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Two-Dimensional Ultrasonic Flaw Detection
Based on the Wavelet Packet Transform

Marc C. Robini, Isabelle E. Magnin, Member, IEEE, Hugues Benoit-Cattin, and Atilla Baskurt

Abstract—An important issue in ultrasonic nondestruc-
tive evaluation is the detection of flaw echoes in the pres-
ence of coherent background noise associated with the mi-
crostructure of materials. Many signal processing tech-
niques have proven to be useful for this purpose, but fully 2-
D flaw detection techniques remain desirable. In this paper,
we describe a novel automatic flaw detection method based
on the wavelet packet transform, which is particularly well
adapted to B-scan image analysis. After a brief review of
the essential elements of the theory of wavelets and wavelet
packets, a detailed description of the method is provided.
The detection process operates on a set of spatially oriented
frequency channels, i.e., detail images, obtained from suc-
cessive wavelet packet decompositions of the initial B-scan.
A statistical selection procedure based on the modeling of
the detail image histograms retains the useful information-
bearing frequency channels. The flaw information is then
extracted from these selected channels by means of a spe-
cific thresholding scheme. Some experimental detection re-
sults in B-scan images of austenitic stainless steel samples
comprising artificial flaws are presented.

I. Introduction

Ultrasonic imaging plays an important role in non-
destructive evaluation (NDE) of engineering materials

as well as in noninvasive diagnostic medicine. However, the
detection capability is often severly limited by the inter-
ference noise (i.e., clutter, speckle) produced by the un-
resolvable scatterers randomly distributed throughout the
material. Such coherent interference noise may become sig-
nificant to the point that it completely masks the target of
interest (i.e., flaw, tumor, etc.) in both A-scan signals and
B-scan images. As a result, a number of techniques have
been proposed to improve the signal-to-noise ratio. Typical
approaches include spatial compounding [1]–[3], frequency
compounding [4], [5], linear bandpass filtering [6], [7] and
split-spectrum processing (SSP) techniques such as aver-
aging, minimization, polarity thresholding and Bayesian
detection [8]–[12]. In the NDE field, SSP methods give
excellent results but can be sensitive to the choice of pa-
rameters [13], [14]. Alternative approaches that show less
sensitivity to the environment make use of adaptive fil-
tering, order statistic filtering, and constant false-alarm
rate detection [15]–[17]. The use of the wavelet transform
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was also recently considered [18], [19]. When considering
B-scan images, fully 2-D flaw detection techniques are de-
sirable whenever the flaw extends over two or more adja-
cent A-scans, but it appears that few processing techniques
perform simultaneously on both dimensions of the image
formed [11], [20]–[22]. In the current work, we propose a
novel method for automatic 2-D flaw detection based on
the wavelet packet transform.

The presence of flaws introduces some modifications of
the spectral properties in both directions of the B-scan
that can be analyzed separately. In the temporal direc-
tion, the physics is governed by the shape of the trans-
mitted sound pulse. If the grain scattering is mainly in
the Rayleigh region, the noise spectrum will have most of
its power in the high-frequency region of the transducer
pass-band [6], [7], [20]. This is not the case for flaw echoes
because flaws are generally larger in size than the grain
and often behave like geometrical reflectors. In fact, due
to the overall filtering effect of attenuation, the flaw spec-
trum will have a stronger content in the low-frequency re-
gion of the transducer pass-band. In the spatial direction,
provided that the flaw size is significantly larger than the
average grain size of the metal sample being tested, a small
shift in the transducer location can result in a significant
change of the grain interference pattern, while it has mi-
nor effects on the flaw signal [3], [20]. Hence, a relatively
flat power spectrum is observed for the time instants cor-
responding to grain noise only, whereas for the flaw signal,
the correlation between the adjacent echoes yields a higher
intensity low frequency region [20].

The behavior of the temporal and spatial frequency
components of a B-scan image at flaw locations is a pro-
ductive attribute for detection. Optimal bandpass filtering
can provide good results if the information-bearing fre-
quency bands that are dependent on many complex fac-
tors (such as the grain size, the flaw size, location and
orientation, the scattering properties of the material, the
characteristics of the transducer, etc.) are known a priori.
Yet, in most cases, this information is unknown and alter-
native flaw detection techniques such as the ones described
in [16] and [17] can be used for A-scan processing. When
dealing with a B-scan image, one should clearly consider
its horizontal (spatial) and vertical (temporal) directions
as preferential. Keeping this in mind, the 2-D separable
wavelet transform [23], [24], seems to be an effective tool
for B-scan processing. However, the conventional wavelet
transform decomposes a signal into a set of frequency chan-
nels that have narrower bandwidths in the lower frequency
region, which makes it suitable for signals consisting pri-
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marily of smooth components. This is not directly appli-
cable to bandpass signals such as ultrasonic RF signals
and leads naturally to a generalization of the concept of
wavelet bases, namely wavelet packets (WP’s) [25], [26],
which provide the required amount of flexibility to ana-
lyze B-scan images.

