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Abstract—Typically, the linear image restoration problem is
an ill-conditioned, underdetermined inverse problem. Here, sta-
bilization is achieved via the introduction of a first-order smooth-
ness constraint which allows the preservation of edges and leads
to the minimization of a nonconvex functional. In order to carry
through this optimization task, we use stochastic relaxation with
annealing. We prefer the Metropolis dynamics to the popular,
but computationally much more expensive, Gibbs sampler. Still,
Metropolis-type annealing algorithms are also widely reported
to exhibit a low convergence rate. Their finite-time behavior is
outlined and we investigate some inexpensive acceleration tech-
niques that do not alter their theoretical convergence properties;
namely, restriction of the state space to a locally bounded image
space and increasing concave transform of the cost functional.
Successful experiments about space-variant restoration of simu-
lated synthetic aperture imaging data illustrate the performance
of the resulting class of algorithms and show significant benefits
in terms of convergence speed.

Index Terms—Discontinuity recovery, ill-posed inverse prob-
lems, image restoration, metropolis dynamics, simulated anneal-
ing.

I. INTRODUCTION

T HE IMAGE restoration problem is to recover the original
image from a blurred and noisy observation. It is widely

documented [1]–[10] and usually addressed under assumptions
of stationarity. In this paper, we consider a general linear
image observation model (i.e., no distinction is made between
the space-variant and space-invariant cases) together with a
stationary noise process. We also assume that the PSF is
known precisely although blur identification is quite often
an ambitious challenge. Most of the time, the associated
discrete image restoration problem is both ill-conditioned (this
follows from the ill-posedness of the underlying continuous
inverse problem) and underdetermined. Thus, the information
provided by the data alone is generally not sufficient to
determine a satisfying solution and it is then necessary to
introduce somea priori assumption about the original image
by imposing further constraints derived from an appropriate
model. This approach stems from regularization theory [11],
[12] and find some interpretation in a Bayesian framework

Manuscript received December 2, 1997; revised January 15, 1999.
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[1], [3]. A popular and quite realistic image model is based
on the common observation that most real scenes are locally
smooth [5]; it leads to the extensively studied, so-called
edge-preserving regularization [13] and results in either a
convex or nonconvex optimization problem [1], [5], [9],
[14]–[19]. In this last case which is considered here, one can
employ deterministic (hence suboptimal) algorithms such as
iterated conditional modes (ICM) [2], graduated nonconvexity
(GNC) [19], mean-field annealing (MFA) [20], or ARTUR
[13] and its recent generalization [21]. An alternative is to use
stochastic relaxation with annealing, which can be shown to
be asymptotically optimal when properly tuned [1], [22], [23].
Well-known types of stochastic algorithms are the Metropolis
dynamics [24] (see [25] for a general setting) and the Gibbs
sampler [1]. Yet, despite the continuous development of high
performance computer equipments, annealing algorithms are
widely reported to exhibit a very low convergence rate.

Our concern is to show that the convergence speed of
Metropolis-type annealing algorithms can be significantly in-
creased while staying in a rigorous theoretical framework. One
should note here that this class of algorithms is quite rarely
used in the image restoration field. Indeed, as a result of the
amazing work of Geman and Geman [1], there is a strongly
marked preference for the Gibbs sampler. However, for large
discrete support PSF’s and a typical 256-level dynamic range,
the exact implementation of the Gibbs sampler becomes prac-
tically unfeasible. The computational load is reduced to a great
extent by using the Metropolis dynamics, which may also
be preferred because of its tremendous simplicity, but other
practical problems can then be encountered.

We shall first consider the critical issue of finite-time
convergence. It was proved in [26] that conventional loga-
rithmic cooling schedules generally perform poorly as soon
as one deals with a finite amount of available computing
time and that exponential schedules are to be preferred.
This mathematical justification for exponential schedules is of
remarkable importance since it concerns most real applications
of simulated annealing. We try to state this result in an
accessible way and we clearly show that the best achiev-
able convergence rate exponent is reached asymptotically for
suitably adjusted exponential cooling schedules. Subsequently,
two theoretically justified acceleration techniques are succes-
sively considered. The first one allows to overcome the specific
difficulties associated with the Metropolis single-site updating
dynamics by restricting the space of allowable images to
certain subsets [27]–[29] which are particularly well adapted
to the representation of locally smooth images. The second
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technique constitutes the essential contribution of the paper:
as demonstrated in [30], [31], an inexpensive speed-up can
be obtained by applying any increasing concave transform to
the cost functional to be minimized. Still, to our knowledge,
the effectiveness of this method has not yet been tested
experimentally. We also establish a new result that allows one
to compare, at least theoretically, the relative performance of
any two possible transforms.

The paper is organized as follows. The image restoration
problem is defined and discussed in the next section.
Metropolis-type annealing algorithms are presented in
Section III together with the main convergence results, a
particular emphasis being made on their finite-time behavior.
Section IV is devoted to acceleration techniques and the
peripheral issue of the selection of exponential cooling
schedules is raised in Section V. Experimental results about
restoration of simulated synthetic aperture imaging data appear
in Section VI, followed by concluding remarks.

