des données, ’hopital ayant refusé de payer la

rancon demandée.

Vol de données médicales : les hopitaux de Paris présentent
leurs excuses et mettent en garde les victimes

Les informations de santé d’environ 1,4 million de personnes ayant réalisé un dépistage
du Covid-19 en 2020 ont été dérobées.



Sensitivity of Medical Data and Images

Potential for Misuse
Medical data/images can be misused for fraudulent activities or identity theft
Misuse can lead to significant harm to patients and healthcare providers




Threats to “anonymized” medical images

e Re-identification attacks

Public Photos and Identities Deidentified Health Information
Released by Research Study
Biomarkers Risk factors
Blood panels Sequenced genome
Cognitive testing Personal history
Diagnosis
Family history

MRI or
CT scans

/

Facial reconstruction with
3D rendering software

Matching through face-recognition software /

Public name can be reassociated with deidentified data
by matching photos with MRI or CT reconstructions
through face recognition

Schwarz et al. New England Journal of Medicine 381.17 (2019): 1684-1686.



Threats to “anonymized” medical images

e Re-identification attacks
e Attribute disclosure attacks

Public Photos and Identities Deidentified Health Information
Released by Research Study
Biomarkers Risk factors
Blood panels Sequenced genome
Cogpnitive testing Personal history
Diagnosis
Family history

MRI or
CT scans

Ale

, 38 /

Facial reconstruction with
\ 3D rendering software

Matching through face-recognition software /

Public name can be reassociated with deidentified data
by matching photos with MRI or CT reconstructions
through face recognition

Schwarz et al. New England Journal of Medicine 381.17 (2019): 1684-1686.



Threats to “anonymized” medical images

e Data linkage attacks

link sensitive patient-related information

Anonymized chest X-ray database:
Images + metadata

_>
DL-based
re-identification
model
Given chest
X-ray scan Ly
A

link sensitive patient-related information

Patient verification (classification)

same dlfferent dlfferent
patient  patient  patient

Patient re-identification (retrieval)
rank-1  rank-2  rank-3

A

same  different different
patient  patient  patient

Packhauser et al. Scientific Reports 12.1 (2022): 14851.
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Threats to “anonymized” medical images

Several threats to the anonymity of medical images:
e Re-identification attacks
e Attribute disclosure attacks

e Data linkage attacks

Sanitize/minimize access to medical data to avoid unwanted sensitive inferences
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Directions to overcome the limits of anonymisation

e Limits of the anonymisation
o Difficult to break the individual fingerprints without drastically
reducing the utility
o Subject to General Data Protection Regulation

e New directions
o Generation of synthetic data
o Exchange of learning models instead of data

13



Agenda

e Centralized Learning

 Generative Adversarial networks

 Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

 Personalization approaches

e Limitations: Security / Privacy

 Federated learning using personalized layers [MLSP’ 21]

 MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]
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Generative adversarial networks

e GANSs use two neural networks that compete with each other

e GANSs can create realistic-looking computer-generated photos of people’s faces

e Imitating any data distribution: GANs can imitate any data distribution, including
Images, text, and sound.

Realistic
yet
Fictional

Karras et al. arXiv preprint arXiv:1710.10196 (2017).
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Basic structure of GANs

e Basic structure of a GAN, which consists of two neural networks
e The generator creates synthetic data from random noise
e The discriminator determines whether the data is real or fake.

Fake Images
(from generator) |

Real or Fake

Dlscrlmlnator Network

Real Images
(from training set)

Generator Network

Random noise

t

Z
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Training process

e Generator and discriminator networks are jointly trained in a two-player game formulation
e The respective loss functions are then used to update the generator and discriminator
networks until they converge

First Many attempts Even more
attempt later attempts later

GENERATOR

covcoror AU I cocuvcx B

DISCRIMINATOR

¥ b ¢ v

https://www.tensorflow.org/tutorials/generative/dcgan

DISCRIMINATOR DISCRIMINATOR
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Loss functions

e Generator loss encourages the generator to create data that is similar to the real data
e Discriminator loss encourages the discriminator to correctly classify the data as real or
fake.

minimax | Ex- pdata{long y (x)}+ Ez~p(2) 108 (1 «[Ded ({Geg(z)})})]
0z | 04

Gg and 6 are respectively the parameters of G and D
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Discriminator training

