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Simulated Annealing, Acceleration
Techniques, and Image Restoration

Marc C. Robini,Member, IEEE,Thierry Rastello, and Isabelle E. Magnidember, IEEE

Abstract—Typically, the linear image restoration problem is [1], [3]. A popular and quite realistic image model is based
an ill-conditioned, underdetermined inverse problem. Here, sta- on the common observation that most real scenes are |Oca||y
bilization is achieved via the introduction of a first-order smooth- smooth [5]; it leads to the extensively studied, so-called

ness constraint which allows the preservation of edges and leads d . larizati 13 d Its i ith
to the minimization of a nonconvex functional. In order to carry edge-preserving regularization [13] and results in either a

through this optimization task, we use stochastic relaxation with CONVEX Or nonconvex optimization problem [1], [5], [9],
annealing. We prefer the Metropolis dynamics to the popular, [14]-[19]. In this last case which is considered here, one can

but computationally much more expensive, Gibbs sampler. Still, employ deterministic (hence suboptimal) algorithms such as
Metropolis-type annealing algorithms are also widely reported o o164 conditional modes (ICM) [2], graduated nonconvexity

to exhibit a low convergence rate. Their finite-time behavior is . .
outlined and we investigate some inexpensive acceleration tech-(GNC) [19], mean-field annealing (MFA) [20], or ARTUR

niques that do not alter their theoretical convergence properties; [13] and its recent generalization [21]. An alternative is to use
namely, restriction of the state space to a locally bounded image stochastic relaxation with annealing, which can be shown to

space and increasing concave transform of the cost functional. pe asymptotically optimal when properly tuned [1], [22], [23].

Successful experiments about space-variant restoration of simu- . . .
lated synthetic aperture imaging data illustrate the performance Well-known types of stochastic algorithms are the Metropolis

of the resulting class of algorithms and show significant benefits dynamics [24] (see [2_5] for a ger?eral setting) and the Git_)bs
in terms of convergence speed. sampler [1]. Yet, despite the continuous development of high
Index Terms—Discontinuity recovery, ill-posed inverse prob- performance computer equipments, annealing algorithms are

lems, image restoration, metropolis dynamics, simulated anneal- Widely reported t'o exhibit a very low convergence rate.
ing. Our concern is to show that the convergence speed of

Metropolis-type annealing algorithms can be significantly in-
creased while staying in a rigorous theoretical framework. One
should note here that this class of algorithms is quite rarely
HE IMAGE restoration problem is to recover the original;sed in the image restoration field. Indeed, as a result of the
image from a blurred and noisy observation. It is widelgmazing work of Geman and Geman [1], there is a strongly
documented [1]-{10] and usually addressed under assumptigigrked preference for the Gibbs sampler. However, for large
of stationarity. In this paper, we consider a general linegiscrete support PSF’s and a typical 256-level dynamic range,
image observation model (i.e., no distinction is made betweﬁﬂe exact imp'ementation of the Gibbs Samp'er becomes prac-
the space-variant and space-invariant cases) together withcglly unfeasible. The computational load is reduced to a great
stationary noise process. We also assume that the PSkigent by using the Metropolis dynamics, which may also
known precisely although blur identification is quite oftefhe preferred because of its tremendous simplicity, but other
an ambitious challenge. Most of the time, the associatg?acticm problems can then be encountered.
discrete image restoration problem is both ill-conditioned (this \we shall first consider the critical issue of finite-time
follows from the ill-posedness of the underlying Continuouéonvergence. It was proved in [26] that conventional loga-
inverse problem) and underdetgrmined. Thus, the infqrmatigmmic cooling schedules generally perform poorly as soon
provided by the data alone is generally not sufficient t9s one deals with a finite amount of available computing
determine a satisfying solution and it is then necessary fghe and that exponential schedules are to be preferred.
introduce somea priori assumption about the original imagerhis mathematical justification for exponential schedules is of
by imposing further constraints derived from an appropriaemarkable importance since it concerns most real applications
model. This approach stems from regularization theory [1}f simulated annealing. We try to state this result in an
[12] and find some interpretation in a Bayesian framework.-assiple way and we clearly show that the best achiev-
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technique constitutes the essential contribution of the paptatal image space, whetel| refers to the cardinal number of
as demonstrated in [30], [31], an inexpensive speed-up carinite setA. The solution minimizes a cost functional, or
be obtained by applying any increasing concave transform“energy function”U: AlSl — R defined by
the cost functional to be minimized. Still, to our knowledge, 5
the effectiveness of this method has not yet been tested U(z) = A%(x) + Z((Hx)s —ds) (4)
experimentally. We also establish a new result that allows one sCS
to compare, at least theoretically, the relative performancewhere A € R?% (i.e., R;\{0}) is the usual “smoothing
any two possible transforms. parameter” and the “regularization tern® should be ben-
The paper is organized as follows. The image restoratieficial for both the removal of blur and the recovery of
problem is defined and discussed in the next sectiatiscontinuities in the image. From a Bayesian point of view,
Metropolis-type annealing algorithms are presented # = argmin,, s U(x) is the maximuma posteriori(MAP)
Section Il together with the main convergence results, estimate arising whem is a white Gaussian noise and the
particular emphasis being made on their finite-time behaviarensity for the prior distribution of:° is proportional to
Section IV is devoted to acceleration techniques and thep(—X\ ®(x)). We restrict our attention to the case of an
peripheral issue of the selection of exponential coolingpproximately piecewise constant original image and we adopt
schedules is raised in Section V. Experimental results ababé first-order model

restoration of simulated synthetic aperture imaging data appear _ )
in Section VI, followed by concluding remarks. &(z) = ;:) ¢(D<s,t> (@)/A). )
s,t
Il. EDGE-PRESERVING IMAGE RESTORATION Here, A € RY is a scale parameter aﬁﬁ(i)t is a linear

Consider the linear image observation model expressed @gproximation to a first-order derivative in" an horizontal,
vertical, or diagonal direction (the summation is over pairs of
de(r, ) =// $0(7‘/,u’)h(r, u; v’ o) dr’ dud (1) pixels defined on the eight-nearest neighbor system). Note that,
D in a more general setting, one can consider linear combinations
d(r,u) =de(r,w) +0(r,u),  (r,u) €D’ (2) with higher-order derivatives [5], [9] which promote, for
instance, the formation of piecewise planar and quadric areas.