II. EDGE-PRESERVING IMAGE RESTORATION

Consider the linear image observation model expressed as

(1)

(2)

where and are given domains,
represents the original image to be recovered,is the available
experimental data and is a stationary noise process; the
integral equation (1) relating to the exact data is a
particular case of a Fredholm equation of the first kind and
the kernel is the two-dimensional (2-D) impulse response,
or PSF, of the imaging system. Typically, the domainis
sampled on a regular grid and the discrete image restoration
problem is formulated as the estimation of the true image

from data according to the degradation
model

(3)

where (see, e.g., [5]), is a discrete blur operator
representing the PSF and The transfor-
mation from to induces a severe loss of information.
Since we are primarily concerned with the cases in which
the support of the discrete kernels extends over a
large area, the linear system (3) is underdetermined. Moreover,
it is well known that first kind Fredholm integral equations, and
hence the initial continuous problem, are ill-posed in the sense
of Hadamard [12]. As a direct consequence, the recovery of

is an ill-conditioned inverse problem; immediate solutions
such as the least squares one with minimum norm, or the
generalized inverse if is singular, are not satisfactory
because the noise component amplification is most often
unacceptable.

In many image restoration methods, the above difficulties
are overcome by including somea priori information about
the true image The framework proposed here belongs to
this category. Let be the set of gray
levels, or intensity range, we define to be the (digital)

total image space, where refers to the cardinal number of
a finite set The solution minimizes a cost functional, or
“energy function” defined by

(4)

where (i.e., is the usual “smoothing
parameter” and the “regularization term” should be ben-
eficial for both the removal of blur and the recovery of
discontinuities in the image. From a Bayesian point of view,

is the maximuma posteriori(MAP)
estimate arising when is a white Gaussian noise and the
density for the prior distribution of is proportional to

We restrict our attention to the case of an
approximately piecewise constant original image and we adopt
the first-order model

(5)

Here, is a scale parameter and is a linear
approximation to a first-order derivative in an horizontal,
vertical, or diagonal direction (the summation is over pairs of
pixels defined on the eight-nearest neighbor system). Note that,
in a more general setting, one can consider linear combinations
with higher-order derivatives [5], [9] which promote, for
instance, the formation of piecewise planar and quadric areas.

The function in (5) is known as the “potential
function” in the Bayesian framework; it is commonly taken
to be even, increasing in and such that Many

functions that allow the preservation of edges have been
proposed in the literature. Some authors advocate the use
of convex functions [14]–[17] in order to ensure the well-
posedness of the inverse problem, while some others prefer
using nonconvex potentials [5], [9], [18], [19], [32] which
yield to sharper edges but may introduce instability into the
inversion process. Thus, it is not surprising that the conditions
for the function to preserve discontinuities are somewhat
contradictory. Stevensonet al. [17] argue that should be
convex and that it should verify for large values of
In [5], Geman and Reynolds generalize the result of Blake and
Zisserman [19] about implicit line processes and impose the
condition Their work is further extended
by Charbonnieret al. [13] who specify conditions that are quite
similar to the ones proposed by Li [33]. In order to favor
accurate reconstructions in the vicinity of discontinuities, we
use the function

(6)

introduced in [5], which is strictly concave in It
follows from this last property that the functional is most
often nonconvex. Indeed, strictly speaking, the set is
nonconvex because is discrete and therefore we cannot
define any convex optimality criterion on such a set. The
formidable optimization problem involved in minimizing
is tackled with a dynamic Monte Carlo method, namely the
Metropolis sampler with annealing, as described in the next
three sections.
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III. M ETROPOLIS-TYPE ANNEALING ALGORITHMS

This section is primarily intended to provide a clear-cut
justification for exponential cooling schedules. In addition, the
presented material allows us to introduce some useful notations
and to set the basis that will be used throughout the rest of
the paper.

Consider a real-valued function to be minimized on a
finite set called the configuration space (or state space) and
let be a symmetric and irreducible
Markov kernel on , which we will call thecommunication
kernel. Clearly, if for all then

is a
neighborhood system on In practice, the communication
kernel is usually defined by first selecting a neighborhood
system on the configuration space and then imposing

if ,
otherwise.