=== Backpropagation

Real images »  Sample Discriminator

\ 4
SSO|
Jojeulwiiosiq

— Generator > Sample

SSO|
Jojelauan)

Random input

1. The discriminator classifies both real data and fake data from the generator.
2. Loss penalizes the discriminator for misclassifying a real as fake or a fake as real
3. Weights update through backpropagation through the discriminator network



Generator training

Sample

Real images >

SSO|
Jojeulwniasiqg

\/

Discriminator

— Generator > Sample

\ /
SSO|
Jojesauan)

Random input

< 1 Backpropagation
Produce generator output from sampled random noise
Get discriminator "Real" or "Fake" classification for generator output
Calculate loss from discriminator classification
Backpropagate through both the discriminator and generator to obtain gradients
Update generator weights

a bk owbdh =



Variations of GANs

e Conditional GANs, which can generate specific types of data based

on conditioning variables
o Generator takes in additional input, label or conditional vector, to guide @
the generation process e
o Discriminator takes in the same additional input to judge the realism of the Gj
generated sample -

e CycleGANSs, which can learn to transform data from one domain to
another
o CycleGAN uses four neural networks.
o One generator is responsible for converting images from domain A to B
o Other generator converts images from domain B to A
o Each generator is paired with a discriminator that tries to distinguish

between the generated images and the real images from the target
domain

Real Image in domain A Fake Image in domain B




Variations of GANs

e Conditional GANs, which can generate specific types of data based on conditioning
variables

Neff et al. Proc. OAGM and ARW joint Workshop. Vol. 3. 2017

e CycleGANSs, which can learn to transform data from one domain to another

Santini et al. 16th International Symposium on Medical Information Processing and Analysis. Vol.
11583. SPIE, 2020.
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Agenda

e Centralized Learning

 Generative Adversarial networks

> Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

 Personalization approaches

e Limitations / Privacy

 Federated learning using personalized layers [MLSP’ 21]

 MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]
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DYSAN: Dynamically sanitizing motion sensor
data against sensitive inferences through
adversarial networks

Insurance Companies Want to
Use Your Personal Data to
Determine Your Premiums

Weighing Privacy Vs. Rewards Of
Letting Insurers Track Your Fitness

KOED
et gDt {5 A8 . What happens when life i
; ansform insurance . en life insurance com i
Big data analysis t0 transt fitness data? panies track
industry It could be a win-win, it could cause privacy .
Cloud ;

Mobile

25
Objective: Sanitize motion sensor data to avoid unwanted sensitive inferences
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Only one scheme is not enough

Need a dynamic and personalized protection scheme to transform the data to avoid to
leak unwanted sensitive attribute

Heterogeneous users (including atypical ones)

Varying activities (with different inference capabilities)

26



Objective

* D=(X,..,X,)whereXe€|A,Y,S|
. A=rawdata
Y =activity €| walking, jumping, ...}
S=sensitive attribute€|s,s |

D= D=San

° ((,['3,}.

(D)=(X,,....X,)

Any model DiSc trained to predict S from A fails

While Pred trained on A maintain accuracy
» Minimized the data distortion between D and D

27



Objective

D=(X,..,X,)JwhereX€[A,Y,S|
A=rawdata

Y =activity €| walking, jumping, ...}
S=sensitive attribute€|s,s |

D-D=San, ,,(D)=(X,,...,X,)

a,p,

Any model Disc trained to predict S from A fails
While Pred trained on A maintain accuracy
Minimized the data distortion between D and D

Dynamically adapt the
transformation function
to the current raw data
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DYSAN: Dynamic Sanitizer

Overview
L | _" || | | || | ] | || || | || || 1
[ Raw Sanitized . @
o " data data - Cloud
| A @
I 1 Sanitizer ‘
Sensors
models
- s s .- —ﬁﬁi I I IS S S e . _..ll“: ._.D
Mobile

Two phases: a centralized training and an decentralized online phase

29



DYSAN - Training

Generative Adversarial Networks (GANSs)

Training set

Random

-

noise

Generator

vy

Discriminator

= .