The design of the flaw detection algorithm proposed in
this paper is motivated by the fact that the description
of the B-scan in some particular frequency bands (called
the useful information-bearing frequency bands) exhibits a
stronger flaw-to-clutter ratio (FCR) than the original sig-
nal. As suggested above, this assumption holds if the grain
scattering is mainly in the Rayleigh region and if the flaw
is larger in size than the grain and is intercepted by sev-
eral adjacent A-scans. Under these conditions, the received
wideband B-scan is first partitioned into several sets of in-
dependent, spatially oriented frequency channels (detail
images) via successive applications of the WP transform,
each of these channels being then a potential candidate for
flaw detection. Next, a selection of the useful information-
bearing frequency channels, that is the channels with the
highest FCR, is performed on the basis of the statistics of
the detail images, i.e., their probability density functions
(PDFs). Appropriate modeling of these PDFs therefore
constitutes a key issue of the method. To complete detec-
tion, that is to come up with binary results indicating the
location of the flaw echoes that are present in the pro-
cessing window, a global thresholding scheme is employed
to extract the flaw information from the high FCR detail
images retained by the selection procedure. However, be-
cause of the unimodal characteristic of the detail image
PDFs, the common threshold selection methods based on
the amplitude features are not adapted. Furthermore, due
to the varying statistics of the detail images, the thresh-
olds must be set adaptively. Lastly, a simple combination
procedure leads to the final detection results.

The paper is organized as follows: in Section II, we
briefly review the theory of wavelets and wavelet packets.
The application of the WP transform to flaw detection is
described in Section III. Section IV presents experimental
results for B-scan images of austenitic stainless steel sam-
ples (comprising artificial flaws) evaluated with different
types of transducers; it appears that the proposed algo-
rithm behaves well in the presence of multiple flaws with
different FCR’s in the processing window. Concluding re-
marks are given in Section V.

II. Wavelet Transform and Wavelet Packets

A. A Short Review of Wavelet Analysis

The wavelet transform of a function f corresponds
to the decomposition of f on the family of wavelets
(ψa,b(x))a∈R∗+,b∈R generated from one single function ψ

(the mother wavelet) by dilatations and translations [23],

[27], [28]:

WTf (a, b) =

+∞∫
−∞

f(x)ψa,b(x) dx, (1)

ψa,b(x) = a−1/2ψ

(
x− b
a

)
.

In practice, one prefers to write f as a discrete superposi-
tion corresponding to a discrete set of continuous wavelets.
Of particular interest is the discretization on a dyadic
grid (a = 2j , b = 2jk, (j, k) ∈ Z2) for which it is possi-
ble to construct functions ψ such that the set (ψj,k(x) =
2−j/2ψ(2−jx−k))(j,k)∈Z2 constitutes an orthonormal basis
of square integrable functions over R (i.e., L2(R)) [27]–[30].
On this discrete grid, the wavelet decomposition of f be-
comes:

f(x) =
∑
j

∑
k

djk(f)ψj,k(x) (2)

where the wavelet coefficients djk(f) are inner products of
the signal with the wavelet basis functions.

djk(f) = 〈f, ψj,k〉 =

+∞∫
−∞

f(x)ψj,k(x) dx. (3)

This discrete wavelet transform has been extensively stud-
ied by Mallat [23], [24], who built a complete mathemat-
ical theory of multiresolution analysis particularly well
adapted to the use of wavelet bases in image analysis.

In a multiresolution analysis, one considers the set of
vector spaces (Vj)j∈Z. These spaces Vj describe successive
approximation spaces · · ·V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · of
L2(R), with resolution 2−j . One also introduces a scaling
function φ, together with its dilated and translated ver-
sions φj,k(x) = 2−j/2φ(2−jx − k), (j, k) ∈ Z2, such that
(φj,k(x))k∈Z constitutes an orthonormal basis of the closed
subspace Vj . For each j, the ψj,k span a space Wj which is
exactly the orthogonal complement in Vj−1 of Vj . There-
fore, the wavelet coefficients djk(f) describe the difference
of information between the approximation of f with reso-
lution 2−(j−1) and the coarser approximation with resolu-
tion 2−j . To construct the mother wavelet ψ, we may first
determine the scaling function φ which satisfies the two
scale difference equation:

φ(x) =
√

2
∑
n

h(n)φ(2x− n) (4)

where h is the impulse response of a discrete filter de-
fined by h(n) = 1/2〈φ(x/2), φ(x− n)〉, n ∈ Z. The mother
wavelet ψ is related to the scaling function via

ψ(x) =
√

2
∑
n

g(n)φ(2x− n) (5)

where g(n) = (−1)nh(1 − n), n ∈ Z. The algorithm pro-
posed by Mallat [23] for the computation of the djk(f) can
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then be summarized by the following two equations:

djk(f) =
∑
n

g(2k − n)aj−1
n (f)

ajk(f) =
∑
n

h(2k − n)aj−1
n (f)

(6)

where the ajk(f) are coefficients characterizing the projec-
tion of f onto Vj . If the function f is given in a sampled
form, then one can take these samples for the highest order
resolution approximation coefficients a0

k and (6) describes
a subband decomposition on these sampled values with
low-pass filter h and high-pass filter g. As originally in-
vestigated by Daubechies [27], it is possible to construct
orthonormal wavelet bases in which ψ has finite support,
therefore corresponding to FIR filters. Much work investi-
gating the design of such filters can be found in the signal
processing literature [31]–[34].