2 / 2 H H 0
where D C R 'a.md D C R are given domamsx The functiong: R — R in (5) is known as the “potential
represents the original image to be recovetdd,the available o : L
function” in the Bayesian framework; it is commonly taken

experimental data ang is a stationary noise process; tht%o be even, increasing iR, and such that(0) = 0. Many

integral equation (1) relating® to the exact datal. is a . .
particular case of a Fredholm equation of the first kind an(/()j functions that allow the preservation of edges have been

) . . . eproposed in the literature. Some authors advocate the use
the kernelh is the two-dimensional (2-D) impulse respons of convex functions [14]-[17] in order to ensure the well-
or PSF, of the imaging system. Typically, the domdnis

. : . . rPosedness of the inverse problem, while some others prefer
sampled on a regular grifl and the discrete image restoratio Uising nonconvex potentials [5], [9], [18], [19], [32] which
problem is formulated as the estimation of the true image T LT e

g%neld to sharper edges but may introduce instability into the

2 = {a3;5 € 5} from datad according to the de(‘]’rad";‘t'oninversion process. Thus, it is not surprising that the conditions
model : : -~

for the ¢ function to preserve discontinuities are somewhat

d, = (Hz®)4 + s, se s (3) contradictory. Stevensoat al. [17] argue that¢ should be

convex and that it should verify(v) < v? for large values of:.
wheres” C S (see, e.g., [5]).H is a discrete blur operator |n [5], Geman and Reynolds generalize the result of Blake and
representing the PSF and{x), = X h; .2, The transfor- zisserman [19] about implicit line processes and impose the
mation from z° to d induces a severe loss of informationconditionlim, .., $(v) < +o0. Their work is further extended
Since we are primarily concerned with the cases in whi@y Charbonnieet al. [13] who specify conditions that are quite
the support of the discrete kerndls., s € 57, extends over a similar to the ones proposed by Li [33]. In order to favor

large area, the linear system (3) is underdetermined. Moreovggcurate reconstructions in the vicinity of discontinuities, we
it is well known that first kind Fredholm integral equations, angdse the function

hence the initial continuous problem, are ill-posed in the sense o]
of Hadamard [12]. As a direct consequence, the recovery of P(v) = (6)
05 ar i oordtoned e - L+ o]
2" is an ill-conditioned inverse problem; immediate solutions
such as the least squares one with minimum norm, or tigroduced in [5], which is strictly concave if0, +oc). It
generalized inverse iH*H is singular, are not satisfactoryfollows from this last property that the function&l is most
because the noise component amplification is most ofteften nonconvex. Indeed, strictly speaking, the 8ét! is
unacceptable. nonconvex becausd is discrete and therefore we cannot
In many image restoration methods, the above difficultiekefine any convex optimality criterion on such a set. The
are overcome by including sonee priori information about formidable optimization problem involved in minimizing
the true imager”. The framework proposed here belongs tis tackled with a dynamic Monte Carlo method, namely the
this category. LetA = {0,---,L — 1} be the set of gray Metropolis sampler with annealing, as described in the next
levels, or intensity range, we definel®! to be the (digital) three sections.
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I1l. METROPOLISTYPE ANNEALING ALGORITHMS cooling schedules. Catoni [26] shows that the convergence

This section is primarily intended to provide a clear-cuf'®asure
justification for e?(ponential cool_ing schedules. In addition, t_he Ma(n) = sup P(U(X,) > min Uz)+a|Xo=2z) (10)
presented material allows us to introduce some useful notations wEE ~€E
and to set the basis that will be used throughout the rest
the paper.

Consider a real-valued functiol to be minimized on a
finite setF called the configuration space (or state space) and
let ¢ = {q(z,y);z,y € E} be a symmetric and irreducible inf M,(n) > kln—D;‘(E,U,q) (11)
Markov kernel onE, which we will call thecommunication FrEfase<fn
kernel Clearly, if g(z,z) = 0 for all z € E, thenN(E) = where the definition of the difficultyD,, of the energy land-
{Na(E); o € B}, No(B) = {y € E | q(z,y)>0}, is a scape(E,U,q) at level a>0 is based upon the notion of
neighborhood system o#'. In practice, the communication cycle decomposition of the state space introduced in [35] (see
kernel is Usua”y defined by first Selecting a neighborho%pendix A) The constanD,, is sharp, since it is possib|e
system on the configuration space and then imposing  to construct finite-time cooling schedulg$’ ), <,.< v that are

S INL(E)TL, i y € No(E), almost optimal in the sense thaf, (V) < k,N—Pa (B.U:0)
(. y) = {0’ otherwise. (") holds for some positive constarh and « small enough
[26]. This is technically achieved with piecewise logarithmic
sequences that are closely linked to the energy landscape and
hence extremely difficult to identify. A noticeable consequence

c9fe R?%, cannot decrease faster than some limited power of
n~!. More precisely, for any triple{ E,U, q), there exists
€ R7 such that