30



DYSAN - Training (offline)

[ Multi-Objctive ]

Loss Function

é - ™
B
AR_A
:.t X
et —¢
Predictor [a]
\- o
i i — N
Raw signal b ) DO,

N = :, :. : ;_:_
bty —$—] 0% X008 —¢ X010 ‘
:_.v\w‘v‘ﬁn“'.(.‘,'\'\}-,),\;.?.I'.'\‘..II\.,\‘.-“ ;R 4 X -8y

Y .

Sanitizer \Discriminator [A]J

(
- Distortion
Measurment [B]

\.

Jsan (X, San7 Disc, P'r'ed) = {a x dS(S? DiSC(San(X)))7
A*dp(Y, Preq(San(X))),
B * dr(X, San(X))}’

Build a model for each set of possible value for a, 3, A



DYSAN - Online (on the mobile)

[ Activity ]

l Detection J

a )
A\ o
Raw ore gg
. O F : X
signal o!'e/ Sl l¢"s!
I T m“"‘".w’\y"‘yl \ Y N ')
A Sanitizer

\ models [a,A,B] )

Dynamic sanitizer model selection

Signals [a,A,]

e Utility and privacy assessment of all models

 Require a calibration step

e Selection of the model which provides the best privacy

—————\
/Predlctorw

@

Utility

Model
Selection

J

(. . N\
Discriminator

@

& Privacy y

Protected
signal

) !
e A AN A A
j

NV
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Experimental Setup

Datasets
 MotionSense (24 participants) — used to trained sanitizer models
 MobiAct (58 participants)

Baselines
 ORF [1]: (design to avoid user re-identification)
* Analyse most relevant features from random forest
« Normalize features correlated to gender
 GEN [2]: Guardian-Estimator-Neutralizer
« Adversarial approach but without iterative process
« Sensitive attribute learned on raw data
* Do not consider data distortion
« Hyper parameters static for all users

[1] Toward privacy in loT mobile devices for activity recognition. Jourdan, Boutet, Frindel. Mobiquitous 2018.
[2] Protecting sensory data against sensitive inferences. Malekzadeh, Clegg, Cavallaro, Haddadi. W-P2DS 2018.
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Experimental Setup

Baselines
 Olympus [3]: (design to avoid user re-identification)
» Adversarial approach
» Sensitive attribute learned on sanitized data
* Do not consider data distortion
« Hyper parameters static for all users
e MSDA [4]: (design to avoid user re-identification)
« Adversarial approach
« Sensitive attribute learned on sanitized data
« Account data distortion
« Hyper parameters static for all users

[3] Olympus: Sensor privacy through utility aware obfuscation. Raval, Machanavajjhala, Pan, PETS 2019.
[4] Mobile sensor data anonymization. Malekzadeh. Clegg,Cavallaro, Haddadi. loTDI 2019.
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Experimental Setup

Metrics

o Utility
e Accuracy of the prediction of the activity recognition [1,0]
* Number of steps detected from the signals

* Privacy
* Accuracy of inferring the sensitive attribute [1,0] (accuracy of 0.5 = random guess)

e Performance
e Overhead / computational cost
e Energy consumption

Methodology

* Transfert learning (training on Motionsense and testing on MobiAct)
 Average over 10 repetitions of each experiment

 Done on a GPU/CPU computing farm

35



Utility and Privacy trade-off

DYSAN: Inferences from sanitized data

Mobile

O >

Sanitizer

L} > Clow
App ~

GB (Gradient Boosting)

MLP (Multi-Layer Perceptron)
DT (Decision Tree)

RF (Random Forest)

LR (Logistic Regression)

DySan Discriminator and Predictor

36



Utility and Privacy trade-off

DYSAN: Inferences from sanitized data

Activity m— Gender = Activity memmm  Gender mmmm
1 1
0.8 0.8
> >
g 06 & 06
= 3
&J 0.4 &: 0.4
0.2 0.2
0 0
= Cc oo k- WL o S 2 Cc 0O - woeoe s
3 C‘é G 2 a ¢« J = - (‘é c =2 o o J =
Q — A 1
Motionsense MobiAct

 Protection is needed

« Whatever the classifier, small decrease of the activity detection while drastically

reducing the inference of the gender
37



Utility and Privacy trade-off

Detection of the number of steps

[1]

Raw data 14387 -
DYSAN 15321 (+6.49 %) 12.96
GEN 12817 (-12.25%) 14.28
Olympus 23658 (+64.44%) 156.03
MSDA 18624 (+29.45%) 23.37