(7)

Define for any positive real parameter the Markov kernel
on such that

if

otherwise

(8)

where The unique equilibrium probability
measure for the transition is the Gibbs distribu-
tion with energy at temperature

where As
one can check that tends to the uniform distribu-

tion on the set
of global minima of Now consider a divergent increasing
sequence of inverse temperatures called the cooling
schedule. A Metropolis-type annealing algorithm associated
with is a discrete-time, nonstationary
Markov chain with initial law of given by
and transitions

The key idea is that, for sufficiently slowly increasing
cooling schedules, the law of should be close to
and we can expect that

(9)

An early result of Geman and Geman [1] showed that (9) holds
if with large enough (though
these authors considered the Gibbs sampler, the proof readily
applies to the Metropolis dynamics), thus leading to logarith-
mic cooling schedules of the form where

The best value for the constant has been
computed by Hajek [22] and a theorem by Chiang and Chow
[23] completes this result by specifying when the annealing
sequence has an asymptotic limit distribution that
gives strictly positive mass to every configuration
Also, a necessary and sufficient condition for strong ergodicity
(i.e.,

can be found in [34].
More crucial for practical use of simulated annealing is the

convergence rate, as one always deals with finite-time horizon

cooling schedules. Catoni [26] shows that the convergence
measure

(10)

cannot decrease faster than some limited power of
More precisely, for any triplet there exists

such that

(11)

where the definition of the difficulty of the energy land-
scape at level is based upon the notion of
cycle decomposition of the state space introduced in [35] (see
Appendix A). The constant is sharp, since it is possible
to construct finite-time cooling schedules that are
almost optimal in the sense that
holds for some positive constant and small enough
[26]. This is technically achieved with piecewise logarithmic
sequences that are closely linked to the energy landscape and
hence extremely difficult to identify. A noticeable consequence
is that conventional logarithmic schedules will not give an
expression (10) decreasing as the optimal power of in the
general case. Alternatively, though Hajek’s result [22] proves
that an exponential cooling schedule cannot generally grant
(9), one can select

(12)

(13)

where is independent of the horizon such that
is of order as increases and for

small enough. This particularly interesting result follows
directly from the material presented in [26] (see Appendix B)
which provides, to our knowledge, the first rigorous mathe-
matical justification for the widely used exponential cooling
schedules. Moreover, it turns out that these schedules are to
be preferred to logarithmic ones as soon as one deals with a
finite amount of computing time.

IV. A CCELERATION TECHNIQUES

In straightforward applications of the Metropolis dynamics
to image processing the communication kernel
(7), which will be denoted by is defined by

(14)

The corresponding annealing algorithms
generally perform poorly and one typically

introduces computational short cuts at the expense of a loss
of the theoretical convergence properties. However, this can
be elegantly avoided by means of the two rigorously justi-
fied acceleration techniques described below. The first one,
initially motivated by the experimental success of the “union”
algorithm from [5], consists in carrying out the minimization
process on a restricted image space [27]–[29], say
through the use of a specific communication kernel(the
corresponding material will be briefly summarized since we do
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(a) (b)

Fig. 1. Increasing concave transform of the cost functionnal: (a) original energy landscape(E;U; q); (b) distorted energy landscape(E; lnU; q):

not make any contribution to this existing method). The second
technique follows from an idea of Azencott [30], [31]: an
inexpensive speed-up may be obtained by monotonic concave
distortion of the energy function, i.e., using the composite of
and a real-valued function increasing and strictly concave,
rather than itself. Taking both of these modifications into
account leads to a class of annealing algorithms

, which perform significantly
better than for both logarithmic
and exponential cooling schedules, as will be illustrated by
experiments in Section VI.

A. Restricted Image Spaces

For the choice of the communication kernel (7), (14),
a new candidate is uniformly generated over the entire gray
level range. Hence, especially for low temperatures,

is close to one and many iterations are required before a
site has a sensible chance to undergo a large intensity change.
As a result of this high rejection rate, image discontinuities
are difficult to alter and “outlier” intensity values resulting
from the early stages of the annealing process subsist quite
frequently. In order to overcome these problems, the total
image space can be restricted to a locally bounded
image space at level which consists of all the
configurations such that,

(15)

where is a predefined neighborhood system on[29].
Clearly, the use of a four- or eight-nearest neighbor system
together with a reasonably small level(we shall take

and in our experiments) permits the formation
of piecewise smooth images and is thus in accordance with
the prior information introduced in Section II. Another quite
similar possibility is to make use of the class of subspaces
defined in [27], [28], such that

Still, we prefer to resort to (15) because of the
greater richness of the associated restricted image spaces.

Let us assume that is fixed and The
Metropolis dynamics working on is implemented in the

following manner. The new candidateat time is generated
from by affecting to a randomly selected sitea random
gray level value in the set
where stands for excluding site The computation
of is quite straightforward as soon as one is aware of
the fact that a site is not only bounded by its neighbors,
but also provides bounds for them. However, it leads to
a rather complex-looking mathematical description which is
reproduced in Appendix C for convenience. The main point
to retain is that the communication kernel

(46) can be shown to be symmetric and irreducible
[29, Lemma 2]. Therefore, the convergence results exposed
in Section III hold for a locally bounded image space at
level together with

B. Increasing Concave Transform of the Cost Functional

Recall from Section III that it is possible to select finite-time
cooling schedules such that the convergence measure
(10) is of order where the inverse difficulty

is the optimal annealing speed exponent. Hence,
predictably enough, the more difficult the energy landscape,
the lower the convergence rate. Letbe a function that is
strictly increasing in an interval covering at least the range of