An obvious way to extend the 1-D wavelet transform to
higher dimensions is to use separable wavelets [23], [24].
Consider a 1-D scaling function φ(x) and its associated
wavelet ψ(x). One can construct four 2-D functions:

Φ(x, y) = φ(x)φ(y), Ψ1(x, y) = φ(x)ψ(y),
Ψ2(x, y) = ψ(x)φ(y), Ψ3(x, y) = ψ(x)ψ(y),

(7)

which are orthogonal to each other with respect to integer
shifts. The function Φ(x, y) is a separable 2-D scaling func-
tion (a low pass filter) and the wavelets Ψi(x, y) are such
that the set (2−jΨi(2−jx− k, 2−jy − 1))i=1,2,3;(j,k,l)∈Z3 is
an orthonormal basis of L2(R2). The approximation of a
signal f(x, y) at resolution 2−j is characterized by the set
of inner products

Ajf =
(
〈f(x, y), 2−jΦ(2−jx− k, 2−jy − l)〉

)
(k,l)∈Z2 ,

(8)

and the difference of information between Aj−1f and the
coarser approximation Ajf is given by the detail images

Dj
i f =

(
〈f(x, y), 2−jΨi(2−jx− k, 2−jy − l)〉

)
(k,l)∈Z2 ,

i = 1, 2, 3. (9)

This solution corresponds to a separable 2-D filter bank
with subsampling by two in each dimension. Fig. 1 repre-
sents one stage in such a decomposition of an image, to-
gether with the corresponding partition of the frequency
plane. Starting with the function f given in a sampled form
(A0f), this decomposition scheme is recursively performed
to the output giving the low resolution subimage Ajf . It
leads to the conventional wavelet transform which can be
interpreted as an octave band signal decomposition.

B. Wavelet Packets

WP’s were introduced by Coifman et al. [25] and Wick-
erhauser [26], as a family of orthonormal bases for discrete
functions of RN , including the wavelet basis and the short-
time-Fourier-transform (STFT)-like basis as its members.

Fig. 1. (a) Separable 2D filter bank corresponding to a separable
wavelet basis, the filters h and g are, respectively, a half-band low-
pass filter and a half-band highpass filter. Aj−1f is the initial im-
age corresponding to resolution 2−(j−1), Ajf is the low resolution
subimage (2−j), and (Dji )i=1,2,3 are the detail images corresponding
to the information visible at resolution 2−(j−1). The corresponding
partition of the frequency plane is indicated in (b).

WP’s represent a generalization of the method of mul-
tiresolution decomposition in the sense that the WP basis
functions (ϑm)m∈N can be generated from a given function
ϑ0 according to:

ϑ2m(x) =
√

2
∑
n

h(n)ϑm(2x− n)

ϑ2m+1(x) =
√

2
∑
n

g(n)ϑm(2x− n)
(10)

where the function ϑ0 can be identified with the scaling
function φ and ϑ1 with the mother wavelet ψ. Then, the
library of WP bases can be defined to be the collection of
orthonormal bases of L2(R2) composed of functions of the
form ϑj,k,m(x) = 2−j/2ϑm(2−jx − k), (j, k,m) ∈ Z2 × N.
Each element of the library is determined by a subset
of the indexes j, k, and m (for instance, a conventional
wavelet basis corresponds to the collection of indexes
(j, k, 1), (j, k) ∈ Z2). The set (ϑj,k,m(x))k∈Z is an orthonor-
mal basis of a subspace Vj,m of L2(R) such that Vj,2m+1 is
the orthogonal complement of Vj,2m in Vj−1,m, where Vj,0
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can be identified with the closed subspace Vj and Vj,1 with
Wj .

By analogy with (7), one can construct the set of func-
tions

(Vm,n(x, y) = ϑm(x)ϑn(y))(m,n)∈N2 , (11)

where V0,0 = Φ,V0,1 = Ψ1,V1,0 = Ψ2, and V1,1 = Ψ3 stand
as particular cases. A 2-D WP basis is then composed of
functions of the form:

Vj,k,l,m,n(x, y) = 2−jVm,n(2−jx− k, 2−jy − 1)
(12)

where the collection of indexes (j, k, l,m, n) ∈ Z3 ×
N2 is such that the intervals

[
2−jm, 2−j(m+ 1)

)
×[

2−jn, 2−j(n+ 1)
)

form a disjoint cover of [0,+∞) ×
[0,+∞) and k, l range over all the integers. Hence, any
triplet (j,m, n), (m,n) 6= (0, 0) thus defined gives rise to a
detail image:

Dj
m,nf = (〈f(x, y),Vj,k,l,m,n(x, y)〉)(k,l)∈Z2

(13)

which describes f(x, y) in the frequency bands

[−(m+ 1)2−jπx,−m2−jπx]

× [−(n+ 1)2−jπy,−n2−jπy] ∪ [m2−jπx, (m+ 1)2−jπx]

× [n2−jπy, (n+ 1)2−jπy].

From a practical point of view, the key difference be-
tween the conventional wavelet transform and the WP
transform is that the decomposition scheme [Fig. 1(a)] is
no longer simply applied to the output giving the low fre-
quency subimage. Instead, it can be applied to any output,
thus leading to a quadtree structure representation. Let us
notice finally that STFT-like bases correspond to the par-
ticular case of a regular tree, i.e., when all subimages are
decomposed in each scale to achieve full decomposition, or
equivalently, uniform frequency resolution.

III. Wavelet Packets Based

Ultrasonic Flaw Detection

Due to the separability of the B-scan into orthogonal di-
rections and based on the obervation that its partial spec-
tra (the temporal and spatial frequency components) be-
have in a distinct manner at flaw locations [3], [6], [7], [20],
the 2-D separable wavelet transform appears to be well-
suited to B-scan image analysis. The conventional wavelet
transform [23], [24], recursively decomposes subsignals in
the low frequency channels. However, because the infor-
mation contained by ultrasonic RF signals is located in
the middle frequency channels, further decomposition just
in the lower frequency region does not help much for the
purpose of flaw detection. Thus, an appropriate way to
analyze B-scan images is to allow the decomposition of
any frequency channel such as the WP transform [25], [26]

TABLE I
8-taps Daubechies Filter Coefficients.