DYSAN keeps relevant information in the signal
(less than 5% of errors for steps detection)

[1] D.J.Berndt and J.Clifford, Using Dynamic Time Warping to Find Patterns in Time Series, AAAIWS, 359-370, 12, (1994)
38



Utility and Privacy trade-off

Comparison against baselines (MobiAct)

Activity — Gender

DySan
MSDA -

Accuracy
oh » o o =
—
[r—
ympus E—
GEN o
ORF
Raw |

DYSAN provides the best utility-privacy trade-off
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Dynamic Sanitizer Model Selection (MobiAct)

el Fixed - i \
; Personalized - 0.9 ¢
08F DvSan e i 08 |
0.7 | 07 |
5 05| s o5
© o4} O 04l
0.3 | 03}
- 0.2
0is , 01 b Personalized -~ _
OS [ ........................ ] - O , i : .DySa.n ........ -
04 05 06 07 08 09 1 03 04 05 06 0.7 08 09 1
Accuracy (activities) Accuracy (gender)

« DYSAN does not significantly impact the activity recognition
« By dynamically selecting the best sanitizer model, DYSAN greatly improves the
protection against gender inference



Performance (overhead)

 Xiaomi Redmi Note 7 20 S R
* Qualcom Snapdragon 660 O
. Discriminator ez
3 GB of memory 15} 1 Predictor mmmmm
* Pytorch 1.6 > | Activity =
= oo
o 10 <
£ <
i %
5| 4
0 -

Task

« Trade-off between the overhead and the number of considered sanitizing models



Take away

Dynamic sanitizer model selection successfully adapts the protection to incoming raw
data

* Prevent unwanted inference of sensitive information

* Preserve useful information for activity recognition and other estimator of physical
activity monitoring

e Compliant with mobile phone capability
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Agenda

e Centralized Learning

 Generative Adversarial networks

e Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

 Personalization approaches

e Limitations / Privacy

 Federated learning using personalized layers [MLSP’ 21]

 MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]
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Federated Learning (FL)

e Personalization of

Aggregation
model on local data

Server
§ s E s Shadrirlig _at?lol:oal
S e o e > am model with a
O ® @ @ _=,_='

participants
e Personalization of 8 : : :
model on local data Jis e e
7 O'® @ @
8 o O O Oe @ @
e e e
D 00 O O e
e Personalization of Aggregation of
model on local data local models
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Local learning

e \We consider a set of C parties (clients, users or data silos)
e Each party ¢ holds a dataset D_

e \We denote by 0 the local model parameters (e.g. the weights of a neural
network)

min  F(0) := = ch (6;)

91,...,966Rd C

The resulting models may not achieve good generalization as the number of
examples that the local models are exposed to are limited
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Baseline FL algorithm (FedAVG)

We consider a set of C parties (clients, users or data silos)

Each party ¢ holds a dataset D_

We denote by w the model parameters (e.g. the weights of a neural network)
We want to find parameters that minimize an overall prediction loss :

@
min F : g
weR? —

fc (w) = E(x,y)NDc [fc (w; L, y)]
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Baseline FL algorithm (FedAVG)

Algorithm FedAvg (server-side)
Parameters: client sampling rate p

parties update their copy
of the model and iterate Initialize @
for each round t=10,1,... do
St + random set of m = [pK] clients
for each client k € S; in parallel do

0, «+ ClientUpdate(k, 8)
0= ZkESt %9/?

>t
X

Algorithm ClientUpdate(k, 9)
Parameters: batch size B, number of local
@ @ @ @ steps L, learning rate
for each local step 1,...,L do
B < mini-batch of B examples from D,
00— 2tn> .5 VA0: d)
send 6 to server
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Baseline FL algorithm (FedAVG)

0.90
t Wt+1 0.85 AR
W1 1 * B8O i |
‘ W1 O
< :
‘/> 0.75
p ‘ 0 0.70 == FedProx
* o 0. ,
.WHlA w = —=— FedMA
\A 0.65 —e— Ensemble
Entire Data
‘\’. W* uen N Training
wi t+1 2 RiEE
2 Wo 0 2 Y 6 S o
Round of Comm.
Tan et al. IEEE Transactions on Neural Networks and Learning
e Wang, Hongyi, et al. arXiv preprint arXiv:2002.06440 (2020).

e When IID data, FedAVG efficiently tends towards the centralized model
e FedAVG does better than a collection of independent local models
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Baseline FL algorithm (FedAVG)

Non IID

Tan et al. IEEE Transactions on Neural Networks and Learning
Systems (2022).