Clearly, from the definitions given in Appendix A, we have
and the minimization of on the

state space can therefore be handled equally well by using
either the composite of and or itself. At this point, the
interesting thing is that the difficulty of at level

given by

(16)

appears to be less than or equal to when
is strictly concave, thus leading to a potential speed-up for
annealing. Roughly speaking, the underlying idea is that an
increasing concave transform of the cost functional exagger-
ates the depth of lower energy minima. As an example, let
us consider the simple energy landscape depicted in Fig. 1(a):
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the configuration space is defined by
the possible values for the energyare the integers ranging
from 1 to 11, and the communication kernel is such that

if and only if and Using
a logarithmic transform, one obtains the energy landscape

displayed in Fig. 1(b). The global minima and
now appear much deeper compared to and it seems

to be easier to exit from the cycle so that the
convergence toward is facilitated. Another way to show
this is to examine the effect of the transform on by letting,
for instance, From the definitions (37)–(41), we have

whereas 2.17, and
it follows that is divided by about when

is considered.
Putting aside the trivial case for which all

of the above is made precise in the following theorem, adapted
from [30], whose proof is given in Appendix D.

Theorem 1: For any energy landscape and any
level such that the set

is not empty, for any continuously
differentiable function with and

increasing and strictly concave in
the level sets and are equal and

Immediate candidates for the distortion of the energy func-
tion are

(17)

(18)

where and The problem of
choosing suitable values for and together with the fact
that many other families of functions are conceivable bring
us naturally to the question of whether a theoretical mean
of comparison can be found. As regards this points, it is
mentioned in [30] that larger values of should lead
to greater decreases in the difficulty of the energy landscape,
though the motivations for this suggestion do not appear to
be very clear. Still, we can prove the following theorem (see
Appendix E).

Theorem 2: Let and be as specified in
Theorem 1. Let and be some real valued functions, twice
continuously differentiable and strictly increasing in If

(19)

then
Hence, is a “better” candidate than if condition (19)

holds, which we denote by Obviously, we have
and, by extension

to the family of functions it appears that one
should rather concentrate on the family defined by

(20)

with and which satisfies
Furthermore, straightforward

calculations show that the parameter(respectively, should
be as close as possible to its upper (respectively, lower)
bound for best results. However, care should be taken with
the unconditional use of the mean of comparison provided by
Theorem 2 because the behavior of the constants involved in
Theorem 3 (Appendix B) is unclear under distortion of the
energy function. Also, note that it may not be fruitful to spend
too much time in trying to find the best possible distortion
function according to (19). In order to support this last remark,
consider for instance the family defined by

. Though these functions have
the remarkable property that they are
practically unfeasible even for small values of

V. PRACTICAL SELECTION OF THE COOLING SCHEDULE

In practical situations, the critical constants of the energy
landscape are generally unknown. Therefore, it is not possible
to rely on the theoretical convergence results laid out in
Appendix B to find some guidelines for the choice of the
parameters of the cooling schedule. Usually, the length
of the annealing chain is fixed in advance, depending on the
available computing resources. The cooling schedule (12), (13)
can be written as

(21)

and one is then left with the problem of finding suitable values
for the initial and final temperature values
and This key issue has been addressed by
many authors in the “early age” of simulated annealing [36].
However, all the proposed techniques are based either on
empirical rules or on theoretically unjustified assumptions and
none of them stands apart from the others. This leads us to
believe that conceptually simple selection criterions should be
preferred to sophisticated ones as far as the implementation
of the algorithm is concerned. In the following paragraphs,
we discuss our approaches for setting the initial and final
temperature values in the experiments about image restoration.

A. Initial Temperature Value

An intuitive but widely used means of selection of the initial
temperature value is to determine in such a way that most
transitions are accepted; i.e., is close
to one for almost all This qualitative criterion can
be assessed via the acceptance ratio associated with a Markov
chain and defined up to time by

(22)

In the case of a Metropolis algorithm (i.e.,
constant), one verifies that (22) converges to

(23)
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in probability. Hence, rigorously speaking, the selection of
reduces to the estimation of such that

is equal to a given value preferably close to
one. It may be argued that the precise knowledge of is
not crucial as rough approximations (see, e.g., [37]) appear
to be generally satisfactory. Nevertheless, precise estimates
are necessary to allow comparison between the distortion
functions introduced in the previous section. We propose to
simulate a discrete-time stochastic process on
with uniform initial distribution and transitions

where is the floor operator; the sequence being
adaptively generated such that the current acceptance ratio

hopefully converges to in
probability. Let us assume temporarily that is approxi-
mately linear in with and
that we have two values Then, clearly,
if (which implies that the
convergence can be obtained by putting

(24)

which corresponds to the secant model for finding a root of the
function In practical situations, the behavior of

with respect to the temperature is dependent on the energy
landscape However, provided that remains
constant for all one can show that there exists
such that is strictly monotonic increasing in
Still, is finite and the generation mechanism (24) should
be slightly modified in order to stabilize the search. This can
be done be forcing to lie in an interval defined on the
basis of the current temperature value for instance, it is
quite reasonable to impose in addition to
(24), so that

(25)

The simulation is initialized by choosing a large value for
and setting The stopping criterion is given

by either or during a fixed
number of iterations. Though the convergence ofdoes not
seem possible to establish, we never experienced any case of
divergence using the above scheme withsufficiently large.