Define for any positive real parametgrthe Markov kernel
pu,g on E such that

q(z,y) exp(—=B(U(y) — U(z))T), is that conventional logarithmic schedules will not give an
if y# x, expression (10) decreasing as the optimal powerof in the
pus(zy) =< 1- Z pua(z, 2), (8) general case. Alternatively, though Hajek’s result [22] proves
€ E\{=} that an exponential cooling schedule cannot generally grant
otherwise (9), one can select
wherea™ = max{a,0}. The unique equilibrium probability BY = o exp(né), (12)

measure for the transitiorpy s is the Gibbs distribu-
tion with energy U at temperature=t: mpg(z) =
exp(—pU(x))/Zy 3, whereZy g = X.cp exp(—pU(2)). As

¢=N"Y(InN —In(af)) (13)

3 heck th d h i distrib where 3y € R’ is independent of the horizorV, such that
B — oo, one can check that;; 4 tends to the uniform distribu- Mo(N) is of order N-PH(PU) as N increases and for

tion Il on the setbin = {z € E | Uz) = min.ep U(2)} gy enough. This particularly interesting result follows

of global minima OfU.' Now consider a divergent 'ncreas'.ngdirectly from the material presented in [26] (see Appendix B)
sequence/, ). of inverse temperatures called the coolin ich provides, to our knowledge, the first rigorous mathe-

schedule. A Metropolis-type annealing algorithm associat atical justification for the widely used exponential cooling

with (E,U, 4+ (ﬁ")"EN*.) 'S. a_l_d|screte-t|me, rTonsmt'Onaryschedules. Moreover, it turns out that these schedules are to
Markov chain(X,,),en with initial law of X given by vg

» be preferred to logarithmic ones as soon as one deals with a
and transitionsP(X,, = y | X,—1 = z) = pu g, (z,y), =, P 9

. . . . . fini mount of computing time.
y € E. The key idea is that, for sufficiently slowly increasing te amount of computing time

cooling schedules, the law aof,, should be close tory g,
and we can expect that
lim ing P(X,, € Fuin| Xo=2) = 1. (9)
S

n—oox

IV. ACCELERATION TECHNIQUES

In straightforward applications of the Metropolis dynamics
to image processingE = Al°l), the communication kernel

An early result of Geman and Geman [1] showed that (9) hol&®): Which will be denoted by, is defined by

if Xene exp(—5,R) = oo with R > 0 large enough (though Is|
these authors considered the Gibbs sampler, the proof readily Na(E) = {y € AP [{sles #ys} = 1}~ (14)
applies to the Metropolis dynamics), thus leading to logarith-
mic cooling schedules of the form, = 3, In(n + 1), where The corresponding annealing algorithral®!, U, qa, 1y,
0< 3 < R~'. The best value for the constaft has been (3Y)i<.<n) generally perform poorly and one typically
computed by Hajek [22] and a theorem by Chiang and Chdntroduces computational short cuts at the expense of a loss
[23] completes this result by specifying when the annealirgf the theoretical convergence properties. However, this can
sequencg X, ),cn has an asymptotic limit distribution thatbe elegantly avoided by means of the two rigorously justi-
gives strictly positive mass to every configuratiore E,,;,. fied acceleration techniques described below. The first one,
Also, a necessary and sufficient condition for strong ergodiciigitially motivated by the experimental success of the “union”
(e, lim,—oo P(X,, =y | X, = 2) = IIy(y) ¥ m € N, algorithm from [5], consists in carrying out the minimization
z € E) can be found in [34]. process on a restricted image space [27]-[29], %ﬁ',
More crucial for practical use of simulated annealing is thlarough the use of a specific communication kergel(the
convergence rate, as one always deals with finite-time horizoorresponding material will be briefly summarized since we do
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Fig. 1. Increasing concave transform of the cost functionnal: (a) original energy lands€apeq); (b) distorted energy landscagé&, In U, q).

not make any contribution to this existing method). The secofmllowing manner. The new candidageat timen is generated
technique follows from an idea of Azencott [30], [31]: arfrom « by affecting to a randomly selected sitea random
inexpensive speed-up may be obtained by monotonic concayay level value in the set’(z) = {I € A | (a\(s3:1) € Q'f'},
distortion of the energy function, i.e., using the composit& of wherez\ ¢, stands forz excluding sites. The computation
and a real-valued functiog, increasing and strictly concave,of w’(x) is quite straightforward as soon as one is aware of
rather thanU itself. Taking both of these modifications intothe fact that a sites is not only bounded by its neighbors,
account leads to a class of annealing algoritr(mgl, @ o but also provides bounds for them. However, it leads to
U, gs, 1o, (o exp(né))1<n<n), Which perform significantly a rather complex-looking mathematical description which is
better thar(A°!, U, qa, 10, (B2)1<n<n) for both logarithmic reproduced in Appendix C for convenience. The main point
and exponential cooling schedules, as will be illustrated kg retain is that the communication kerngl = {gs(x,y); =,

experiments in Section VI. y € °1} (46) can be shown to be symmetric and irreducible
[29, Lemma 2]. Therefore, the convergence results exposed
A. Restricted Image Spaces in Section Il hold for a locally bounded image spa(d?sl at

For the choice of the communication kerng| (7), (14), levelé € N* together withgs.
a new candidate is uniformly generated over the entire gray
level range. Hence, especially for low temperatui®sy,, = B. Increasing Concave Transform of the Cost Functional