Test Accuracy
0.990 1.000

0.980

0.970

MNIST CNN Non-IID

|

|

|

|

|

|

| ‘
r -
v/ , B=10 E=1
4 B=10 E=5
}' K B=10 E=20
P B=50 E=1
. B=50 E=5
' B=50 E=20
d | B=» E=1
B=w E=5
[ - B=w E=20
J .
T I T T T
0 200 400 600 800 1000

Communication Rounds
McMahan et al. PMLR, 2017

e \When non IID data, FedAVG suffers from client drift

e To avoid this drift, use fewer local updates and/or smaller learning rates,

which hurts convergence

B: batch size
E : local epochs
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Agenda

e Centralized Learning

 Generative Adversarial networks

e Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

> Personalization approaches

e Limitations / Privacy

 Federated learning using personalized layers [MLSP’ 21]

 MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]
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Global model personalization

Data-based approaches: reduce the statistical heterogeneity of client data

distributions

Ol izat
j;y& Global Model Personalization

Data Heterogeneity iﬁ—%

( TPFL
Approaches.

AN -
J(©){ Learning Personalized Models
N7

; Solution Personalization ——<

Data Augmentation

Data-based /

=~
\Client Selection

Regularization

Model-based / Meta-Learning
\ Transfer Learning

Parameter Decoupling

Architecture-based /
-
\ Knowledge Distillation

Multi-Task Learning

_ Similarity-based / Model Interpolation

\ Clustering

Tan et al. IEEE Transactions on Neural Networks and Learning Systems (2022).
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Data augmentation

e Data augmentation requires some form of data sharing or a proxy dataset
representative of the overall data distribution

e FAug trains a GAN model in the FL server, which generates additional data
for each client to produce an |ID dataset

O O | 3 : E
O fmm— : §34158
g.; 2 fs © GAN after ;@i}?ii?i
S — T ST
8§ 1, goversampl|ng§\,\/ L
1D @b P
R 3 : G :
o : - ! : : §
& | 7 j—— )
Q:
O
3
@©: 4
(3 download
generator
Non IID

(O target label

redundant label
52

Jeong et al. arXiv preprint arXiv:1811.11479 (2018).



Client selection

e Client selection help to make the data more similar across all clients

e Multi-Armed Bandit choose which clients should participate in each
round of training

e Selects clients subset with minimal class imbalance based on the estimated
local class distributions

Machine 1 Machine 2 Machine 3 Machine 4
50% 70% 35% 45% s
o 0 ° 0 probabilities . \V/ N N7 2
are unknown. Di X € | [VQ(w:) Qw)]]
!l Yang et al. 29th European Signal Processing Conference
(EUSIPCO). IEEE, 2021.

Which machine

to pick next? 53



Global model personalization

Model-based approaches : learning a strong global FL model for future personalization
on individual clients

&

proaches.

PFL

jif\f Global Model Personalization

Data Heterogeneity iﬁ—%

Data Augmentation

Data-based /

\Client Selection

Regularization

P AN

z( ) earning Personalized Models
X7

; Solution Personalization ——<

Model-based / Meta-Learning

\ Transfer Learning

Parameter Decoupling

Architecture-based /

\ Knowledge Distillation

Multi-Task Learning

/ Model Interpolation

Similarity-based

\ Clustering

Tan et al. IEEE Transactions on Neural Networks and Learning Systems (2022).
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Regularized local loss

e \We denote by w the global model parameters

e \We denote by 0 the local model parameters

e Instead of just minimizing the local function f (), each client ¢ minimizes the
following objective:

min he (0;0) = fo (6) +lreg (05w}

where lreg(ﬂ;w) IS the regularization loss, which is a function of the global model
w and the local model @_of client c
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Regularized local loss

e SCAFFOLD uses the difference between the update directions of the
global (v) and local (vc) models, (v-vc), which is added as a component of the
local loss function to correct local updates