B. Final Temperature Value

Suppose that the true image is known and assume further
that is an isolated local minimum of i.e.,

(26)

Then, is known for all and, in
our view, one very attractive method of selecting would

be to choose among those values offor which

(27)

where is close to zero. However, is
unknown in practice and it is impossible to guarantee
that (26) holds for all noise realizations even though

may be arbitrarily close to one if belongs
to some prototypical image class and is large enough
[5]. Instead, we have chosen to select such that

for a configuration
obtained from coordinate-wise deterministic

minimization. Because is
decreasing and strictly convex in with respect to for
all can be estimated using any common root
finding algorithm (we use the secant method). The workload
involved in such an estimation process is quite reasonable.
Assuming for convenience that the support of is
pixels wide for all then can be computed
in operations, which
reduces for instance to operations per
iteration if and (7), (14).

VI. EXPERIMENTS

We present experiments on simulated synthetic aperture
imaging (SAI) data which compare the relative performances
of annealing algorithms for the different options evoked in
this paper and demonstrate the merit of the class of algo-
rithms In this
context, a 2-D scene, or reflectivity distribution, is imaged
by moving a small antenna along a linear track usually
called azimuth. This radiating element emits a single wide-
bandwidth signal and receives the echoes coming back from
the different scatterers. The procedure is repeated for equally
spaced azimuthal positions, such that a large synthetic antenna
is formed and spatially sampled along a lateral direction. The
juxtaposition of the echo signals makes it possible to form
an image whose temporal (axial) direction is identified by
range. In synthetic aperture radar (SAR) imaging, a high range
resolution is achieved by correlating each temporal line with
the emitted wideband signal (i.e., matched filter processing).
In addition, the azimuthal resolution can be improved by
integrating all the echoes along the synthetic antenna [38].
However, since the PSF is not stationary along the axial
direction, severe difficulties are encountered for wide-range
SAI systems. Consequently, SAI is most often performed on
limited axial areas for space-invariance approximation [39]
and it would be very useful to image wider areas under
the best possible resolution. Though efforts are made in this
direction in SAR imaging [40], [41], efficient wide-range SAI
data processing techniques are scarce; this need arises in
nondestructive testing (NDT) and medical ultrasound imaging
applications as well [42], [43].

We consider the side-looking case represented in Fig. 2 such
that the following material adapts easily to most types of SAI
systems. The stationary target distribution to be imaged
lies on the bottom and the synthetic aperture is
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Fig. 2. Geometry of a side-looking synthetic aperture imaging system.

formed by the motion of a real antenna, or transducer, along
a straight linear track located at height This lateral track,
or azimuth, is specified by and the slant range is identified
by The “start-stop” approximation is adopted here, i.e., the
temporal Doppler effect due to the sensor movement between
transmission and reception of a signal is ignored. Note that

in the case of NDT or medical ultrasound imaging
applications, unlike SAR imaging systems where a cosine
correction factor must be considered in order to convert from
slant range to bottom range The PSF of the system is
the ensemble of echo signals received from a single reflecting
point It can be expressed as

(28)

with the following interpretation: is the hyperbolic
range migration, is the envelope of the (possibly processed)
received signal with carrier angular frequency denotes
the wave propagation speed and the beam patternof the
physical antenna is defined by

(29)

where denotes the one-dimensional (1-D) inverse Fourier
transform and is the length, or diameter, of the antenna.
Clearly, the PSF (28) is space-invariant with respect to the
azimuthal direction and we can write

The exact data are then given by

(30)

where “ ” denotes the 1-D convolution operator in the-
direction. Within a narrow-range segment around
which dimension can be taken to be equal to the depth of
focus of the synthetic aperture [44], the PSF can be treated
as space-invariant such that (30) reduces to a classical 2-D
convolution: However,
this approximation is not considered here and (30) together
with (28) and (29) will serve as a reference for the two
examples that follow.

(a)

(b)

Fig. 3. “IEEE” image: (a) original image and PSF of the imaging system at
different range values; (b) data (25 dB BSNR).