h(0) −0.0535744507090
h(1) −0.0209554825625
h(2) 0.3518695343280
h(3) 0.5683291217040
h(4) 0.2106172671020
h(5) −0.0701588120895
h(6) −0.0089123507210
h(7) 0.0227851729480

does. As we are concerned with detection, redundancy is
not prejudicial, it is even desirable. Therefore, we choose
to extract the flaw information from the set of detail im-
ages (Dj

m,nf)j=1,...J;m,n=0,...2j−1,(m,n)6=(0,0) resulting from
the decompositions of the initial B-scan A0f into STFT-
like bases of successive depths 1, . . . J (i.e., resolutions
2−1, . . . 2−J). From a practical point of view, the size of
the smallest subimages at resolution 2−J may be used as a
stopping criterion for further decomposition. But in order
to limit the performance decrease introduced by the reso-
lution loss, we require the numerical period tc (expressed
in pixels) associated with the nominal center frequency
fc of the transducer to be at least one pixel wide at the
smallest resolution. Therefore, if fs denotes the sampling
rate for the A-scan signals that constitute the B-scan, then
tc = fs/fc has to be such that 2−J tc ≥ 1 and the stopping
criterion is given by:

log2(fs/fc)− 1 < J ≤ log2(fs/fc). (14)

An example of wavelet packet decompositions of a B-
scan into STFT-like bases of depths 1 and 2 is shown in
Fig. 2. We used the 8-taps Daubechies filter associated
with the “least asymmetric” compactly supported wavelet
[27] which normalized coefficients are listed in Table I. The
data were collected from an austenitic stainless steel sam-
ple with 2 mm diameter holes representing flaws, using a
broad-band, focused angle probe (see Section IV for more
details: Table III, B-scan #5).

As mentioned earlier, the proposed flaw detection
method operates in four steps. A simplified diagram of the
process is provided in Fig. 3. The selection of the useful
information-bearing frequency channels, to be described in
Section III.B, is based on the modeling of the detail im-
age PDFs by generalized Gaussian functions, which is dis-
cussed in Section III.A. The adaptive thresholding scheme
and the final combination procedure are laid-out in Sec-
tions III.C and III.D, respectively.

A. Statistical Properties of Wavelet Coefficients

Because the pixels of the detail images are the decom-
position coefficients of the initial image in an orthonormal
family, their distribution could exhibit any shape. How-
ever, it can be verified in practice that the PDF of the de-
tail images resulting from the decomposition of a B-scan
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Fig. 2. WP decompositions of a B-scan image (a) (see Section IV and Table III (B-scan #5) for experimental description) into STFT-like
bases of depths 1 (b) and 2 (c) (resolutions 2−1 and 2−2). According to the scheme presented in Fig. 1(a), the B-scan image is first
decomposed into A1f , D1

1f , D1
2f , and D1

3f , respectively, located in the upper left, upper right, lower left, and lower right quadrant of (b).
Each of these four subimages is then decomposed in the same way to obtain the full decomposition of depth 2 and so on. The wavelet
coefficients in the detail images are displayed in absolute value, the useful-information-bearing frequency bands appear clearly.

Fig. 3. Principle of the flaw detection method.

in a WP basis are symmetrical peaks centered in zero. In-
deed, these PDF can be modeled by generalized Gaussian
functions, as was already found experimentally in [23] and
[35] for other types of signals. The generalized Gaussian
law is given by:

p̃(x) =
β

2αΓ(1/β)
e−(|x|/α)β (15)

Fig. 4. (a) High FCR detail image resulting from the WP de-
composition of depth 2 of the B-scan in Fig. 2. (b) Associated
normalized histogram p(x) and its approximation model p̃(x) (20)
(α = 0.047, β = 0.830).

where Γ(.) is the standard Gamma function. This is a two-
sided symmetric density with two distributional parame-
ters α and β, such that α controls the variance and β mod-
ifies the decreasing rate of the central peak. The general
formula (15) contains two interesting examples as partic-
ular cases: β = 2 leads to the well-known Gaussian PDF
and β = 1 leads to a Laplacian PDF. The parameters α
and β are computed from the mean absolute deviation m1
and the variance m2 of the detail image:

m1 =

+∞∫
−∞

|x|p(x) dx, m2 =

+∞∫
−∞

x2p(x) dx.
(16)
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Fig. 5. (a) Grain only detail image resulting from the WP de-
composition of depth 2 of the B-scan in Fig. 2. (b) Associated
normalized histogram p(x) and its approximation model p̃(x) (20)
(α = 0.289, β = 1.842).

By replacing the PDF p(x) of the detail image by (15) and
changing variables in these two integrals according to:

u =
(
x

α

)β
⇔ dx =

α

β
u

1−β
β du, (17)

one can derive that

m1 = α
Γ(2/β)
Γ(1/β)

and m2 = α2 Γ(3/β)
Γ(1/β)

. (18)

Thus,

β = G−1
(
m2

1

m2

)
, where G(x) =

Γ(2/x)2

Γ(3/x)Γ(1/x) (19)

and α follows directly from either of the two equations
in (18). Typical examples of PDF modeling are shown in
Figs. 4 and 5.