X»—1) is close to one and many iterations are required before 8gac4| from Section Iil that it is possible to select finite-time
site has a sensible chance to undergo a large intensity char&%"ng schedules such that the convergence medsiueV)
As a result of this high rejection rate, image discontinuitieao) is of order N-P='(E-V.0) where the inverse difficulty
are difficult to alter and “outlier” intensity values resulting ~1(E, U, q) is the optimal an7nealing speed exponent. Hence
. . ) ) " ’
from the early stages of the annealing process subsist g P%dictably enough, the more difficult the energy landscape,
frequently. In glder to overcome these problems, the tolgly |o\ver the convergence rate. Letbe a function that is
image spaceAlSl can be restr':cted. to a locally boundedyqyy increasing in an interval covering at least the range of
image spacél;” at level§ € N* which consists of all the ;7 cjearly, from the definitions given in Appendix A, we have

configurationse € AlS! such thatV s € S C(E,¢ o U,q) = C(E,U,q) and the minimization ot/ on the
. state spacé’ can therefore be handled equally well by using
—6<x, < mo 6 15 . : : : .
tEI./r\lfir(lS) o =T = téﬁ*ﬁ%) Tt (15) either the composite df and¢ or U itself. At this point, the

i . ) interesting thing is that the difficulty ofE', ¢ o U, ¢) at level
where N (S) is a predefined neighborhood system $1i29]. a € R, given by

Clearly, the use of a four- or eight-nearest neighbor system

together with a reasonably small level(we shall takeL = p_(E, ¢ o U,q) = max{dwu(l“) |T e C(E,U,\{F},
256 and 6 = 5 in our experiments) permits the formation
of piecewise smooth images and is thus in accordance with

S L . . . Ul >U(FE 16
the prior information introduced in Section Il. Another quite () 2 U )+a} (16)

similar possibility is to make use of the class of subspacgﬁpe(—jrS to be less than or equal B,(E,U,q) when ¢
defined in [27], [28], such thatincn, (s)|zs — %] < & s strictly concave, thus leading to a potential speed-up for
vV s € 5. Still, we prefer to resort to (15) because of thennealing. Roughly speaking, the underlying idea is that an
greater richness of the associated restricted image spacesjncreasing concave transform of the cost functional exagger-
Let us assume that is fixed andX,,_; = = € lesl- The ates the depth of lower energy minima. As an example, let
Metropolis dynamics working omlésl is implemented in the us consider the simple energy landscape depicted in Fig. 1(a):
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the configuration space is defined By= {z;;i =1,---,15}, with 7 > 1, a < U(FE) andb > max.cg U(z), which satisfies
the possible values for the energjyare the integers ranging (pg':“:" - (p;“:" v 7/ >7 > 1. Furthermore, straightforward
from 1 to 11, and the communication kernel is such thgtlculations show that the parametefrespectivelyp) should
q(z,y)>0 if and only if x = z; andy = =z;+;. Using be as close as possible to its upper (respectively, lower)
a logarithmic transform, one obtains the energy landscapeund for best results. However, care should be taken with
(E,InU, q) displayed in Fig. 1(b). The global minima, and the unconditional use of the mean of comparison provided by
r14 NOW appear much deeper comparedreig and it seems Theorem 2 because the behavior of the constants involved in
to be easier to exit from the cyclers, - - -, z10} SO that the Theorem 3 (Appendix B) is unclear under distortion of the
convergence toward..i,, is facilitated. Another way to show energy function. Also, note that it may not be fruitful to spend
this is to examine the effect of the transform by by letting, too much time in trying to find the best possible distortion
for instance,« = 3. From the definitions (37)—(41), we havefunction according to (19). In order to support this last remark,
D1 9(E,U,q) =du({ze, -, x10}) consider for instance the familypm)rcﬂi?acﬂ def_ined by
U(z11) — Ulzio) 7% u) = —exp(—r(u — a)). Tbgu/g/gh tr:e;s/e functions have
= T(a) —U(E) 7 the remarkable property that(¢™2)" /(™) = 7, they are

practically unfeasible even for small values of
whereasD /o(E,InU, q) = diyiy({zs, - -+, 10}) =~ 2.17, and
it follows that A ,»(N) is divided by aboutN°3'® when

. : V. PRACTICAL SELECTION OF THE COOLING SCHEDULE
(E,InU, q) is considered.

Putting aside the trivial case for whidh,,(E, U, q) = 0, all In practical situations, the critical constants of the energy
of the above is made precise in the following theorem, adaptiédscape are generally unknown. Therefore, it is not possible
from [30], whose proof is given in Appendix D. to rely on the theoretical convergence results laid out in

Theorem 1:For any energy landscapg®, U, ¢) and any Appendix B to find some guidelines for the choice of the
level o € R?. such that the sefl" € C(E, U, q)\{E} | U(I') parameters of the cooling schedule. Usually, the lenyth
> U(FE) +a, Hy (') >0} is not empty, for any continuously of the annealing chain is fixed in advance, depending on the
differentiable functiony: (A,B) — R with A<U/(E) and available computing resources. The cooling schedule (12), (13)
B> max.c g U(z), increasing and strictly concave {4, 3), can be written as

the level setC(E,U,q) and C(E,¢ o U,q) are equal and 3 n/N
Da(E,¢ o U,q) < Da(E,U,q). sy = /3m-m< ) (21)
Immediate candidates for the distortion of the energy func- Prmin
tion are and one is then left with the problem of finding suitable values
07 () = (u—a)'/7, (17) for the initial and final temperature valuef,.x = Bt

2(u) = In(u — a) (18) and T, = Bl This key issue has been addressed by
¥z many authors in the “early age” of simulated annealing [36].
wherer € (1,+00) anda € (—oo,U(E)). The problem of However, all the proposed techniques are based either on
choosing suitable values far and a together with the fact empirical rules or on theoretically unjustified assumptions and
that many other families of functions are conceivable bringone of them stands apart from the others. This leads us to
us naturally to the question of whether a theoretical meggiieve that conceptually simple selection criterions should be
of comparison can be found. As regards this points, it fsreferred to sophisticated ones as far as the implementation
mentioned in [30] that larger values efy” /¢’ should lead of the algorithm is concerned. In the following paragraphs,
to greater decreases in the difficulty of the energy landscapgy discuss our approaches for setting the initial and final

though the motivations for this suggestion do not appear f@mperature values in the experiments about image restoration.
be very clear. Still, we can prove the following theorem (see