We shall first consider the nonphysical simulation depicted
in Fig. 3. The original image is a text sample with max-
imum gray level value equal to 128. Following (3), the data
were generated by degrading with a discrete blur operator

derived from the above image formation model and a zero-
mean, white Gaussian noise with variance specified by a
25 dB blurred signal-to-noise ratio (BSNR). Recall that

(31)

where is the mean of the exact data.
The total image space is defined by a regular grid
of size 122 234 and The second
example (see Fig. 4), for which and

was obtained in a similar way with a 0 dB BSNR.
It is inspired by the nondestructive evaluation of a sample
containing holes parallel to the control surface, as shown in
Fig. 5. The data displayed in Fig. 4(b) then correspond to
a B-scan image resulting from the combination of A-scan
signals recorded for equally spaced locations of a broad-band,
unfocused transducer acting both as a transmitter and as a
receiver. The 3 dB main lobe width of the transducer’s
beam pattern is of this angle determines the lateral length
of the synthetic aperture defined by
for a point scatterer located at the axial distancefrom the
transducer. Here, the range interval of the image area is [20
mm, 100 mm] such that varies from 3.8 to 18.9 mm.

In every experiment, the length of the annealing chain
is equal to For exponential cooling schedules, the
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(a) (b)

Fig. 4. Simulated B-scan image: (a) original image; (b) data (0 dB BSNR).

initial and final temperature values are selected according
to the methods set out in Section V with and

The starting point of the annealing
algorithm is given by the configuration obtained by the end
of the search of the initial temperature; this search being
initialized with the realization of a uniform white noise process
or the corresponding locally bounded approximation [29] if
the minimization is to be carried out on In this last case,

is the four-nearest neighbor system and we choose
which appears to be adequate for [29]. For the two
examples considered here, the edges are of 128 gray levels and
we have found that setting gives good results. Indeed,
due to the concavity of the function (6), many other choices
are possible, most of which are suitable for a wide range of
discontinuity amplitudes. More important is the selection of
the hyperparameter which balances the data fidelity term
against the roughness penalty. When the energy function is not
distorted, one may suggest to make use of the method devised
in [5] by taking the mean sum of squared blurring coefficients

over internal pixels Note that since the prior (5)
includes diagonal pairs of adjacent pixels, we must then take
into account the correction given in [45]. However, the values
thus obtained most often yield to over-biased solutions. This
result can be partially explained for restricted image spaces,
but further investigations that are beyond the scope of this
paper remain necessary. Hence, we decided to selectby
trial and error in order to produce restorations which appear
best visually, resulting in for the “IEEE” image and

for the simulated B-scan. Still, in both cases, satisfactory

solutions are obtained for any value with the same order of
magnitude.

A. “IEEE” Image

Here, we consider the annealing algorithms

(32)

(33)

(34)

(35)

in order to assess the successive benefits coming with exponen-
tial cooling schedules, restricted image spaces and increasing
concave transforms of the cost functional.

Let us first start with a few visual examples. The restoration
result shown in Fig. 6(a) was obtained with the algorithm

It clearly demon-
strates the potential of the method, as the recovery of the
original image [Fig. 3(a)] from the degraded data [Fig. 3(b)]
is an ambitious challenge. Not surprisingly, the quality of the
restoration appears to be less satisfactory when coordinate-
wise deterministic minimization is used [see Fig. 6(b), the
starting point is a constant image]. The result displayed in
Fig. 6(c) does not show any improvement; it was achieved
with where is such that
using the starting point of This leads to the rather
common observation that conventional Metropolis-type an-
nealing algorithms are easily stucked in poor local minima. In
order to provide motivations for taking the shift-variance of
the PSF into account, restoration was also performed using the
mid-range PSF throughout the image. The minimization was
carried out on with an exponential cooling schedule and
the corresponding result given in Fig. 6(d) is to be compared
with Fig. 6(a).

The convergence rates shown in Fig. 7 illustrate the dy-
namic behavior of the annealing algorithms (i) (ii)
and (iii) For suitable comparison, the starting point

of (ii) is the same as for (i) and (iii). It turns out that
exponential cooling schedules are to be preferred and the
restriction of the image space gives significant benefits in terms
of convergence speed. The additional speed-up resulting from
increasing concave transform of the cost functional is depicted
in Figs. 8 and 9. Fig. 8 displays the convergence rates achieved
with in the following cases: (iii) (see also
Fig. 7), (iv) (v) (17), (vi) (18),
where Note that the parameters
of the cooling schedule vary widely under distortion of the
energy function; for instance, and

As predicted by the theory, further
acceleration is achieved with (20) for increasing
values of (see Fig. 9): (vi) (see also Fig. 8), (vii)

(viii) (ix) The free parameter
was taken to be equal to where is a sample of the
uniform distribution on This turns out to be a useful rule
of thumb although it can be objected that
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Fig. 5. Simulated experimental setup for obaining the B-scan displayed in Fig. 4(b) (nondestructive testing of a sample containing holes parallel tothe
control surface) and representations of the resulting PSF at different range values.