* |
B 7 ' local gradient
, = | correction
/// /,/ J/// d
z/_é" Y1 l * client update

Karimireddy et al. International Conference on Machine Learning. PMLR, 2020.
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Meta-learning

e Meta-learning improves learning through exposure to a variety of tasks

e Per-FedAvg is a variant of FedAvg to learn a good initial global model that
performs well on a new heterogeneous task after it is updated with a few
steps of gradient descent

min F (w) : =5 Z{f —aVf,. (w)}

weRd

Dinh et al. Advances in Neural Information Processing Systems 33 (2020).

where o > 0 Is the step size.
The cost function is written as the average of meta-functions F1, - - - | Fc
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Transfer learning

Frozen Fine-tune

Chen et al. IEEE Intelligent Systems 35.4 (2020): 83-93.

Lower layers of the global model
are reused directly in the local
models

Other layers of the local model
are fine-tuned with the local data
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Knowledge distillation

e Knowledge distillation communicates learned knowledge with class scores

e In FedMD, the central server then computes and updates the consensus,
which is the average of the class scores

e The updated consensus is the baseline for further federated training

Public Private Class scores
Fruits Dataset Dataset
)y apple  pear  coffee Consensus
Apple ' A'\ E (Average)
Pear s
Coffee G00% 059N 02 apple  pear  coffee
Drinks ;i ) \
e 4
. pear coffee 0.40% 0.34% 0.26%
N\
A ed
% 0.30% 0.50%

Li et al. arXiv preprint arXiv:1910.03581 (2019).



Take away

Method

Data augmentation
Client selection

Regularization

Meta-learning
Transfer Learning

Knowledge distillation

Pre-processing before FL training procedure

Modifies client selection strategy of FL training
procedure

Slight modification of FedAvg algorithm

Optimizes global model for fast client
personalization

Reduces the impact of local data in the model

High degree of architecture design for each client

Disadvantages

e Possibility of privacy leakage
e May require a representative proxy dataset

e Increasing computational overhead
e May require a representative proxy dataset

Single global model setup

e Single global model setup
e Needs computing of second-order gradients

e Single global model setup
e May require a representative proxy dataset

Difficult to determine the optimal architecture design
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Agenda

e Centralized Learning

 Generative Adversarial networks

e Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

 Personalization approaches

> Limitations: Security / Privacy

 Federated learning using personalized layers [MLSP’ 21]

 MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]
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Massive deployment of ML

Rise many questions

 Fairness
e Explainability
 Energy Footprint

Challenge:
address globally these questions

62



Limitations: security / privacy

’
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Limitations: security / privacy

Adversarial
T-shirt
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Limitations: security / privacy

Adversarial
T-shirt
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Limitations: security / privacy

e Model Covergence

Through Local Data Aggregation

Server
Disseminate

o the aggregate
model all

participants

e Model Covergence
Through Local Data

o0

e Model Covergence
Through Local Data

o
/

QOO0

Compute
Aggregate Model

Federated Learning

 Poisoning / Backdoors
* Privacy leakage
 Give more power to participants
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Limitations: security / privacy

Federated Learning

 Poisoning

* Privacy leakage

 Give more power to participants

e Model Covergence .
Through Local Data Aggregation

Server
II O ® @ @

e Model Covergence
Through Local Data

o]

e Model Covergence
Through Local Data

Disseminate

o the aggregate
model all

participants Countermeasures
e Perturbation (e.g., differential privacy)
 Drastically reduces accuracy
 Crypto (e.g., secure aggregation)
 Important overhead
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QOOO0O

Compute
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Data Privacy: Attribute Inference Attacks

X f— ﬁarget _)ﬁarget(x)

Input A
: ' Train
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Data Privacy: Attribute Inference Attacks

Accessible to A

X ey ﬁarget _)ftarget(x)"') ﬁzdv —>_S

Input

: Train '; Train
D : {xi, yi Y Bhous: 55 4e )

Adversary: Use ML attack model (f_, ) to infer sensitive attributes

« EXxploit distinguishability in predictions for different values of sensitive
attribute !