Appendix E). _A. Initial Temperature Value
Theorem 2:Let (E,U, q), «, A, and B be as specified in

Theorem 1. Lety; andg; be some real valued functions, twice An intuitive but widely used means of selection of the initial
. 7 g ’ . . .
continuously differentiable and strictly increasing(id, B). If ~ temperature value is to determifig,, in such a way that most
transitions are accepted; i.&, ¢ g\ (2} DU, (2, 2) IS Close

@Y o] to one for almost allke € E. This qualitative criterion can
<_<7;> (u) < <__ (W) Vue UEB), max Ulz) be assessed via the acceptance ratio associated with a Markov
(19) chain and defined up to time: by
then Do (E, ¢; o U,q) < Da(E, @i 0 U,q). N X((X)nensm) =m™ > 1ix, 2x, 4} (22)
Hence,p; is a “better” candidate thag; if condition (19) ot
holds, which we denote by; > ¢;. Obviously, we have
0% =1 " = 9" Ya<U(E), 7 >7>1, and, by extension
to the family of functions(y$).<u (k). it appears that one
should rather concentrate on the family defined by Y (T) = Z 1y r-1(x) Z pu-1 (T, 2) (23)

(pg,a,b _ ln((b _ a)T _ (b _ U,)T), (20) zeE z€ E\{z}

In the case of a Metropolis algorithm (i.e3 = 77! =
constant), one verifies that (22) converges to
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in probability. Hence, rigorously speaking, the selection dife to choose among those values/ofor which

Pmin reduces to the estimation %, such thaty®(Tax) o

is equal to a given valugnm.x € (0,1) preferably close to > pus(®2) < Xmin (27)
one. It may be argued that the precise knowledg&gf, is zEE\{a%}

not crucial as rough approximations (see, e.g., [37]) apP&AL o re Yuin € (0,1) is close to zero. Howeverz® is

to be generally satisfactory. Nevertheless, precise estim inowr;miln prac'Eice and it is impoésible to guarantee

?rﬁ tri]er::esiﬁflrryd to 2llic')1wthcomrp?/?son bei\i/vtre]er:Ntherd@toru t (26) holds for all noise realizations, even though
unctions oduce € previous section. YWe propose g o € E.) may be arbitrarily close to one i’ belongs

simie s dscrteime siochasic poc€ss ) o1 £ 1o ‘ome picchical image dass ar s laige cnouon
[5]. Instead, we have chosen to sele8f,.. such that

P(Xn =Yy | Xn—l = JI) IpU,T]:l(-Tay)v EZEE\{JJIOC}pU,,BmaX ($10c7 Z) = Ymin fOI’ a Configuration
n—1 . ¢ € E,. obtained from coordinate-wise deterministic
k= { No J’ No €N minimization. Becausef(8;z) = Y.cp\(a)pv.a(z,2) is

. _ decreasing and strictly convex W, with respect tog for
where |-] is the floor operator; the sequen€é; )ren beiNg  all 2 € Ej., Bumax can be estimated using any common root
adaptively generated such that the current acceptance r#@ing algorithm (we use the secant method). The workload
xr = X((Xn)n>kn,; No) hopefully converges tomax i involved in such an estimation process is quite reasonable.
probability. Let us assume temporarily that” is approxi- Assuming for convenience that the support/af ., is M?
mately linear in[7,, 7;], with x*°(7%) < Xmax < x*(13), and  pixels wide for alls € 5’, then £(3;z'°°) can be computed
that we have two valuedy, 71 € [75,,T3]. Then, clearly, in O(M2|{z € E\{2'}|q(#"°¢, ) >0}|) operations, which
if No — oo (which implies thatxx, — x*(Zi)), the reduces for instance t®(M2(L — 1)|S|) operations per

convergence can be obtained by putting iteration if £ = AlSl andg = ¢a (7), (14).
Ty —Trh 1
Ty, =Tk max — Xk 24
et = T o Omae = x) - — (24) VI. EXPERIMENTS

which corresponds to the secant model for finding a root of theWe present experiments on simulated synthetic aperture
function x®°(T") — xmax- IN practical situations, the behavior ofimaging (SAIl) data which compare the relative performances
x> with respect to the temperature is dependent on the enefifyannealing algorithms for the different options evoked in
landscapg E, U, q). However, provided that(x,z) remains this paper and demonstrate the merit of the class of algo-
constant for alle € F, one can show that there exi§fs< 400 rithms (Q'f', ¢ o U, g5, v, (Boexp(né))i<n<n). In this
such thaty° is strictly monotonic increasing ir@T,+oo). context, a 2-D scene, or reflectivity distribution, is imaged
Still, Ny is finite and the generation mechanism (24) shoulty moving a small antenna along a linear track usually
be slightly modified in order to stabilize the search. This caralled azimuth. This radiating element emits a single wide-
be done be forcing x4 to lie in an interval defined on the bandwidth signal and receives the echoes coming back from
basis of the current temperature vallig, for instance, it is the different scatterers. The procedure is repeated for equally
quite reasonable to impo$B,+1 € [Tx/2,27%] in addition to spaced azimuthal positions, such that a large synthetic antenna

(24), so that is formed and spatially sampled along a lateral direction. The
T, juxtaposition of the echo signals makes it possible to form

Thp1 = min{2Tk,maX{?,Tk + (Xmax — X&) an image whose temporal (axial) direction is identified by
range. In synthetic aperture radar (SAR) imaging, a high range

. M}} (25) resolution is achieved by correlating each temporal line with

Xk = Xk—1 the emitted wideband signal (i.e., matched filter processing).

