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Geometry & Machine Learning
• How to exploit Shapes & Geometry for learning complex data?

Key role in cognition, planning & perception

Cerebral Cortex
Segmentation

2

Classification

Regression

Correspondence
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Segmentation on Medical Images
• One Example – Finding Lesions on Brain MRIs

Kamnitsas et al, DeepMedic, MedIA 2017

(Finding Lesions)
Blue – Necrosis

Red – Active Core

Green – Oedema

Trained from
Manual Segmentations

?
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Segmentation on Medical Images
• Conv Nets (CNNs) on Images

In High Resolution

In Low  Resolution

Kamnitsas et al, DeepMedic, MedIA 2017

[Image courtesy: Ben Glocker, DeepMedic]

Many works on CNN Segmentations
Zikic et, 2014 Havaei et al, 2015
Pereira et al, 2015 Menze et al, 2015
Prasson et al, 2013 Li et al, 2014
Roth et al, 2014 Brebisson and Montana, 2015
Ciresan et al, 2013 Ronneberger et al, 2015
Dolz et al, 2018 Zhao et al, 2018
Litjens et al, 2017 – and more

One issue

A Conv Filter 

Scans the Image

Algorithm Learns
the Filter Params
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From Images to
Surfaces
Why a need to work on Surfaces?

5
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Images vs Surfaces
• Algorithms rely on an Image Grid

Point Coordinates
defined as (x,y,z) Coordinates

Cortical Parcellation Functional Imaging

Why Learning 
on Surfaces?

[Image courtesy: Freesurfer]

6

Neuroimaging – Data is often on surfaces
where is (up, down, left, right) ?
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Images vs Surfaces
• Exploiting the Surface Geometry

[Image courtesy: Freesurfer]

Problem:
Points Close in volume
– but – Far away on the cortex
Confusing for a learning algorithm

How to Learn 
on Surfaces?
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Convolutions on Surfaces
• Defining Kernels on Curved Spaces

(xi, yi)
(xi+1, yi+1)

Conv Filter on a Grid

µk,�k

eui
euj

Conv Filters on Surfaces
Algorithm:
– Learns the Filter parameters (the red bars)
– Supposes neighbors are on a grid

Algorithm:
– Learns the Filter parameters (µ’s and σ’s)
– Requires Graph Neighborhoods

8
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Parameterization – Euclidean vs Spectral Coordinates

Cartesian Coordinates
Equivalent Points à May NOT Overlap in Space

Cartesian Coordinates versus Shape (Spectral) Coordinates

Shape Coordinates
Equivalent Points à Similar Shape Characteristics

Core Idea
Use Shape Coordinates for Matching

?
Same Shape Coordinates

(Same RGB)

yx

z

yx

z
uR

uG

uB

Reuter, IJCV (2009)
Niethammer, Reuter, Wolter, Bouix, Peinecke, Koo, Shenton, MICCAI (2007)
Qiu, Bitouk, Miller, TMI (2006)
Shi, Lai, Wang, Pelletier, Mohr, Sicotte, Toga, TMI (2014)
Germanaud, Lefevre, Toro, Fischer, Dubois, Hertez, Mangin, Neuroimage (2012)
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Challenge – Anatomical Variability

Complex Shapes, Highly variable

How to find point correspondences?

Same Point?
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One Related Problem –
Matching Points between Brains

Proposal à Fast, as Accurate

(FreeSurfer, Spherical Demons)(LDDMM and variants)

Sphere Inflations

• Costly (3 to 4 hours)
Flowing Surfaces

• Costly (CPU, mesh size)
Spectral Matching

✔ Fast (Few seconds)
✔ Accurate (as FreeSurfer)

Dense Point Correspondence
300k+ meshes

Beg, Miller, Trouvé, Younes, IJCV (2005)
Fischl, Sereno, Tootell, Dale, HBM (1999)
Yeo, Sabuncu, Vercauteren, Ayache, Fischl, Golland, TMI (2010)
Lombaert, Grady, Polimeni, Cheriet, PAMI (2013)

Challenge – Anatomical Variability
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Background on 
Spectral Shape Analysis
How to Represent and Exploit Surfaces?
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Spectral Signature
Vibration patterns governed by Shape