The quality of the approximation provided by the gen-
eralized Gaussian model can be assessed with the help of
the measure:

V = max
−∞<x<+∞

(F (x)− F̃ (x)) +

max
−∞<x<+∞

(F̃ (x)− F (x)), (20)

which compares two cumulative distribution functions
(CDFs) (V is known as the Kuiper’s statistic in the lit-
erature on goodness-of-fit tests [36], but we use it here
as a pure distance measure to show that (15) is a suit-
able model when dealing with ultrasonic RF signals). In
our case, F (x) is estimated from a detail image and F̃ (x)
refers to the CDF of its associated PDF model:

F̃ (x) =
β

2αΓ(1/β)

x∫
−∞

e−(|ν|/α)β dν. (21)

By changing variables (17), we obtain

F̃ (x) =
1
2

(1 + sign(x)P
(
1/β, (|x|α)β)

)
(22)

where sign(.) is the signum function and P (.) denotes the
incomplete Gamma function,

P (a, x) =
1

Γ(a)

x∫
0

e−ννa−1 dν, a > 0. (23)

Decompositions in STFT-like bases of depths 1, 2, and 3
(that is resolutions 2−1, 2−2, and 2−3, respectively) were
applied on six flaw-plus-grain B-scan images obtained with
different transducers, using a 8-taps Daubechies wavelet
filter (Table I). The PDFs of the resulting detail images
were modeled by generalized Gaussian functions (15), (18),
(19) and the corresponding distance measures (20) were
then computed and averaged for each resolution level. We
respectively obtained E(V ) = 0.018, 0.030 and 0.039 for
resolutions 2−1, 2−2, and 2−3, that is 1.8%, 3%, and 3.9%
of the dynamic range of the CDFs. These results clearly
demonstrate that the generalized Gaussian PDF model
(15) is well adapted to the detail image distributions. Also,
as suggested by the two examples considered in Figs. 4
and 5, a faster decreasing rate is observed for the PDFs
of the detail images with high FCR, which translates to
smaller values of the estimated β parameters. To demon-
strate this, the high FCR detail images were manually se-
lected and the associated mean β value was found to be
0.770, whereas E(β) = 1.644 for the remaining low FCR
or grain only subimages; meaning, therefore, that the use
of β can be very helpful for the selection of the useful
information-bearing frequency bands.

B. Selection of the Detail Images

The contents of a detail image with high FCR primar-
ily consists of a majority of low amplitude wavelet coeffi-
cients associated with clutter and a few coefficients with
significantly higher amplitudes representing flaws. Hence,
as shown above, the corresponding PDF exhibits an im-
portant decreasing rate such that, for some fixed threshold
Tβ > 0, β ≤ Tβ can be used as a first selection criterion.
Let us also introduce the measure:

m1(cσ) =

−cσ∫
−∞

|x|p(x) dx+

+∞∫
cσ

|x|p(x) dx (24)

where c is a strictly positive constant and p(x) is the PDF
of a given detail image with standard deviation σ. Indeed,
for normalization purpose, we use the ratio:

Rm1(c) =
m1(cσ)
m1

= 1− 1
m1

+c
√
m2∫

−c√m2

|x|p(x) dx
(25)

where m1 and m2 are the mean absolute deviation and the
variance of the detail image (16), respectively. By inserting
(15) of the PDF model and using (18), one can derive that:

R̃m1(c) = 1− P (2/β, γ(c, β)) (26)
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Fig. 6. (a) Repartition of the detail images shown in Fig. 2 in the 2-D parameter space defined by β and Rm1(3) (“∗” resolution 2−1, “o”
resolution 2−2). The selected detail images are located in the upper left quadrant bounded by β = 1 and Rm1(3) = 1 − P (2, 3

√
2). The

corresponding selection results are depicted in (b) and (c) for resolutions 2−1 and 2−2, respectively. A careful examination of these results
together with Figs. 2(b) and (c) clearly shows that only the detail images containing significant flaw information have been retained.

Fig. 7. (a) Detail image resulting from the WP decomposition of depth 1 of the B-scan in Fig. 2 (see Section IV and Table III (B-scan
#5) for experimental description) and retained by the selection procedure (36). As depicted in (b), the optimal threshold T is given by
the position of the global minimum of the function V (t) (39) derived from the detail image. (c) Binary detection subimage obtained by
thresholding with T .

where

γ(c, β) =

(
c

(
Γ(3/β)
Γ(1/β)

)1/2
)β

(27)

and P (.) is the incomplete Gamma function (23). It ap-
pears that R̃m1(c) is strictly monotonic, decreasing with
respect to β. Thus, if β ≤ Tβ , one should also verify that
Rm1(c) ≥ [R̃m1(c)]β=Tβ . Based on these comments, the se-
lection of the useful information-bearing frequency chan-
nels is then achieved by using both the parameter β and
the ratio Rm1(c) for complementarity, i.e., any detail im-

age satisfying{
β ≤ Tβ ,

Rm1(c) ≥ 1− P (2/Tβ , γ(c, Tβ)) ,
(28)

will be kept for detection.
When a low FCR or a grain only detail image is ob-

served (Fig. 5), the wavelet coefficients associated with
clutter are spread in amplitude, thus leading to a bell-
shaped PDF which implies in turn that β > 1. On the
other hand, in the case of a high FCR subimage (Fig. 4),
the wavelet coefficients associated with clutter are concen-
trated in a narrow amplitude interval centered in zero such
that the corresponding PDF exhibits a sharp central peak,
which translates to β ≤ 1. Hence we set Tβ = 1, a choice
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which is also plainly in accordance with the results of the
previous subsection. Now, the integration limit (27) can be
simplified using the recurrence relation Γ(x + 1) = xΓ(x)
and the set of inequalities (28) then becomes:{

β ≤ 1,

Rm1(c) ≥ 1− P (2, c
√

2).
(29)

Because the threshold connected with Rm1(c) is itself a
function of the constant c, efficient selection can be ob-
tained on a continuous interval representing intermediate
values of c. As already pointed out, the highest amplitude
wavelet coefficients of the high FCR subimages are the ones
associated with the flaws. It is, therefore, of major inter-
est to focus on the tails of the distributions. This remark
justifies our choice for c = 3.