The simulation is initialized by choosing a large value foln addition, the azimuthal resolution can be improved by
T, and settingl; = T,/2. The stopping criterion is given integrating all the echoes along the synthetic antenna [38].
by eitherk = kmax OF [Tk — Tx_1| < ¢Tx_1 during a fixed However, since the PSF is not stationary along the axial
number of iterations. Though the convergenceypfdoes not direction, severe difficulties are encountered for wide-range
seem possible to establish, we never experienced any cas&df systems. Consequently, SAl is most often performed on

divergence using the above scheme with sufficiently large. limited axial areas for space-invariance approximation [39]
and it would be very useful to image wider areas under

B. Final Temperature Value the best possible resolution. Though efforts are made in this
direction in SAR imaging [40], [41], efficient wide-range SAI
data processing techniques are scarce; this need arises in
nondestructive testing (NDT) and medical ultrasound imaging
€ Boe={z e E|U(z)-U(z)>0 VzecE, applications as well [42], [43].
g(z, 2) >0} (26) We consider the side-looking case represented in Fig. 2 such
that the following material adapts easily to most types of SAl

Then, py 5(z°,2) is known for allz € E, 3 € Ry, and, in systems. The stationary target distributiof to be imaged
our view, one very attractive method of selectjfig,. would lies on the bottom(z = 0) and the synthetic aperture is

Suppose that the true image is known and assume further
thatz" is an isolated local minimum ofE, U, ), i.e.,
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Fig. 2. Geometry of a side-looking synthetic aperture imaging system.

formed by the motion of a real antenna, or transducer, along (@)
a straight linear track located at height This lateral track,

or azimuth, is specified by and the slant range is identified 45,
by r. The “start-stop” approximation is adopted here, i.e., the
temporal Doppler effect due to the sensor movement betweé
transmission and reception of a signal is ignored. Note th@
zo = 0 in the case of NDT or medical ultrasound imaging-g 4
applications, unlike SAR imaging systems where a cosin_é
correction factor must be considered in order to convert fron&
slant ranger to bottom ranger;,. The PSF of the system is
the ensemble of echo signals received from a single reflecting
point 6(r — v/, w — u'). It can be expressed as

Range (pixels)

50 100 150
(b)
h(ryus v’ Y= 0(r, v Ju — uNglr — (', u — ) Fig. 3. “IEEE” image: (a) original image and PSF of the imaging system at

-exp(—2jwcc_1(C(7‘/, U,—U,l)—T/)), (28) different range values; (b) data (25 dB BSNR).

J (N2 2y1/2
¢, v)=((r')" +27) We shall first consider the nonphysical simulation depicted
. o . . . in Fig. 3. The original image:® is a text sample with max-
with the TOHO\.ng !nterpretatlonC(r’,v)—r’ 'S th_e hyperbolic urr? gray level 3alue equgal to 128. Followigg (3), the data
range m|gr.at|ong IS the e.”"e"’pe of the (possibly processed\gére generated by degrading with a discrete blur (;perator
received signal W'th carrier angular frequency, ¢ denotes H derived from the above image formation model and a zero-
the wave propaga_ltlon speed and the beam patieof the mean, white Gaussian noise with variance specified by a
physical antenna is defined by

25 dB blurred signal-to-noise ratio (BSNR). Recall that

1. 2n L frv 0 —\2
Lo _ 1 2 1 H s de
9(7, 7 ,U) =F |:SlnC <—C<(7‘/ U) >:| (29) BSNR = 10 - log _ w (31)
’ |S/| e 02
—1 _di H - i 1 I
whereF~* denotes the one-dimensional (1-D) inverse Fou”\e/vrherede = |§'|7L E,cs H2? is the mean of the exact data.

transform andZ is the length, or diameter, of the antennar, oo image spacB = AlS! is defined by a regular grid

Clgarly, the. PS.F (28) is space-invariant ,W't,h respect to t%? size 122x 234(|S’| = 80x 192) and L = 256. The second
azimuthal direction and we can writdr, u; ', w') = h(r,u—

ood N Pl ; example (see Fig. 4), for whiclf| = 146 x 192 and|S’| =
w'sr',0) = h{r,u —u’sr’). The exact data are then given bleO x 150, was obtained in a similar way with a 0 dB BSNR.

o PP It is inspired by the nondestructive evaluation of a sample

de(r,u) = //“7 (r', ) (r,w — w5 ") dr” du containing holes parallel to the control surface, as shown in
o Fig. 5. The data displayed in Fig. 4(b) then correspond to

= / 22(r’,w) @y h(r,usr’) dr’ (30) a B-scan image resulting from the combination of A-scan

signals recorded for equally spaced locations of a broad-band,
where ‘©®,” denotes the 1-D convolution operator in the unfocused transducer acting both as a transmitter and as a
direction. Within a narrow-range segment around= ry, receiver. The-3 dB main lobe widthy_3 of the transducer’s
which dimension can be taken to be equal to the depth loéam pattern is of1°; this angle determines the lateral length
focus of the synthetic aperture [44], the PSF can be treatefithe synthetic aperture defined by (»') = 2+ tan(a_3/2)
as space-invariant such that (30) reduces to a classical ZeD a point scatterer located at the axial distartdérom the
convolution:d. (r,u) ~ x%(r,u) @, @, h(r,u;ro). However, transducer. Here, the range interval of the image area is [20
this approximation is not considered here and (30) togeth@m, 100 mm] such thak, varies from 3.8 to 18.9 mm.
with (28) and (29) will serve as a reference for the two In every experiment, the lengtlV of the annealing chain
examples that follow. is equal t@000 - |S|. For exponential cooling schedules, the
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Azimuth (mm) solutiqns are obtained for any value with the same order of
magnitude.