P(Default = 1|Zrace) ‘ P(Default

(e) CREDIT

[6] Song and Shmatikov. Overlearning Reveals Sensitive Attributes. ICLR’20.
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Data Privacy: Membership inference attack

Dataset with known Classification Binary
infout membership (Probability vector) classification
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Data Privacy: Membership inference attack
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Agenda

e Centralized Learning

 Generative Adversarial networks

e Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

 Personalization approaches

e Limitations / Privacy

> Federated learning using private layers [MLSP’ 21]

 MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]
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Federated Learning using private layers

Aggregate model

Objective: minimizing the information exchanged with the aggregation server while improving the

personalization
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Experimental setup

Datasets
 MotionSense: 24 participants, 4 activities, 20 minutes of data per subject
 MobiAct: 58 participants, 4 activities, 6 minutes of data per subject

Baslines
e Vanilla: the most common FL scheme using SGD training on the device and average aggregation

 FedPer: FL scheme using private personalized layers
 LDP: FL scheme with an introduction of noise following a Gaussian distribution to the local
model

Metrics

e Utility: activity recognition
* Privacy: Gender and BMI (Body Mass Index) attribute inference, membership inference
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Utility evaluation

Vanilla -~ LDP - ==« FedPer
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Privacy: attribute inference
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FedPer and LDP increase the number of users with a small inference accuracy
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Privacy: membership inference
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(a) MotionSense (b) MobiAct

FedPer and LDP significantly decrease the accuracy of the membership inference
attack compare to Vanilla method



FL using private layers - Take away

Prevent unwanted inference of sensitive information (attribute or membership)

Preserve useful information for activity recognition and personalizing classification
locally

Less sensitive to poisoning
Ongoing work
* Generalize these results with other benchmark datasets
 Impact of NN architectures
 DP on shared layers
* Quantify the benefit in terms of bandwidth consumption
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Agenda

e Centralized Learning

 Generative Adversarial networks

 Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

 Personalization approaches

e Limitations / Privacy

 Federated learning using personalized layers [MLSP’ 21]

> MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]
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MixNN: Protection of Federated Learning Against
Inference Attacks by Mixing Neural Network
Layers
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MixNN: Protection of Federated Learning Against
Inference Attacks by Mixing Neural Network
Layers

Objective:
e No compromise on utility
e A better privacy against a
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Experimental setup

Datasets
e Cifar10
e MotienSense
* MobiAct
e Labeled Faces in the Wild

Baslines

e Vanilla: the most common FL scheme using SGD training on the device and average aggregation
* Pruning: FL scheme using private pruned layers

e LDP: FL scheme with an introduction of Gaussian noise to the local model
e MixNN

Metrics
e Utility: model activity
* Privacy: updates linkability, attribute inference, MixNN robustness
« System performance: computational cost
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Utility evaluation
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Privacy: updates linkability

T
0.7 1 ! ~+— { }
T T 7
[0 (0]
0.5 - . 0
0.4 1
0.3 4
0.2 1
0.1 1 i -
= e
0.0 T e P e
FedAVG Pr. 16bit Pr. 8bit Noised MixNN

Labelled Faces
in the Wild

--=-=- Random Guess

Model's Rebuild Accuracy between rounds 0 to 40

MixNN prevents the server to link clients to their model updates
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Privacy: attribute inference
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Privacy: robustness
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System performance: latency
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MixNN can manage a large number of users
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MixNN - Take away

 MixNN: a proxy-based privacy-preserving framework mixing layers between
multiple participants

* Prevent inference attacks from a curious aggregation server exploiting model
updates

o Efficiency breaks the attribute footprint leaked in the model updates without any
trade-off with utility
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Agenda

e Centralized Learning

 Generative Adversarial networks

e Dynamic sanitizing data through adversarial networks [ASIACCS’ 21]
 Federated Learning

 Personalization approaches

e Limitations: Security / Privacy

 Federated learning using personalized layers [MLSP’ 21]

 MixNN: Protection of Federated Learning Against Inference Attacks by Mixing

Neural Network Layers [Middleware’22]

* Fairness / Explainability
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Massive deployment of ML

Rise many questions

. Securiti

e Explainability
 Energy Footprint

Challenge:
address globally these questions
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Data Privacy: Attribute Inference Attacks

Accessible to A

X ey ﬁarget _)ftarget(x)"') ﬁzdv —>_S

Input

: Train '; Train
D : {xi, yi Y Bhous: 55 4e )

Prior attacks: Use ML attack model (f_, ) to infer sensitive attributes

« EXxploit distinguishability in predictions for different values of sensitive
attribute !

