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ABSTRACT

Segmentation of ultrasound data is improved when using
multi-parametric approach. In this paper we propose the use
of Multi-Parametric Mean Shift procedure (MPMS). Two
derived processes are described: MPMS smoothing which
achieves a multi-parametric filtering in the spatial-range
domain and MPMS segmentation which takes benefit of this
filtering for segmenting the multidimensional data. MPMS
segmentation is particularly attractive, since it achieves an
unsupervised segmentation. These methods were positively
tested on three sets of simulated ultrasonic data,
representative of various scatterers densities and also
various scattering conditions.

1. INTRODUCTION

Several approaches have been proposed for the
segmentation of ultrasonic images. Most of them are based
on the pixel intensity and use either an active contour or a
Bayesian framework in order to define an energy function
that characterizes a homogeneous region or a contour. The
poor quality of conventional ultrasonic images and the slight
differences between the various tissues make the automatic
segmentation difficult.

Among the region-based approaches described in the
literature, Ashton and Parker [1] have proposed a
modification of an adaptive clustering algorithm for taking
into account the particularities of ultrasonic data. Spatial
smoothness constraints are incorporated in the algorithm by
the use of a Markov Random Field (MRF) which models the
region process. Implementation of these algorithms involves
a priori information about the intensity distribution of the
various tissues [2].

An intensity-amplitude invariant approach using a
phased-based feature detection method has been proposed in
[3]. Applied to an echocardiographic image sequence, the
algorithm takes advantage of the temporal inconsistency of
speckle for detecting the acoustic boundaries. In [4], a linear
combination of the pixel grey level and of the local entropy is
used in the "Minimum Cross Entropy Thresholding"
technique for segmenting ultrasonic images. This original
method can be generalized to a multivariate thresholding
based on several image parameters.

In this study, we propose a method for segmenting
ultrasound data from a set of parametric images. These
parametric images derive from tissue characterisation

techniques and are calculated on envelope echographic
images or on Radio Frequency (RF) signals. At first, a
multidimensional filtering based on the mean shift technique
is performed in the joint spatial-range domain [5]. This
technique consists in assigning each pixel with a local mode
of the underlying distribution. The local modes are
identified by an iteratively moving kernel in both spatial and
range domains. The final segmentation is obtained from the
resulting multidimensional filtered image, by fusing regions
associated with nearby modes.

2. ULTRASOUND AND PARAMETRIC IMAGES

The conventional image used by the radiologist during an
ultrasonic examination is the B-mode image computed from
the envelope of the RF signal. In the B-mode, only a
reduced part of the whole information given by the original
signal is exploited. However, some additional acoustical
parameters representative of the scatterers properties within
the tissues can be extracted from the RF signal. Those
parameters can provide two kinds of information: the
echogenicity properties of the scatterers and the spatial
organisation of the scatterers. In our application, the
envelope intensity of the RF signal and two parameters
related to the spatial organisation of the scatterers will be
considered. The first parameter @, estimates the scatterers

density, the second one called © gives some information
about the scattering conditions and derives from the
Nakagami distribution. The proposed method will be tested
on ultrasonic data simulated with the Field software [6].
Given the positions and the acoustical characteristics of the
scatterers, as well as the beam characteristics, this software
is able to compute the emitted and received waves, thus
creating the corresponding RF signals.

2.1 Scatterers density estimator a4,

The literature shows that the spatial organisation of the
scatterers can be evaluated from the 2D envelope image [7].
It has been shown that according to the density range and
spatial organisation of the scatterers, the intensity of the
envelope can be modelled by several distributions [8].

The spatial organisation of the scatterers in the tissue can be
estimated by computing a density estimator. In the case of a
medium without regularly spaced scatterers, the resulting
echo is a coherent sum of reflected waves from randomly
distributed scatterers. If the number of scatterers per



resolution cell is greater than 10, the amplitude of the
envelope signal is Rayleigh distributed. For smaller
densities, the envelope is modelled with a K-distribution. Its
density probability function is given in eq. (1) :
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with E[] the statistical average, A the envelope signal, K, the
modified second Bessel function of order » and o the
effective number of scatterers per resolution cell.
Ossant et al. have proposed an estimator of o, called 4,,
based on low order moments [9]. Its computation is given by
eq. 3):
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The right part of eq. (3) can be computed from the envelope
image. To determine the estimate g, of a, equation (3) is

numerically solved using a dichotomy algorithm.