Cymatics: Science vs Music, Nigel Stanford
13
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Spectral Signature
Shape Vibration à Unique intrinsic Shape Signature

Spectral Decomposition

U1 U2 U3

λ1= λ2= λ3=

Spectral Signature

Umeyama, PAMI (1988)  
Scott & Longuet-Higgins, Royal Society (1991)
Shapiro & Brady, IVC (1992)
Mateus, CVPR (2008)
Jain & Zhang, ICSMA (2006)
Reuter et al., MICCAI (2007), CAD (2009)
Ovsjanikov et al., SIGGRAPH (2012) 
Lombaert, Grady, Polimeni, Cheriet, IPMI (2011), PAMI (2012)

✔ Good:  Equivalent Points à Same (shape) Spectral Coordinates

14
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Method – Spectral Shapes  

yx

z

yx

z

Surfaces in Euclidean Space
u(2)u(1)

u(3)

u(2)u(1)

u(3)

Surfaces in Spectral Space

Correspondence? Easier Matching

Su
rfa

ce
 #

1
Su

rfa
ce

 #
2

U1 U2 U3 U4 U15

-1
+1

Spectral Decomposition  (Eigenvectors of L)

Energy:

Nearest Neighbor Search between vectors

Data Term Spatial Term

[DAUA] & [DBUB][UA] &     [UB]
Lombaert, Ayache, IPMI (2015)
Lombaert, Sporring, Siddiqi, IPMI (2013)
Lombaert, Grady, Pennec, Ayache, Cheriet, ECCV (2012), IJCV (2014)
Lombaert, Grady, Polimeni, Cheriet, IPMI (2011), PAMI (2012)

[    ]
Graph Laplacian

Edge (i,j) : Row/Column (i,j)

L =

Spectral Decomposition

L = UT Λ U

u(1)
u(3)

u(2)

Sulcal depth+

Add Data

!(#!) = argmin
"($!)∈'

,( #! − ,' ! #!
).( #! − .' ! #!
)+

15



Hervé Lombaert, Spring School on Deep Learning for Medical Imaging, 2023

u(2)u(1)

u(3)

u(2)u(1)

u(3)

Easier Matching

Spectral Matching
Surface 1 in Red
Surface 2 in Blue

Correspondence

yx

z

yx

z

Surfaces in Euclidean Space Surfaces in Spectral Space

Correspondence?

Point-to-point Correspendence

300K nodes, < 1 min

✗Before (FreeSurfer): CPU (3-4hrs) ✔ After (Spectral Matching): < 1 min

Method – Spectral Shapes  

16

Lombaert, Ayache, IPMI (2015)
Lombaert, Sporring, Siddiqi, IPMI (2013)
Lombaert, Grady, Pennec, Ayache, Cheriet, ECCV (2012), IJCV (2014)
Lombaert, Grady, Polimeni, Cheriet, IPMI (2011), PAMI (2012)
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FreeSurfer
✔ Average Dice = 0.84 (±0.08)
✗ 2hrs + 1hrs for one matching

(inflation)  (matching)

Spherical Demons
✔ Average Dice = 0.85 (±0.07)
✗ 2hrs + 3mins for one matching

(inflation)   (matching)

Spectral Matching
Average Dice = 0.83 (±0.08)

<1min   for one matching
(total)

Parcels Subject 1

Parcels Subject 2

Comparison with State-of-the-Art

17

Fischl, Sereno, Tootell, Dale, HBM (1999)
Yeo, Sabuncu, Vercauteren, Ayache, Fischl, Golland, TMI (2010)
Lombaert, Ayache, IPMI (2015)
Lombaert, Sporring, Siddiqi, IPMI (2013)
Lombaert, Grady, Pennec, Ayache, Cheriet, ECCV (2012), IJCV (2014)
Lombaert, Grady, Polimeni, Cheriet, IPMI (2011), PAMI (2012)
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Learning?
Moving Learning to the Spectral Domain

18
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Convolutions on Surfaces
• Defining Kernels on Curved Spaces

(xi, yi)
(xi+1, yi+1)

Conv Filter on a Grid

µk,�k

eui
euj

Conv Filters on Surfaces

Algorithm:
– Learns the Filter params (the red bars)
– Supposes neighbors are on a grid