As a consequence, any detail image of the set
(Dj

m,nf)j=1,...J;m,n=0,...2j−1,(m,n)6=(0,0) with parameter β
(19) and ratio Rm1(3) (25) satisfying{

β ≤ 1,

Rm1(3) ≥ 1− P (2, 3
√

2) ≈ 0.0753
(30)

will be thresholded using the adaptive scheme to be de-
scribed next. Fig. 6(a) gives an example of the repartition
of some detail images in the (β,Rm1(3)) plane together
with a plot of R̃m1(3) versus β. The detail images con-
sidered here result from the decompositions in STFT-like
bases of depths 1 and 2 of the B-scan image in Fig. 2.
The corresponding selection results are shown in Fig. 6(b)
and (c), respectively.

C. Thresholding of the Detail Images

The detail images (Dj
m,nf)j=1,...J;m,n∈0,...2j−1 retained

by the selection procedure (30) exhibit high FCR, which
means that a global thresholding scheme can be employed
to come up with the binary flaw detection results. Let us
denote a detail image Dj

m,nf of size Mj ×Nj by the set X
of MjNj wavelet coefficients: X = {X(k, l); k = 0, . . .Mj−
1, l = 0, . . .Nj − 1}. This set can be viewed as the union
of two subsets Xf and Xc, where Xf contains the wavelet
coefficients associated with the flaws and Xc corresponds
to the background of the subimage (the wavelet coefficients
associated with clutter):

X = Xf ∪Xc

where

Xf = {X(kf , lf )}, Xc = {X(kc, lc)},
(kf , lf ) 6= (kc, lc)

∀(kf , lf ), (kc, lc) ∈ {0, . . .Mj − 1} × {0, . . .Nj − 1}.

The problem is then to derive a partition of X approach-
ing the ideal partition (Xf , Xc). Because of the unimodal
characteristic of the detail images histograms, threshold
selection is not a simple task and it must be supported by
some hypotheses:

Fig. 8. (a) Detail image obtained from the WP decomposition of
depth 2 of the B-scan in Fig. 12 (see Section IV and Table III (B-scan
#6) for experimental description) and corresponding to a borderline
case of selection. As shown in (b), the corresponding function V (t)
(31) does not exhibit a global minimum, and the optimal thresh-
old T cannot be derived. (c) Function fT (t) = m1(t)/m̃1(t) derived
from the detail image, we set the threshold to the value τ satisfying
fT (τ) = 1. (d) Binary detection subimage obtained by thresholding
with τ .

• H1: There exists an optimal threshold T such that the
elements of Xf and Xc satisfy |X(kc, lc)| ≤ T and
|X(kf , lf )| > T .
• H2: The wavelet coefficients X(kf , lf ) associated with

the flaws create some imbalance in the statistics of the
detail image X, resulting in a degradation of its PDF
approximation (15).

Hypothesis H1 is necessary to ensure that a solution ex-
ists for the extraction of flaw information through global
thresholding. Additionally, hypothesis H2 also may be for-
mulated as follows: of any subset included in X, the sub-
set Xc of wavelet coefficients associated with clutter leads
to the best-fitted PDF approximation with a generalized
Gaussian law. In order to prove this, consider a subset
X(t) of X defined by X(t) = {X(k, l) ∈ X; |X(k, l)| ≤ t}
and let p(t)(.) be the distribution of the elements of this
subset. The accuracy of the approximation provided by
the corresponding PDF model p̃(t)(.) can be assessed by
the distance measure

V (t) = max
−∞<x<+∞

(
F(t)(x)− F̃(t)(x)

)
+ max
−∞<x<+∞

(
F̃(t)(x)− F(t)(x)

)
(31)
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Fig. 9. Experimental set-up. B-scan images were recorded from two
austenitic stainless-steel samples with 1 mm mean grain diameter
and comprising artificial flaws. The first sample (a) contains 2 mm
diameter holes parallel to the control surface and located at different
depths. The second sample (b) contains two open notches 0.3 mm
thick. Each B-scan consists of equally spaced (0.8 mm) A-scans posi-
tioned along a straight line, and the measurements were performed in
immersion using the transducers presented in Table II (see Table III
for further description).

where F(t)(.) is the CDF estimated from the elements of
X(t), that is

F(t)(x) =

x∫
−∞

p(t)(ν) dν,

and F̃(t)(.) refers to the associated CDF model (22). Then,
if the two hypotheses H1, H2 are to be satisfied, V (t)
reaches a global minimum when the parameter t is equal
to the optimal threshold:

T = arg min
t>0

V (t). (32)

An example of a result obtained with this method is given
in Fig. 7. As for many other examples, the flaw informa-
tion contents are successfully extracted, which therefore
validates the two hypotheses.

However, in practice, the distance measure (31) may not
be sensitive enough to cope with limit cases of selection
(30) corresponding to detail images with lower FCR or
with a set Xf of very low cardinality. Therefore, in order

to increase sensitivity, we use a measure based on the first
moment rather than the distribution itself:

m1(t) =

−t∫
−∞

|x|p(x) dx+

+∞∫
t

|x|p(x) dx. (33)

By inserting (15) of the PDF model and changing variables
(17), one can derive that

m̃1(t) = α
Γ(2/β)
Γ(1/β)

(
1− P (2/β, (t/α)β)

)
, (34)

and it follows from hypotheses H1 and H2 that{
m1(t) ≤ m̃1(t) if t ≤ τ ≈ T,
m1(t) > m̃1(t) if t > τ ≈ T,

(35)

(Note that because of the discrete nature of the detail
images, the second inequality does not hold for t � T ).
Global threshold selection is then given by:

τ = arg min
t>0
|m1(t)− m̃1(t)| ≈ T, (36)

which is equivalent to select the value of the parameter
t such that the function fT (t) = m1(t)/m̃1(t) is equal to
one, i.e. fT (τ) = 1, τ ≈ T .