(a) (b)

(c) (d)

Fig. 6. Restoration results for the “IEEE” image (see Fig. 3). (a)–(c) Space-variant restoration: (a) exponential cooling schedule and locally bounded image
space [algorithmA


exp (34)]; (b) Local minimum of the energy landscape(
jSj
5 ; U; q5); (c) Logarithmic cooling schedule and total image space [algorithm

A�
ln (32)]. (d) Space-invariant restoration using the mid-range PSF: exponential cooling schedule and locally bounded image space.

is highly probable. Actually, can take any value greater than
the maximum energy level of the
annealing chain. Since we always deal with finite temperature
values, it is very unlikely that except, possibly, at
the beginning of the chain. It follows that is
secure, even during the search of the initial temperature value.

B. Simulated B-Scan Image

Similar experiments were conducted on the example shown
in Fig. 4. The restoration result obtained with appears
in Fig. 10(a); the associated energy value is equal
to 18 642.5. The low performances of coordinate-wise deter-

ministic minimization [see Fig. 10(b),
and [see Fig. 10(c), illustrate its
high sensitivity to the choice of the starting point. Note that
the images in Figs. 10(a) and (b) exhibit comparable energy
values though they are visually far apart. The space-invariant
restoration result making use of the mid-range PSF is displayed
in Fig. 10(d). As it could be expected, significant distorsions
with respect to the true image are observed for both low and
high range values. Finally, in order to appreciate the overall
speed-up resulting from the restriction of the image space
together with an increasing concave transform of the energy
function, Fig. 11 shows the convergence rates achieved with
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Fig. 7. Logarithmic cooling schedule versus exponential cooling schedule
and acceleration by restriction of the image space: convergence rates achieved
with the algorithms (i)A�

ln (32), (ii) A�
exp (33), and (iii)A


exp (34).

Fig. 8. Increasing concave transform of the cost functional. Convergence
rates achieved with the algorithmA
;'

exp (35) for typical ' functions:
(iii) ' � U = U (see also Fig. 7); (iv)' � U = (U � a)1=2; (v)
' � U = (U � a)1=4; (vi) ' � U = ln (U � a); wherea = 1466:3:

(i) (33) and (ii) (35), where
and was selected as discussed in the previous

paragraph.

VII. CONCLUDING REMARKS

In this paper, we have considered the image restoration
problem in the case of a spatially varying blur and synthetic
aperture imaging data. However, the presented material may
be useful in other fields of applications. The main difficulties
associated with this ill-posed inverse problem were overcome
through the use of concave stabilizers that allow the preser-
vation of discontinies in the image. The minimization of the
resulting nonconvex cost functional was successfully carried
out using the Metropolis dynamics with annealing.

Putting aside its ease of implementation, the Metropolis
dynamics is computationally far less demanding than the Gibbs
sampler. The problem of whether one is better than the other
has not been completely solved yet. Partial answers can be

Fig. 9. Increasing concave transform of the cost functional. Convergence
rates achieved with the algorithmA
;'

exp (35),' �U = ln((b�a)��(b�U)� )
(a = 1466:3; b = 1:42 � 106) for increasing values of� : (vi) � = 1 (see
also Fig. 8); (vii)� = 15; (viii) � = 30; (ix) � = 40:

found in [46] where it is shown that, for the Ising model,
the Gibbs sampler should be preferred at high temperatures
whereas the Metropolis dynamics is the best at low temper-
atures. Another interesting result is given in [47], where the
authors establish that the Gibbs sampler and the Metropolis
dynamics are asymptotically equivalent when the state space
exhibits a lattice structure. Still, only the latter is feasible for
inverse problems with large kernel supports which frequently
arise in computed imaging.

The finite-time behavior of Metropolis-type annealing algo-
rithms following an exponential cooling schedule appears to
be particularly interesting. From Theorem 3 in Appendix B
based on [26], for any initial temperature value and suitable
positive constant the convergence measure (10)
can be made as small as wanted by increasing the length

of the annealing chain provided that the final temperature
value is small enough [i.e., Our main
contribution was to show that some inexpensive acceleration
techniques can significantly increase the performances of
this class of algorithms while not altering their theoreti-
cal convergence properties. Observation of the convergence
rates presented in Section VI shows that the final energy
level achieved with typical algorithms of the form

can be reached about
three times faster under restriction of to a locally bounded
image space and increasing concave transform of the cost
functional. Moreover, in view of these experimental results,
the proposed approaches for the selection of the initial and
final temperature values turn out to be very efficient.

In terms of the number of parameters, the proposed al-
gorithm (35) appears to be complex compared with
classical methods based on convex cost functions. To summa-
rize things, let us recall that the extra-parameters are the level

of the restricted image space, the lengthof the annealing
chain, the ratios defining the cooling schedule, and
the constants coming with the distortion function Among
these, is adequate for many applications [29],
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(a) (b) (c) (d)

Fig. 10. Restoration results for the simulated B-scan image (see Fig. 4). (a)–(c) Space-variant restoration: (a) exponential cooling schedule and locally
bounded image space [algorithmA


exp (34)]; (b) local minimum of the energy landscape(
jSj
5 ; U; q5); (c) logarithmic cooling schedule and total image space

[algorithmA�
ln (32)]. (d) Space-invariant restoration using the mid-range PSF: exponential cooling schedule and locally bounded image space.