Algorithm:
– Learns the Filter params (µ’s and σ’s)
– Requires Graph Neighborhoods

Intrinsic Shape Parameterization

19
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Intrinsic Surface Parameterization
• Spectral Coordinates
• an Intrinsic Surface Parameterization

Spectral Coordinates
Equivalent Points à Similar Shape Characteristics

Same Spectral Coordinates
(Same RGB)

uR

uG

uB

20
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Region Prediction:

Classifier

Input Output

e.g., Random Forests

LeCun, Bengio, Hinton, Nature (2015)
Criminisi, Shotton, Springer (2013)
Amit, Geman, Neural Comp. (1997), Breiman, ML (2001)

Data

Training Data

+   Ground Truth

Test1: >0cm ?
Yes – No

Test2: frontal?
Yes – No

Test3: ...

Final Answer:

Represent Space?
How to

e.g., Neural Nets

Approach: Learning on Surfaces [Lombaert MICCAI’15]

21
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(RGB)= (U1,U2,U3)
(Spectral)

Re
al 

Su
rfa

ce

Visual Cortex (Red)

(RGB)= (X,Y,Z)

Learning on Surfaces      [Lombaert MICCAI’15]

U1

U3

U2

Standard Euclidean Forests Spectral Forests

X Y

Z

Based on Euclidean Coordinates Spectral Coordinates is Geometry Aware

Lombaert, Criminisi, Ayache, MICCAI (2015)

v = [Data, U1,U2,U3]

vertex #1  -1.1cm (pos) 0.1, 12.4, 1.3
vertex #2  +0.8cm (pos) 8.2,  1.3, 7.4
. . .
vertex #N  +0.7cm (pos) 9.8, 19.7, 8.9

Similarity
54.5%✗

vertex #1  -1.1cm (s.pos) 0.7,-0.2, 0.3
vertex #2  +0.8cm (s.pos) 0.8,-0.1, 0.4
. . .
vertex #N  +0.7cm (s.pos) 0.9, 0.8, 0.9

Simple Change

Similarity
92.1%✔

Reason: Learning exploits
the geometry of the shape

Reason: Ignore
Complex Geometry

Learning is now
Directly on the Surface

v = [Data, X,Y,Z]

22
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Standard Forests
Spatial Representation is extrinsic

Spectral Forests
Learning isDirectly on the surface

Avg. Dice = 31.0% (±15.5)
Avg. Dist.  = 5.80mm (±4.24, max 38.02)

Avg. Dice = 77.6% (±11.41)
Avg. Dist.  = 2.02mm (±1.67, max 17.56)

Complete
Segmentation

(77 regions)

U1

U3

U2

X Y

Z
(RGB)= (X,Y,Z) (RGB)= (U1,U2,U3)

(Spectral)

(Complex Shapes of surfaces)
Ignore the Geometry✗

(Learning directly on surfaces)
Now Geometry Aware✔

Random Forests
Classifier

Application: Learning on Surfaces [Lombaert MICCAI’15]

23
Lombaert, Criminisi, Ayache, MICCAI (2015)
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Background on 
Geometric Deep Learning
How to Learn on Graph Node Data?

24
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Neural Network on Images
h1
h2
h3

hN

.

.

.

h1
h2
h3

hN

.

.

.

w11
w12
w13

wN1
wN2
wN3

h(layer 1) h(layer 2) h(layer L)

h1
h2
h3

hN

.

.

.

Problem if image content moves
✘ No invariance to translation

25
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Convolutions on Images
One SoluPon: Let’s move along the image

✓ Invariance to translaHon

Convolution

Well defined on Images
How to do this on Graphs?

LeCun et al, Neural Comp 1989
Denkel et al, NeurIPS 1988
Fukushima et al, BioCyber 1980

26

h1
h2
h3

hN

.

.

.

h1
h2
h3

hN

.

.

.

✶w11
✶w12
✶w13

h(layer 1) h(layer 2) h(layer L)

h1
h2
h3

hN

.

.

.
✶w11
✶w12
✶w13
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Convolutions on Graphs
• Remember: Convolutions and Fourier

• Convolution in Euclidean space

Fourier, Théorie de la Chaleur, 1822

27

How to use such filters on Graph?