2.2 Nakagami distribution

According to the scatterers density, the Nakagami
distribution [10] covers the whole range of envelope
statistics: Rayleigh, pre-Rayleigh (K-distribution) and post-
Rayleigh (Rice). The probability density function (pdf) is

expressed as follows:
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where U(A) is the unit step function. For the Nakagami
distribution, Q is the scaling parameter and , is the shape
parameter. m and Q can be estimated as:
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2.3  Numerical phantoms

Three numerical phantoms were used for the simulation,
resulting in three sets of ultrasonic data. They mimic lesions
in the structure of the tissue. The first phantom is a low-
density and lowly scattering lesion (data 1), the second one
consists in a high-density and highly scattering lesion (data
2), and the third one shows a high-density lesion (data 3).
The geometry of the two-region phantoms is shown in Fig. 1.
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Figure 1: Geometry of the phantom

3. MULTIDIMENSIONAL MEAN SHIFT

Mean shift is a non parametric estimator of density gradient
developed by Fukunaga and Hostetler thirty years ago [11]

and recently exploited in low level computer vision tasks by
Comaniciu and Meer ([12],[5]). Mean shift framework is
interesting because it jointly takes into account both spatial
information (pixel location in the spatial domain R*) and
range information (gray level, color or spectral information
in the range domain R"). The resulting spatial-range domain
is represented by a d-dimensional Euclidian space R, where
d =s+r. Moreover, the mean shift technique is also
attractive, since it doesn’t need prior knowledge about pixel
intensity distribution. In this paper, we propose a
multidimensional range implementation of the Mean Shift
that takes into account the Multi-Parametric images
computed from the envelope of the RF ultrasonic signal. We
called this algorithm (MPMS).

3.1  Principle of mean shift procedure

The mean shift procedure was fully described in [5]. In this
section, we remind the general principle and the main
equations governing the method.

The mean shift method is based on the kernel density
estimation. In eq. 6, the multivariate kernel density estimator
with kernel K (a radially symmetric, non-negative function
centred at zero and integrating to one) and a symmetric,
positive definite bandwidth matrix H is defined for a set of n
data points {Xi}izl, _ in a d-dimensional Euclidian space RY,

In this expression, the density at each point x is estimated
using the same scaled kernel over the whole data points.
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The bandwidth H scales the kernel support to be radial
symmetric.

Ky(u)= (det[H]);K(H;uJ (N

In our application, we will restrict H to a diagonal matrix.
Each element h, (n = 1,..., d) of the matrix is the scale
parameter of the n™ dimension of the d-dimensional
Euclidian space RY.
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Due to its symmetry property, K(u) can be replaced by its
profile f : [(), oo) — R , amonotonically decreasing function:
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where ¢, , is a normalization constant.

Eq. 6 can be rewritten taking into account eq. 7 and eq. 9
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where d[x, x; ,H]* denotes the square Mahalanobis distance
from x to x;.



Using the linearity property of eq. 10, the density gradient
estimator is obtained as the gradient of the density estimator
ineq. 11.

Vf(x) = Vf(x)
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The mean shift vector is defined in eq. 13. It was shown that
this vector is an estimator of the normalized gradient of the
underlying distribution.
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The main property of this estimator is the convergence
associated with its repetitive computation. The mean shift
procedure consists in an iterative computation of the mean
shift vector M(x) and the translation of the kernel by M(x). It
was proved that this process converges at a point where the

estimate has zero gradient i.e. H M (xm ~0-

Starting from a point x = x!'J, the successive locations of the
kernel are stored by the sequence {x L ]}1:1 , givenby eq. 14.
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process stops when the module of the mean shift vector is
less than a tolerance threshold. The point of convergence
Xcony COITEsponds to the mode of the distribution.

3.2 MPMS smoothing

In our application, ultrasonic data include three bi-
dimensional parametric images: the ultrasonic envelope
image, an image of the local scatterers density estimation
and an image of the feature Q estimated from the Nakagami
distribution (see Section 2). So, each point x; is described by
5 coordinates x/ (-1, .5 x' and x? represent the spatial

At each iteration,

- HX[1+1]_X[1]H is evaluated. The

location and the last three ones indicate the grey levels of
the parametric data. MPMS smoothing takes into account
those 5 dimensions.