A. “IEEE” Image
Here, we consider the annealing algorithms

= (AP U, qa, v0, (B 1n(n + 1)) 1<n<n), (32)

Al I(Alsl U, qa, V0, (o exp(né))1<n<n) (33)

2 =198 U, g5, v0, (Bo exp(né))1<n<n), (34)
A = () ¢ 0 U, g5, 10, (Bol) exp(né(9)) ) 1<nzn)

(35)

in order to assess the successive benefits coming with exponen-
tial cooling schedules, restricted image spaces and increasing
. concave transforms of the cost functional.
120 4 Let us first start with a few visual examples. The restoration
result shown in Fig. 6(a) was obtained with the algorithm
0 AL, Bo = 0.1182, ¢ = 6.3135 - 1075, It clearly demon-
strates the potential of the method, as the recovery of the
o 4 original image [Fig. 3(a)] from the degraded data [Fig. 3(b)]
is an ambitious challenge. Not surprisingly, the quality of the
20 60 100 20 60 100 restoration appears to be less satisfactory when coordinate-
Range (mm) Range (mm) wise deterministic minimization is used [see Fig. 6(b), the
@ ®) starting point is a constant image]. The result displayed in
Fig. 4. Simulated B-scan image: (a) original image; (b) data (0 dB BSN Fig. 6(c) does not show any improvement; it was achieved
Rlith A whereg) is such thatB0 In(N +1) = By exp(NE),
using the starting poink, of Aexp This leads to the rather
initial and final temperature values are selected accordingmmon observation that conventional Metropolis-type an-
to the methods set out in Section V with,., = 0.8 and nealing algorithms are easily stucked in poor local minima. In
Xmin = 10~%. The starting pointX, of the annealing order to provide motivations for taking the shift-variance of
algorithm is given by the configuration obtained by the erithe PSF into account, restoration was also performed using the
of the search of the initial temperature; this search beimgid-range PSF throughout the image. The minimization was
initialized with the realization of a uniform white noise processarried out onQ| with an exponential cooling schedule and
or the corresponding locally bounded approximation [29] the correspondmg result given in Fig. 6(d) is to be compared
the minimization is to be carried out &2°'. In this last case, with Fig. 6(a).
N(S) is the four-nearest neighbor system and we chéeses ~ The convergence rates shown in Fig. 7 illustrate the dy-
which appears to be adequate for= 256 [29]. For the two namic behavior of the annealing algorithms &}, (i) A2,
examples considered here, the edges are of 128 gray levels and (iii) Aexp For suitable comparison, the starting point
we have found that settindy = 256 gives good results. Indeed, X, of (i) is the same as for (i) and (iii). It turns out that
due to the concavity of the function (6), many other choicesexponential cooling schedules are to be preferred and the
are possible, most of which are suitable for a wide range striction of the image space gives significant benefits in terms
discontinuity amplitudes. More important is the selection dff convergence speed. The additional speed-up resulting from
the hyperparametek which balances the data fidelity termincreasing concave transform of the cost functional is depicted
against the roughness penalty. When the energy function is HbEigs. 8 and 9. Fig. 8 displays the convergence rates achieved
distorted, one may suggest to make use of the method devigdth Af%7 in the following cases: (iiyo o U = U (see also
in [5] by taking the mean sum of squared blurring coefficientsig. 7), (iv) ¢ = <pf’“, V) ¢ = <p‘1*’“ (A7), (vi) ¢ = ¢35 (18),
% b2, over internal pixels € S’. Note that since the prior (5) wherea = |S’|o* ~ [[Hz® — d||5. Note that the parameters
includes diagonal pairs of adjacent pixels, we must then takk the cooling schedule vary widely under distortion of the
into account the correction given in [45]. However, the valuegnergy function; for instancegy(¢$) = 6.0875 - 10* and
thus obtained most often yield to over-biased solutions. TH§e%) = 3.7897 - 10~8. As predicted by the theory, further
result can be partially explained for restricted image spacesceleration is achieved with = 5 ® (20) for increasing
but further investigations that are beyond the scope of thialues ofr (see Fig. 9): (vi)7 = 1 (see also Fig. 8), (vii)
paper remain necessary. Hence, we decided to sdldny + = 15, (vii) = = 30, (iX) = = 40. The free parameteb
trial and error in order to produce restorations which appeasas taken to be equal tgyU(X) where X is a sample of the
best visually, resulting i\ = 1 for the “IEEE” image and uniform distribution onAl®!. This turns out to be a useful rule
A = 4 for the simulated B-scan. Still, in both cases, satisfactoof thumb although it can be objected that max.cr U(2)

80

Intensity




1382 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 10, OCTOBER 1999

Transducer

Azimuth (mm)

I

i

i

j

Beam i

attern |

gop P :

i

i

I

i

i

100 !
¥ Range (mm)

Fig. 5. Simulated experimental setup for obaining the B-scan displayed in Fig. 4(b) (nondestructive testing of a sample containing holes tharallel to
control surface) and representations of the resulting PSF at different range values.
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Fig. 6. Restoration results for the “IEEE” image (see Fig. 3). (a)-(c) Spe}ce-variant restoration: (a) exponential cooling schedule and |altsadlyniege
space [algorithmA$2 | (34)]; (b) Local minimum of the energy Iandsca@él;s‘, U, ¢5); (c) Logarithmic cooling schedule and total image space [algorithm

exp

Aﬁl (32)]. (d) Space-invariant restoration using the mid-range PSF: exponential cooling schedule and locally bounded image space.

is highly probable. Actuallyb can take any value greater thamministic minimization [see Fig. 10(b)/(X¥) = 18896.9]
the maximum energy level' = max;<,<y U(X]) of the and A® [see Fig. 10(c),U(XY) = 24199.6] illustrate its
annealing chain. Since we always deal with finite temperatuigyh sensitivity to the choice of the starting point. Note that
values, it is very unlikely that/(X) <Y except, possibly, at the images in Figs. 10(a) and (b) exhibit comparable energy
the beginning of the chain. It follows that = SUX) is  values though they are visually far apart. The space-invariant
secure, even during the search of the initial temperature valyesi ation result making use of the mid-range PSF is displayed
in Fig. 10(d). As it could be expected, significant distorsions
B. Simulated B-Scan Image with respect to the true image are observed for both low and