ßà Multiplication in Fourier Space

An image A conv filter
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Spectral Convolutions on Graphs
• Approximation of conv. filter with Chebyshev Polynomials

Easy Convolution on Graphs

In Fourier Space, matrix notation

Hammond et al, Harmonic Anal 2011
Defferrard et al, NeurIPS 2016
Kipf, Welling, ICLR 2017

Bruna et al, ICML 2014
Duvenaud et al, NeurIPS 2015
Levie et al, ICLR 2018

28
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Spectral Convolutions on Graphs
• Simple Convolution via Graph Laplacians

Easy Convolution on Graphs

h(layer 1) h(layer 2)

Simple Convolution Layer

! (I + D-1/2A D-1/2)

"

h(layer 3)
! (I + D-1/2A D-1/2)

"

Too Simple for Fun Kernels?

29

Hammond et al, Harmonic Anal 2011
Defferrard et al, NeurIPS 2016
Kipf, Welling, ICLR 2017

Bruna et al, ICML 2014
Duvenaud et al, NeurIPS 2015
Levie et al, ICLR 2018
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Spectral Convolutions on Graphs
• Exploits Graph Laplacian and Convolutions over Graph Neighbors

[Image Courtesy: Kipf, GCN, 2016]

Problem:
• Need for Richer kernels
• Constrained to Fixed Graph Structure

Use Multiple Filters

30

Hammond et al, Harmonic Anal 2011
Defferrard et al, NeurIPS 2016
Kipf, Welling, ICLR 2017

Bruna et al, ICML 2014
Duvenaud et al, NeurIPS 2015
Levie et al, ICLR 2018
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Spatial Convolutions on Graphs
• Richer Filters on Tangent Planes of Manifolds

Kokkinos et al, CVPR 2012
Masci et al, 3dRR 2015
Boscaini et al, NeurIPS 2016
Monti et al, CVPR 2017
Fey et al, CVPR 2018

[Image Courtesy: Monti, MoNet, 2017]

!#
Learn Filter Weights in 

Polar Coordinates

Patch Operator
D(x)f

[Image Courtesy: Masci, Geodesic CNN, 2015]

How to Parameterize
Kernels ?

31
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Spatial Convolutions on Graphs
• Richer Kernels on Tangent Planes of Manifolds

[Image Courtesy: Monti, MoNet, 2017]

!#
Learn Kernel Parameters

Patch Operator
D(x)f

Patch Orientation?
Patch Construction?

ℎ!"#$ " = σ %
%&$

'7
ℎ%" ⋆ '!% "

8 9 = ex p :−12 9 − =(,*
+ >(

>*
%"
(9 − =(,*

Geodesic CNN
[Masci et al, 3dRR 2015]

( ) = exp −/)!0 1
1

"#
0!)

Anisotropic GCNN
[Boscaini et al, NeurIPS 2016]

( ) = exp 3−12 ) − 5$,&
!Σ$,&"#() − 5$,&

Mixture of Gaussians GCNN
[Monti et al, CVPR 2017]

Richer Kernels on Shapes

32

Kokkinos et al, CVPR 2012
Masci et al, 3dRR 2015
Boscaini et al, NeurIPS 2016
Monl et al, CVPR 2017
Fey et al, CVPR 2018
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Spatial Convolutions on Graphs
• Construction of Polar Patches

[Image Courtesy: Monti, MoNet, 2017]

!#

Patch Operator
D(x)f

Costly,
Arbitrary?

Patch Construction?

Geodesic Polylines across triangles

Patch Orientation?

Lines of Maximum Curvature

33

Kokkinos et al, CVPR 2012
Masci et al, 3dRR 2015
Boscaini et al, NeurIPS 2016
Monti et al, CVPR 2017
Fey et al, CVPR 2018
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Limita>ons of 
Geometric Deep Learning
What is preventing Generalization to Arbitrary Surfaces?

34
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Challenges in Medical Imaging
• Geometrical Complexity of Surfaces

[Image courtesy: Freesurfer]

Surfaces  – How to Create & Navigate patches
(where is ’up’ in a sulcus?)