The gain in sensitivity achieved by this last method, as
depicted in Fig. 8, constitutes its first advantage. More-
over, when compared with (32), which involves the com-
putation of some PDF model parameters and the esti-
mation of a CDF for each t, this method appears to be
far less time consuming. Consequently, global threshold
selection using (36) is systematically employed. Thresh-
olding the detail images (Dj

m,nf)j=1,...J;m,n∈0,...2j−1 re-
tained by the selection procedure (30) leads to the set
(Bjm,n)j=1,...J;m,n∈0,...2j−1 of binary detection subimages
defined by:

Bjm,n(k, l) =

{
1 if |Dj

m,nf(k, l)| ≥ τ jm,n,
0 otherwise, (37)

where τ jm,n is the threshold associated to Dj
m,nf .

D. Combination of the Binary Detection Subimages

The last step of the method consists in appropriately
combining the binary detection subimages resulting from
the above thresholding procedure to obtain the final detec-
tion result. Because the detection scheme operates on the
detail images resulting from the WP decompositions of the
initial B-scan into STFT-like bases of depths 1, . . . J (res-
olutions 2−1, . . . 2−J), we choose to apply separately the
same combination process to the binary detection subim-
ages corresponding to each resolution level. This leads to
J binary detection images, both redundant and comple-
mentary. Redundancy is observed as soon as two binary
detection subimages located at different resolution levels
correspond to overlapping frequency channels. Conversely,
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TABLE II
Transducers Used in the Experiments.

CD-2-15 Narrow-band,
(Sonatest) 2 MHz 0◦ Unfocused.

SEB1 Narrow-band,
(Krautkrämer) 1 MHz 0◦ Unfocused.

TS45-1-425 Broad-band,
(Vinçotte) 1 MHz 45◦ focused.

TS60-2-345 Broad-band,
(Vinçotte) 2 MHz 60◦ focused.
TS70-2-325 Broad-band,
(Vinçotte) 2 MHz 70◦ focused.

complementarity arises when a frequency channel associ-
ated with a given binary detection subimage do not over-
lap any other useful information-bearing frequency band
in another resolution level.

For combining the flaw information in the binary de-
tection subimages at a same resolution level 2−j , j ∈
1, . . . J , we propose the following method: all subimages
(Bjm,n)m,n∈0,...2j−1 are first combined through a logical
OR operation, which leads to a single binary detection
subimage Bj . Next, the subimage Bj of size Mj × Nj =
(M/2j) × (N/2j) is brought back to the size M × N of
the initial B-scan by iterative upsampling followed by low-
pass filtering. A closing operation (dilatation followed by
erosion) [37] is applied on each temporal direction of the
resulting binary detection image, say BjM×N , using a flat
structuring element of width fs/fc where fc denotes the
nominal center frequency of the transducer and fs is the
sampling rate for the A-scan acquisitions. This morpho-
logical filtering operation allows to fuse the nonsignificant
gaps of width smaller than half the numerical period tc
defined by the dominant frequency fc of the ultrasonic RF
signals that constitute the B-scan.

IV. Experimental Results

Experiments have been conducted on two austenitic
stainless-steel samples with equiaxed grains of about 1 mm
in diameter. In the first sample [Fig. 9(a)], the flaws were
formed by drilling 2 mm diameter holes parallel to the
surface at a depth of between 2.5 and 30 mm. The second
sample [Fig. 9(b)] contains two open notches of different
depths, 0.3 mm thick, fabricated by electro-erosion. Seven
B-scan images (five for the first sample and two for the

second sample) were obtained by combining A-scan signals
recorded for equally spaced (0.8 mm) transducer locations
along a test line. The measurements were performed in
immersion, using five different types of transducers (three
of which are angle probes), either broad-band and focused
or narrow-band and unfocused, and with nominal center
frequency equal to 1 or 2 MHz, as summarized in Table II.
The signals were digitized on 8 bits using a LeCroy 9450
oscilloscope, with a sampling frequency of 10 or 20 MHz
depending on the center frequency of the transducer. This
description is completed by Table III, where the peak FCR

Fig. 10. Flaw detection result for the B-scan image in Fig. 2 (Ta-
ble III, B-scan #5). The binary detection images corresponding to
the different resolution levels are superimposed using different gray
level amplitudes.

Fig. 11. (a) Experimental B-scan image of five holes drilled in an
austenitic stainless steel block (Table III, B-scan #2). (b) Flaw de-
tection result.
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TABLE III
Results of Experiments Conducted on Austenitic Stainless Steel Samples Comprising Artificial Flaws. Each B-scan was

Obtained by Combining A-scans Recorded for Equally Spaced (0.8 mm) Transducer Locations Along a Straight Line (Fig. 9).