P(Default = 1|Zrace) ‘ P(Default

(e) CREDIT

[6] Song and Shmatikov. Overlearning Reveals Sensitive Attributes. ICLR’20.
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Distinguishable output predictions

Prediction distribution
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Defence based on Fairness Regularization

Training Data

—>| Model Generation

A

A

Predictions

A
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Defence based on Fairness Regularization

Training Data | —#| Model Generation [— Predictions |

A A A

 Individual fairness vs group fairness
 In-processing algorithm satisfying a fairness condition:
« Demographic parity: P (ftarget (X) = y) = P (ftarget (X) = y|S ='s)

« Equality of odds: P (ftarget (X) = y|Y =y) = P (ftarget (X) =y|S =5s,Y =y)
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Defence based on Fairness Regularization
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Impact on utility

Balanced accuracy

Balanced accuracy
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Fairness - Take away

* Fairness regulation successfully prevents attribute inference attacks while limiting
the impact on utility

 Theoretical guarantees for demographic parity but theoretical bound for equality of
odds fairness condition
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Massive deployment of ML

Rise many questions

e Security
e Fairness

 Energy Footprint

Challenge:
address globally these questions
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Explainability

>l
‘. : ‘.

Predicted: woll Predicted: husky Predicted:

BLACK BOX E=e OI.Itpl.It True: wo | True: husky Tikase

Input —

System that performs behaviour but you don’t know how it works . '. _
.
Predicted: | Predicted: husky Predicted:
True: hmky True: husky True:

Need algorithmic transparency into complex blackbox models to understand predictions
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Explainability vs Privacy

What are the data privacy risks of releasing additional
information for transparency?

Membership
privacy risks!'!

Algorithmic :
Traneoarongy  (MMNNNNNNSNNN)  Data Privacy
Attribute
privacy risks?

[1] Shokri et al. On the Privacy Risks of Model Explanations. AIES’ 21. 100



Data Privacy: Attribute Inference Attacks
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Algorithmic Transparency: Model Explanations

Explanations estimate the influence of different input attributes to model utility

Gradient based Explanations
« Compute gradients using backpropagation for different input attributes
* IntegratedGradients ["'and DeepLift 1!

Perturbation based Explanations
« Add noise/remove attributes to estimate change in output
» GradientSHAP Fland SmoothGrad !

Explanations for sensitive attributes ¢(s) and non-sensitive attributes ¢(x)

[1] Sundararajan et al. Axiomatic Attribution for Deep Networks. ICML'17.

[2] Shrikumar et al. Learning Important Features Through Propagating Activation Differences. ICML’17.

[3] Lundberg and Lee. A Unified Approach to Interpreting Model Predictions. NeurlPS’'17.

[3] Smilkov et al. SmoothGrad: Removing Noise by Adding Noise. ArXiv’17. 102



Threat Models

 Threat Model 1 (TM 1): sensitive attribute included in training data and input
« Adversary cannot choose inputs to query

 Threat Model 2 (TM 2): sensitive attribute censored
« Adversary can choose inputs to query

Adversary observes only the predictions f_ () and explanations ¢()

Auxiliary data available to adversary from same distribution as ftarget’s training data

Accessible to Adv Accessible to Adv

ﬁ‘arget (x Us) frarget (x)
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Input

¥ Train

=

D : {xi, Si, Yi }f\] -Z)aux : {xi:sis Yi }f\j

4

[
: fadz) _) Input ) N fa do
‘ ’ |:
; Train @ i @Train

D {xiyi }Y Daux = {1,586, yi 11

hJ

H(x Us)

TM1: w/ sensitive attribute TM2: w/o sensitive attribute
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Explainability - Take away

Yet another trade-off between data privacy and algorithmic transparency!

Model explanations opens a new attack surface for adversary
- Attacks on explanations are stronger than on predictions

Future work: impact of mitigation schemes
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Conclusion

Developing ethical and trustworthy ML needs to combine multiple topics:
Utility

Privacy

Security

Fairness

Explainability

Energy Footprint
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Thank you for your attention
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carole.frindel@insa-lyon.fr, antoine.boutet@insa-lyon.fr
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