Problem – ConvoluPons in Image Space
• Distance Ambiguity
• Volumes –vs– Surfaces
• Confusing for Learning Algorithms

Problem – Convolutions in Mesh Space
• Patch construction
• Highly folded surfaces
• Confusing for Learning Filters

!?
#?
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Challenges in Medical Imaging
• Representation of Mesh Coordinates

Point Coordinates
defined as (x,y,z) Coordinates

Mesh Coordinates?
(x,y,z); ((, )) inadequate in Euclidean Space

Mesh Coordinates
Inadequate in Euclidean Space

[Image courtesy: Freesurfer]

!?
#?

36
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Challenges in Medical Imaging
• Varying Mesh Triangulations

(xi, yi)
(xi+1, yi+1)

Conv Filter on a Grid

µk,�k

eui
euj

Conv Filters on Surfaces

Algorithm:
– Learns the Filter params (the red bars)
– Supposes neighbors are on a grid

Algorithm:
– Learns the Filter params (µ’s and σ’s)
– Requires Graph Neighborhoods

The Graph Structure 
can Change

How to Parameterize 
a Brain Surface?
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Challenge – Images vs Surfaces
Convolution Pooling

+

38

on images

on surfaces

How to learn on surfaces?
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Graph Networks – Two Contributions

Graph

convolution
.  .  .   . Graph

convolution
(1)

Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation 

[MedNeurips 2018, MedIA 2019]

Graph

convolution

Classification
/ Regression(2)

P
o
o
l
i
n
g

Graph

convolution

P
o
o
l
i
n
g

Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis 

[IPMI 2019, PAMI 2021]
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One Contribution:
Localized Graph Convolutions
How to Navigate Graph Convolutions on Arbitrary Surfaces?

Graph

convolution
.  .  .   . Graph

convolution

Gopinath et al, MedNeurips 2018, MedIA 2019
40
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Convolutions on Surfaces
• Convolutions on Spectral Embeddings

Convolution on an Image Graph Convolu[on on a Brain Surface

uR
uG

uB

Euclidean à Spectral Coordinates

41
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Su
rfa

ce
 #

1
Su

rfa
ce

 #
2

U1 U2 U3 U4 U15

-1
+1

Spectral DecomposiZon  (Eigenvectors of L)

u1

u2

u3

u1

u2

u3

yx

z

[    ]
Graph Laplacian

Edge (i,j) : Row/Column (i,j)

L =

Spectral Decomposition
L = UT Λ U

yx

z

Problem: Spectral bases are ambiguous to rotation

Spatial Information as Spectral Encoding

Lombaert et al, IPMI 2015
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Spectral Alignment

~ ~ ~

43
Lombaert et al, IPMI 2015
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Extension of 2D convolutions to irregular grids
Standard convolution on regular grid:

Grid space

4

matched nodes is then obtained by solving a Procrustes analysis problem. This
process is repeated until convergence.

2.2 Graph convolution on surfaces

We start by presenting the standard CNN model for rigid grids and then explain
how this model can be extended to an arbitrary geometry. Let Y(l) 2 RN⇥Ml be

the input feature map at convolution layer l of the network, such that y(l)ip is the

q-th feature of the i-th input node. The network input thus corresponds to Y(1).

Assuming a 1D grid, the output feature map of layer l is given by y(l+1)
ip = f(z(l)ip )

with

z(l)ip =
MlX

q=1

KlX

k=�Kl

w(l)
pqk · y(l)i+k,q + b(l)p . (1)

Here, w(l)
pqk are the convolution kernel weights, b(l)p the bias weights of the layer,

and f is a non-linear activation function, for instance the sigmoid or rectified
linear unit (ReLU) functions.

To extend this fixed-grid formulation to a graph G = {V, E}, we denote as
Ni = {j | (i, j) 2 E} the neighbors of node i 2 V. A generalized convolution
operation can then be defined as

z(l)ip =
X

j2Ni

MlX

q=1

KlX

k=1

w(l)
pqk · y(l)jq · '(bui, buj ; ⇥

(l)
k ) + b(l)p , (2)

where '(bui, buj ;⇥k) is a symmetric kernel in the embedding space with param-
eter ⇥k. In this work, we follow [8] and use a Gaussian kernel:

'(bui, buj ;µk,�k) = exp
�
� �k k(buj � bui)� µkk2

�
. (3)

Using this formulation, we define a fully-convolutional network composed
of 3 graph convolution layers with feature map sizes of M1 = 32, M2 = 64 and
M3 = 32, each one having Kl = 4 Gaussian kernels. The size of the last layer cor-
responds to the number of parcels to be segmented (32 in our case). Leaky ReLU

is applied after each layer to obtain filter responses: y(l)ip = max(0.01z(l)ip , z
(l)
ip ).