The image filtering consists in applying the mean shift
procedure to each pixel {x, }I_:l,"” of the original image and

by assigning to each pixel {y } ~of the filtered image the

components of the point of convergence X, associated to
X;.

The features required by MPMS are the diagonal entries of
the matrix H. 4’ and A’ denote the spatial scale parameters
and #°, h* and i’ denote the range scale parameters. Those
scale parameters control the size of the kernels used for
detecting the modes of the underlying multidimensional
density. As we use two spherical kernels for the spatial

domain (k' = h” = hy) and also for the range domain (4’ =
= I’ = h,), only both parameters /, and 4, are needed.

3.3  MPMS segmentation

The final segmentation is obtained from the resulting
multidimensional filtered image, by fusion of the regions
associated with nearby modes. Clusters are identified by
linking together all filtered pixels which are closer than a
normalised distance in the spatial-range domain. In order to
clearly distinguish the different clusters and consequently
improve the resulting segmentation, MPMS filtering can be
iterated several times before this fusion step.

4. RESULTS AND DISCUSSION

We have tested MPMS smoothing on the three sets of multi-
dimensional ultrasonic data previously defined in Section 2
with (A, h,) = (10, 70). In order to evaluate the results, the
reference image used for the simulation is given in Fig.3a. In
Fig.2, the filtering effect of MPMS can be observed
separately on each range component of data I, in order to
see the contribution of each parametric image. Each of the
three range components has been well smoothed. MPMS
has reduced the speckle noise while preserving a high
quality discontinuity.
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Figure 2: Range components a), b) ,c) of data I and smoothing
effect d), e), f) by MPMS (h=10, h,= 70).

For clarity purpose, the multi-parametric information was
synthesised in only one image called “fuzzed image”. This
image displays for each pixel the value of a special norm
computed from the range components of the multi-
dimensional data. The grey levels of the fuzzed image are

computed using eq.15:
(2 G+ G2 (15)

In Fig. 3, we compare visually a fuzzed image obtained
directly from data I and a fuzzed image obtained after
MPMS smoothing applied to the same data. The image in
Fig. 3¢ appears more homogeneous and the dark blob shape
is also closer to the ideal one (Fig. 3a). Hence, the shape
under-estimation of the obtained structure using ultrasound
is slightly corrected by MPMS smoothing effect.
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Figure 3: a) the phantom reference image and fuzzed images b)
before and c) after filtering by MPMS obtained with data 1.

We choose to illustrate the impact of MPMS smoothing on
segmentation results. For both the original data and filtered
data, the fuzzed image and every range component were
segmented using the Otsu automated thresholding [13]. To
measure the thresholding accuracy, -classical correct
detection rates (cdr) were computed. Corresponding results,
in percentage, are given in Fig. 4. For all tested data, Fig. 4
shows that after MPMS filtering, the number of
misclassified pixels has decreased by 24% in average.
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Figure 4: Parameters cdr related to the Otsu thresholding computed
from the fuzzed images and every range component, before and
after MPMS smoothing.

The MPMS segmentation has been computed from the
resulting filtered data. In the present case, in order to
increase the filtering effect, we iterated MPMS smoothing
10 times before starting the segmentation process. In Fig. 5,
the results of MPMS segmentation obtained from the three
sets of ultrasonic data are illustrated. MPMS segmentation
discriminates correctly the dark blob from the background
without specifying the number of clusters. The values of the
cdr parameters are all higher than 94 %, confirming the
efficiency of our method and its superiority over the
automated thresholding.

data 1 data 2 data 3

cdr 94,7% 98,3% 97,7%

Figure 5: Results of MPMS segmentation from the three sets of
ultrasonic data and evaluation of the segmentation accuracy.

5. CONCLUSION

A mean shift based multi-parametric algorithm (MPMS) has
been successfully tested to improve simulated ultrasound
images segmentation. In our application, the multi-
dimensional aspect consists in combining three images
(envelope, density and a parameter of the Nakagami
distribution). Two derived processes are described: MPMS
smoothing which achieves a multi-parametric filtering and
MPMS segmentation which takes benefit of the filtering for
segmenting data. We have proved the efficiency of MPMS
smoothing by evaluating the quality of an automated
thresholding after the filtering step. Similarly, MPMS
segmentation taking into account the 5 filtered components
in the joint domain outperforms the automated thresholding.
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