B-scan #1 B-scan #2 B-scan #3 B-scan #4 B-scan #5 B-scan #6 B-scan #7

Type of flaws 2mm-∅ holes 2mm-∅ holes 2mm-∅ holes 2mm-∅ holes 2mm-∅ holes Open notches Open notches
Transducer CD-2-15 SEB1 TS45-1-425 TS60-2-345 TS70-2-325 TS45-1-425 TS60-2-345

Sampling rate 20 MHz 10 MHz 10 MHz 20 MHz 20 MHz 10 MHz 20 MHz
A-scans× samples 464× 506 376× 226 390× 250 323× 506 253× 321 257× 250 252× 506
# of flaw echoes 6 5 6 6 4 2 2

1.3, 3.5, 2.3, 3.1, (< 1), ≈ 1, ≈ 1, 1.7,
Peak FCR values 4.5, 4.2, 3.25, 3.1, 2.5, 4.5, 3.3, 2.9, 3.0, 2.25,

2.8, 1.5 2.15 5.8, 3.2 1.8, ≈ 1 2.5, ≈ 1 1.3, 2.0 2.0, 1.5
Detected flaw echoes 6 5 5 6 4 2 2

Fig. 12. (a) Experimental B-scan image of two open notches fabri-
cated by electro-erosion in an austenitic stainless steel block (Ta-
ble III, B-scan #6). (b) Flaw detection result.

values of the flaw echoes present in each B-scan can also
be found (for a given flaw, the peak FCR is defined as the
ratio between the highest peak amplitude associated with
the flaw and the highest peak amplitude associated with
the surrounding grain echoes). For all the cases reported
in this table, the ratio fs/fc is equal to 10, which implies
that the lowest resolution considered is 2−3, according to
(14).

Let us first consider the B-scan image shown in Fig. 2(a)
(B-scan #5 in Table III), collected from the austenitic
stainless steel sample containing holes with a broad-band,
focused angle probe (TS70-2-325, 2 MHz, Vinçotte) gener-
ating transverse waves at 70◦. Four flaw echoes associated
with holes located at depths 2.5, 5, 10, and 15 mm into the
sample are detectable in this image and the correspond-
ing peak FCR values (from left to right) are 3.0, 2.25, 2.5,
and 1.0. The detection result is displayed in Fig. 10 as
follows: the binary detection images corresponding to the
three resolution levels are simply superimposed using dif-
ferent grey level amplitudes, the lower amplitudes being
associated with the lower resolution levels. The four flaw
echoes were accurately detected, as reported in Table III.
As could be expected, the lower the resolution, the coarser
the shape of the detection result is. More precisely, taking
the spatial resolution of the original B-scan to be equal
to 1 (in relative units), the spatial resolution of the flaw
detection method ranges beetween 2−1 and 2−J , depend-
ing on the depth of decomposition where the detail images
retained by the selection procedure are to be located. How-
ever, this does not constitute a negative attribute for the
purpose of detection because good localization is observed.
One can also notice that the flaw echo with lowest FCR
was not detected at resolution 2−1, which provides mo-
tivation for redundant WP decompositions of successive
depths.

A B-scan of the first sample (Table III, B-scan #2) is
also considered in Fig. 11. It was obtained by using an un-
focused transducer (SEB1, Sonatest) with a nominal cen-
ter frequency of 1 MHz. The peak FCR values associated
with the five flaw echoes are 2.3, 3.1, 3.25, 3.1, and 2.15
(from left to right). The detection result [Fig. 11(b)] corre-
sponds to the useful information-bearing frequency chan-
nels that were found at resolutions 2−2 and 2−3. In fact,
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the selection procedure did not retain any detail image at
resolution 2−1, thus underlying again the need for redun-
dant WP decompositions. The B-scan shown in Fig. 12
(Table III, B-scan #6) was obtained from the sample con-
taining open notches, by using a broadband, focused trans-
ducer (TS45-1-425, 1 MHz, Vinçotte) generating trans-
verse waves at 45◦. Here, the lower ends of two notches
5 and 20 mm deep are detectable through their diffrac-
tion echo, with peak SNR values respectively equal to 1.3
and 2. We obtained good detection for both of them; and,
as for the previous example, no useful information-bearing
frequency channel was found at resolution 2−1.

All the flaw echoes that are visually detectable by an
operator have been correctly detected without any false
alarm for the examples reported in Table III. Hence, it
comes up that the proposed detection method is not sensi-
tive to the choice of the transducer and to the presence of
multiple flaws with different FCRs in the processing win-
dow, which tends to prove that it may be well adapted to
varying testing environments. Finally, let us mention that
real time implementation is not conceivable by that time.
However, it does not appear to be too time consuming.
For instance, the total amount of time required to process
the B-scan images presented here ranges between 10 and
20 seconds on a Digital 3000/300X alpha workstation.

V. Conclusion

We have presented a novel ultrasonic flaw detection
method in ultrasonic NDE B-mode scans. The detection
process operates on the set of spatially oriented frequency
channels (i.e., the detail images) obtained from the WP
decompositions of the initial B-scan into STFT-like bases
of successive depths. Based on an appropriate modeling of
the detail image histograms, we designed an effective pro-
cedure for the selection of the useful information-bearing
frequency channels in order to facilitate the flaw infor-
mation extraction by means of an adaptive thresholding
scheme. A specific combination process has been proposed
to come up with the final detection result, that is a set of
binary detection images (both redundant and complemen-
tary) corresponding to the different resolution levels. This
method is fully two-dimensional and the detection results
obtained on artificial flaws with different types of trans-
ducers proved its reliability. Furthermore, it is truly auto-
matic since the required knowledge about the testing en-
vironment simply consists in the nominal center frequency
of the transducer and the sampling rate for the A-scan sig-
nals that constitute the B-scan, both of which are known
in most cases. This detection method can be of great help
to the qualified operator in order to perform pertinent flaw
detection. Because it is automatic and not too time con-
suming, it may be systematically employed for the analysis
of large volumes of data in the nondestructive evaluation
field. Finally, note that the three-dimensional extension of
the method is relatively straightforward, which makes it
even more suitable for real industrial applications.
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