Since the parcels to segment are mutually exclusive, we use a softmax opera-
tion after the last graph convolution layer to obtain the parcel probabilities of

each node. The softmax function is given by
exp(y(l)

ip )
P

q exp(y(l)
iq )

. Finally, cross-entropy

is employed as output loss function:

E(⇥) = �
NX

i=1

CX

c=1

sic · log pic(⇥), (4)

where ⇥ = {w(l)
pqk, b

(l)
p , ⇥(l)

k } are the trainable network parameters, pic(⇥) is the
output probability for node i and parcel label c, and sic is a one-hot encoding
of the reference segmentation. This loss is minimized by back-propagating the
error using standard gradient descent optimization.
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is applied after each layer to obtain filter responses: y(l)ip = max(0.01z(l)ip , z
(l)
ip ).

Since the parcels to segment are mutually exclusive, we use a softmax opera-
tion after the last graph convolution layer to obtain the parcel probabilities of

each node. The softmax function is given by
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. Finally, cross-entropy

is employed as output loss function:

E(⇥) = �
NX

i=1

CX

c=1

sic · log pic(⇥), (4)

where ⇥ = {w(l)
pqk, b

(l)
p , ⇥(l)

k } are the trainable network parameters, pic(⇥) is the
output probability for node i and parcel label c, and sic is a one-hot encoding
of the reference segmentation. This loss is minimized by back-propagating the
error using standard gradient descent optimization.

ConvoluHon kernel weights

Input feature map
Non-linear activation 

(ReLU)

(xi, yi)
(xi+1, yi+1)
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Neighbor nodes on mesh

Parameters are learned
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matched nodes is then obtained by solving a Procrustes analysis problem. This
process is repeated until convergence.

2.2 Graph convolution on surfaces

We start by presenting the standard CNN model for rigid grids and then explain
how this model can be extended to an arbitrary geometry. Let Y(l) 2 RN⇥Ml be

the input feature map at convolution layer l of the network, such that y(l)ip is the

q-th feature of the i-th input node. The network input thus corresponds to Y(1).

Assuming a 1D grid, the output feature map of layer l is given by y(l+1)
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and f is a non-linear activation function, for instance the sigmoid or rectified
linear unit (ReLU) functions.

To extend this fixed-grid formulation to a graph G = {V, E}, we denote as
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where '(bui, buj ;⇥k) is a symmetric kernel in the embedding space with param-
eter ⇥k. In this work, we follow [8] and use a Gaussian kernel:

'(bui, buj ;µk,�k) = exp
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. (3)

Using this formulation, we define a fully-convolutional network composed
of 3 graph convolution layers with feature map sizes of M1 = 32, M2 = 64 and
M3 = 32, each one having Kl = 4 Gaussian kernels. The size of the last layer cor-
responds to the number of parcels to be segmented (32 in our case). Leaky ReLU

is applied after each layer to obtain filter responses: y(l)ip = max(0.01z(l)ip , z
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Since the parcels to segment are mutually exclusive, we use a softmax opera-
tion after the last graph convolution layer to obtain the parcel probabilities of
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pqk, b
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k } are the trainable network parameters, pic(⇥) is the
output probability for node i and parcel label c, and sic is a one-hot encoding
of the reference segmentation. This loss is minimized by back-propagating the
error using standard gradient descent optimization.
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Spectral Graph Conv Net – Architecture
• Enables classical architectures on brain surfaces

• Operating in the Spectral Domain  (not the grid Domain)

Leaky 
ReLU

Spectral filter
convolution
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Spectral filter
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OutputInput

KernelInputFilter weightsFeature map Bias

Convolution block
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Features and Filters are now in the Spectral Domain

Learning is now
Directly on the SurfaceKarthik Gopinath, PhD Student – Mostly his work