Fig. 11. Convergence rates: (i) exponential cooling schedule and total im-
age space [algorithmA�

exp (33)]; (ii) exponential cooling schedule, locally
bounded image space and increasing concave transform of the cost functional
[algorithmA
;'

exp (35),' � U = ln(b��(b�U)� ); b = 6:42�105; � = 10):

is fixed by the available amount of computing time, and the
choice remains appropriate in
any case since and are independent of the energy
landscape. Therefore, we are only left with the choice of
As suggested by Theorem 2 and our experimental results, one
should systematically resort to (20). Though it is always
possible to set and for simplicity, is quite
fair, is suitable when the noise variance is known,

and can be easily selected as discussed in Section VI-A.
Based on all the above comments, it turns out that there is no
particular need to calibrate the algorithm in order to observe
good performance.

Finally, an important topic that remains to be addressed
is the choice of the smoothing parameter of the cost
functional, the issue of the selection of the scaling parameter

being generally less critical. When the minimization is
to be performed on Geman and Reynolds [5] derived
an explicit formula for choosing in the space-invariant
case. Preliminary studies indicate that their approach can be
adapted to restricted image spaces and shift-variant PSF’s
at the expense of numerical computations, a tradeoff which
may indeed be worthwhile sincea priori information about
the discontinuities to be recovered (i.e., expected number,
orientation, and amplitude) can then be easily introduced.

APPENDIX A
CYCLE DECOMPOSITION AND DIFFICULTY

OF THE ENERGY LANDSCAPE

Let us define on the communication relation at level
by if either and or there exists

a finite family of configurations such that
for all and for

all It follows from the symmetry of that is an
equivalence relation on Let be the partition of

formed by the set of all the equivalence classes ofwe
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define the set of cycles of the energy landscape by

(36)

An immediate consequence of the above definition is that the
inclusion relation on defines a tree whose leaves are
the points of and whose root is itself. Hence, two cycles
in are either disjoint sets or have full intersection. For any
cycle we define the boundary of by

(37)

its energy by

(38)

its depth by

(39)

and its difficulty by

(40)

Using the above definitions, the difficulty of the energy land-
scape at level writes

(41)

APPENDIX B
EXPONENTIAL COOLING SCHEDULES

We give here a limited form of [26, Th. 8.1] and we show
that, as a straightforward consequence, carefully chosen finite
time exponential cooling schedules make it possible to obtain

of order for sufficiently large and
small enough. Let us put and define, for

any subset of to be the partition of formed by
the maximal elements of where is
the power set of

Theorem 3: For any energy landscape with sym-
metric and irreducible communication kernel, there exists
positive constants and such that for any positive constants

1

for any initial distribution and for any finite-time cooling
schedule such that

(42)

(43)

(44)

the finite-time annealing algorithm associated
with satisfies

(45)

1The original form of the theorem authorizes in particular any positive
value for� by appealing to a quantity~D� which can be shown to be equal
to D� if � � minfU(�)� U(E) j � 2M(EnEmin)g:

Let us fix an arbitrary positive value for and choose
It is easy to check that (43) and

(44) hold if where
is such that

Hence, for any there exists such that
the conditions (43) and (44) are fulfilled Using
inequalities (11) and (45), we can then write

for some positive constants linked to the energy
landscape. Thus

where the upper bound reduces to
and it follows that is of order for

sufficiently large or, equivalently, as

APPENDIX C
MARKOV KERNEL ON A LOCALLY BOUNDED IMAGE SPACE

Consider a configuration and let be the new
candidate generated fromby affecting a gray level valueto
a randomly selected site From (15), an immediate condition
for to be in is

However, this condition does not appear to be sufficient, since
the new value also provides bounds for the neighbors of
By applying (15) to a given site we get

and it follows that if
then one must verify

Taking this observation into account for all leads
straight to the following mathematical description. Define for
any site the sets

and
A necessary and sufficient condition for

to be in is

where

if ,
otherwise

and

if
otherwise.
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The communication kernel on is then defined by

if

if
if .

(46)

APPENDIX D
PROOF OF THEOREM 1

The proof of the original theorem [30] can be found in
[31]. Using our notations, follows
directly from the definitions in Appendix A when is strictly
increasing. Then, it suffices to show that
for any cycle such that
and Let we have

and

Since is strictly concave in an open interval covering
the range of we have for
all Thus

such that

APPENDIX E
PROOF OF THEOREM 2

One has to verify that, under condition (19),
for any cycle such that

Letting and this
brings us to study the sign of the function

in or, equivalently, the sign of

which derivative writes

From (19), we have for all
such that the function is strictly mono-

tonic increasing in Using the generalized mean value

theorem, we deduce that there exists an unique
with

Thus, for all and
for all Since we have
and hence for all This completes the
proof.
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