Gopinath et al, 2018

Gopinath, Desrosiers, Lombaert, Medical Image Analysis 2018
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Spectral Graph Conv Net – Feature Maps
• The Spectral Network – illustrated

s

Spectral coordinates

Sulcal depth
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Input Layer 1 Output

Spectral features
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Layer 2

Spectral features
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Spectral features

Graph convolutions of spectral filters
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Final parcellaNon

. . .y(1)
•,1 y(2)

•,1 y(L)
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p•,C

Spectral coordinates of nodes

46

Karthik Gopinath, PhD Student – Mostly his work
Gopinath et al, 2018

Gopinath, Desrosiers, Lombaert, Medical Image Analysis 2018
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Spectral Graph Conv Net – Loss Function
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Ground truth labels

Predicted probabiliHes

Cross Entropy

To Learn: Kernel weights, bias, parameters (!,")
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Experiments and Results
MindBoggle dataset :
• 101 subjects, seven different sites
• Meshes – from 102K to 185K vertices
• 32 manually labeled parcels

Klein et al, PLOS 2017
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Spectral Graph Conv Net – Hyper-parameter Selection
We choose L=4, K=6
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Spectral Graph Conv Net – Training Iterations
• Training a feature map – Its evolution
• Towards resembling observed cortical parcels

Gopinath et al, MedIA 2018
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Spectral Graph Conv Net – Results for Parcellation
• Quantitative Results (86.6% vs FS: 84.4%)

51
Gopinath et al, MedIA 2018
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Spectral Graph Conv Net – Results for Parcellation
• QualitaVve Results  (86.6% vs FS: 84.4%)

Advantage:  Only 18 seconds per subject VS hours for FreeSurfer

52
Gopinath et al, MedIA 2018
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Graph

convolution
.  .  .   . Graph

convolution

ContribuOons: Graph Conv

(1)

Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation 

[MedNeurips 2018, MedIA 2019]
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One Contribution:
Learnable Graph Pooling
How to Learn Graph Pooling Patterns on Arbitrary Surfaces?

Graph

convoluUon

Classification
/ Regression

P
o
o
l
i
n
g

Graph

convolution

P
o
o
l
i
n
g

Gopinath et al, IPMI 2019, PAMI 2021
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Related Work – Global Average Pooling
• Pool from N nodes to 1 node

Global
Average
Pooling

Considers all nodes equally
(whole brain is 1 cluster)

Classification
or

Regression

1  x  F3
1 x  # Feature Maps

N x  F2N x  F1
# Nodes  x  # Feature Maps# Nodes  x # Feature maps

How to Pool from
N(layer 1) to N(layer 2) nodes?

Loss of shape information 
when pooling
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Related Work – Hierarchical Differentiable Pooling

Learn node-cluster 
assignments

Ying et al, NeurIPS 2018

Cluster with Spectral K-Means
Wang et al, ECCV 2018

Wang et al, Pointset Learning, ECCV 2018
Ying et al, DiffPool, NeurIPS 2018

Fixed number of 
cluster nodes

Nodes lacking 
intrinsic localization
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GConv
ReLU

GConv
softmax

N ⇥M1

N ⇥ C1

N ⇥ 5

C1 ⇥M1

Y(2)

Y(1)

S(1)
GPool

S(1)>Y(1)S(1)>Y(1)S(1)>Y(1)

C1 ⇥M1C1 ⇥M1

Input

Proposed: Learnable Graph Pooling

Uses two paths
2. Node features

1. Node to Cluster Assignment

Clusters (e.g., probabilities)

Features

New layer with 
C nodes, M features
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Node featuresTCluster Assignment

. =

Learnable Graph Pooling – Building Nodes

Expected convolution value over a cluster

58

From N(layer 1) to N(layer 2) nodes
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Node featuresTCluster Assignment

. =

Learnable Graph Pooling – Building Edges

Expected edge weight between clusters (c,d)

59

Expected convolu5on value over a cluster

From N(layer 1) to N(layer 2) nodes
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GConv
ReLU

GConv
softmax

N ⇥M1

N ⇥ C1

N ⇥ 5

C1 ⇥M1

Y(2)

Y(1)

S(1)
GPool

S(1)>Y(1)S(1)>Y(1)S(1)>Y(1)

C1 ⇥M1C1 ⇥M1

Input

Learnable Graph Pooling – Multiple Layers
• Adding [ Conv+Pool ] Blocks

[ Block 1 : Convolution + Pooling ]

[ Block 2 :
Convolution + 

Pooling ]

Fully
Connected

⇥2

Disease / 
Age prediction

60

New Node Value:

New Edge Weight:
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Learnable Graph Pooling – Loss Function

Cross-Entropy / 
Mean square error

Regularization loss
to obtain spatially regular clusters

Avoids issues of [Ying et al, 2018]: 
• Hard training of pooling path, 
• Spurious local minima

61

Function to optimize:
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Experiments and Results
Datasets:
• ADNI: 731 brains
•MindBoggle: 101 brains

Experiments: 
• Pooling comparison
• Disease classification
• Age prediction

Klein et al, PLOS 2017
Jack et al, MRI 2008
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Comparison of Different Pooling Methods
•Pooled Clusters from Subject-sex Classification

Spectral k-means clustering Fixed parcel clusters Learned clusters from our method

Gopinath et al, IPMI 2019, PAMI 2021
Wang et al, ECCV 2018
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Comparison of Different Pooling Methods
• Pooled Clusters from Subject-sex Classification

Gopinath et al, IPMI 2019, PAMI 2021
Wang et al, ECCV 2018
Gao, Ji, ICML 2019
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Geometry-based Pooling
improves Sex Classification
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Learnable Pooling – Results for Disease Classification
• Dataset: 731 FreeSurfer Brain Surfaces from ADNI

Baseline* Ours without
spectral features

Ours with
spectral features

Features
Cortical thickness 

+ Sulcal Depth
Cortical thickness 

+ Sulcal Depth

Spectral + 
Cortical thickness + 

Sulcal Depth

NC vs MCI 63± 4 63.71 ± 5.72 7&. '( ± 6.40
MCI vs AD 65 ± 6 74.03 ± 8.63 7,. (- ± 4.78
NC vs AD 80± 5 76.00± 6.06 89.33± 4.30

Average accuracy for disease classification

*C. Ledig et al, 2014

Pointwise information,

No neighborhood

Learnable Graph Pooling,

No geometrical information

Learnable Graph Pooling,

With geometrical information

Learnable Pooling

Classification

Normal vs MCI vs Alzheimer's

Geometry-based Pooling
improves Alzheimer’s ClassificaPon
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Learnable Pooling – Results for Brain Age Prediction
• Assumption: Can our model be used as a biomarker for AD?

Learnable pooling

Age Regression

Train on 
NC

Predict on 
NC and AD

Train on Healthy (NC)
Predict Age from Geometry
↪ if age is good -> Healthy
↪ if faster aging -> Alzheimer’s

Geometry-age of Alzheimer’s Subjects
Deviates from Normal Aging

Healthy 
Aging

Faster 
Aging

• Prediction of Alzheimer’s age (or Geometry age) differs from Healthy

66
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Graph

convolution

Graph

convolution
.  .  .   . Graph

convolution

Contributions: Graph Conv + Pooling

Classification
/ Regression

(1)

Graph ConvoluPons on Spectral Embeddings for CorHcal Surface ParcellaHon 

(2)

[MedNeurips 2018, MedIA 2019]

P
o
o
l
i
n
g

Graph

convolution

P
o
o
l
i
n
g

Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis 

[IPMI 2019, TPAMI 2021]
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Conclusion:
Rethinking Learning on Surfaces
Use Spectral Shape Embeddings
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Classification

/ Regression

Conclusions

uR
uG

uB

Spectral Parameterization Spectral Graph Convolution Spectral Graph Pooling

?

Take Home Message
• Graph ConvoluPon + Pooling on Surfaces, 
↪ Easier with Spectral Shapes
• Simple – Fast Opera[ons on Surfaces
• Direct Learning on Surface

• Limita[ons:  Same Mesh Topology

Intrinsic Shape Coordinates Conv Nets on Brain Surfaces Geometry-based Pooling

Acknowledgments

1 2 3

Dr. Karthik Gopinath Prof. Christian Desrosiers

69

PAPERS
[PAMI    2021] Learnable Pooling in Graphs

[IPMI     2019] Graph Convolution Pooling
[MedIA 2018] Graph Convolutions