Similar experiments were conducted on the example shoRigh range values. Finally, in order to appreciate the overall
in Fig. 4. The restoration result obtained witk{’, appears speed-up resulting from the restriction of the image space
in Fig. 10(a); the associated energy vali¢Xy) is equal together with an increasing concave transform of the energy
to 18642.5. The low performances of coordinate-wise detdunction, Fig. 11 shows the convergence rates achieved with
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6-10* 6-10*

104+ X 1041

u(xy)
u(

‘ : : : 2-10° : ' : - :
2000 4000 6000 2000 4000 6000
n/s| n/1S|

2-10°

Fig. 7. Logarithmic cooling schedule versus exponential cooling sched#&y. 9. Increasing concave transform of the cost functional. Convergence
and acceleration by restriction of the image space: convergence rates achigxgss achieved with the algorithm?gf (35),p 0 U = In((b—a)™—(b=U)")
with the algorithms ()A{}, (32), (ii) AL, (33), and (i) A, (34). (a = 1466.3, b = 1.42 - 105) for increasing values of: (vi) = = 1 (see

also Fig. 8); (viiyT = 15; (viii) 7 = 30; (ix) = = 40.

6-10*
found in [46] where it is shown that, for the Ising model,
the Gibbs sampler should be preferred at high temperatures
whereas the Metropolis dynamics is the best at low temper-
atures. Another interesting result is given in [47], where the
authors establish that the Gibbs sampler and the Metropolis
dynamics are asymptotically equivalent when the state space
exhibits a lattice structure. Still, only the latter is feasible for
inverse problems with large kernel supports which frequently
arise in computed imaging.

The finite-time behavior of Metropolis-type annealing algo-
rithms following an exponential cooling schedule appears to
) . ‘ . be particularly interesting. From Theorem 3 in Appendix B
2000 4000 6000  based on [26], for any initial temperature value and suitable

n/ls| positive constanty, the convergence measurd,(N) (10)
Fig. 8. Increasing concave transform of the cost functional. Convergen@@n be made as small as wanted by increasing the length
rates achieved with the algorithmii:? (35) for typical > functions: N of the annealing chain provided that the final temperature
(i) ¢ o U = U (see also Fig. 7); (iv)p o U = (U —a)'/% (v) value is small enough [i.e3Y > a 'ln(e~1)]. Our main
poU=(U=a)l/% () ¢ o U =1n(U—a) wherea = 1466.3. contribution was to show that some inexpensive acceleration
techniques can significantly increase the performances of
(i) A3, (33) and (i) A% (35), wherep = ¢3", 7 = 10, this class of algorithms while not altering their theoreti-
a = 0, and b was selected as discussed in the previowal convergence properties. Observation of the convergence
paragraph. rates presented in Section VI shows that the final energy
level J(XY) achieved with typical algorithms of the form
VIl. CONCLUDING REMARKS (A1S1,U, g5, 10, (Bo exp(né))1<n<n) can be reached about

In this paper, we have considered the image restoratififee times faster under restriction®f°! to a locally bounded
problem in the case of a spatially varying blur and synthetiiage space and increasing concave transform of the cost
aperture imaging data. However, the presented material nfefctional. Moreover, in view of these experimental results,
be useful in other fields of applications. The main difficultiethe proposed approaches for the selection of the initial and
associated with this ill-posed inverse problem were overcorfigal temperature values turn out to be very efficient.
through the use of concave stabilizers that allow the preserdn terms of the number of parameters, the proposed al-
vation of discontinies in the image. The minimization of thgorithm A (35) appears to be complex compared with
resulting nonconvex cost functional was successfully carriethssical methods based on convex cost functions. To summa-
out using the Metropolis dynamics with annealing. rize things, let us recall that the extra-parameters are the level

Putting aside its ease of implementation, the Metropolésof the restricted image space, the lengthof the annealing
dynamics is computationally far less demanding than the Gibtisain, the ratiogmax, Xmin defining the cooling schedule, and
sampler. The problem of whether one is better than the otlibe constants coming with the distortion functign Among
has not been completely solved yet. Partial answers canthesep = |5-|A|/256] is adequate for many applications [29],

2-103
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Fig. 10. Restoration results for the simulated B-scan image (see Fig. 4). (a)-(c) Space-variant restoration: (a) exponential cooling schezhile and |
bounded image space [algorithﬂgxp (34)]; (b) local minimum of the energy Iandsca(dé_‘r,sl, U, g5 ); (c) logarithmic cooling schedule and total image space
[algorithm Aﬁ (32)]. (d) Space-invariant restoration using the mid-range PSF: exponential cooling schedule and locally bounded image space.

10°}

and b can be easily selected as discussed in Section VI-A.
Based on all the above comments, it turns out that there is no
particular need to calibrate the algorithm in order to observe
good performance.

Finally, an important topic that remains to be addressed
is the choice of the smoothing parametgrof the cost

§>§ functional, the issue of the selection of the scaling parameter

S A being generally less critical. When the minimization is
to be performed om!®!, Geman and Reynolds [5] derived
an explicit formula for choosing\ in the space-invariant
case. Preliminary studies indicate that their approach can be

2104 adapted to restricted image spaces and shift-variant PSF's

2000 4000 6000
n/ls|

at the expense of numerical computations, a tradeoff which
may indeed be worthwhile sinca priori information about
the discontinuities to be recovered (i.e., expected number,
orientation, and amplitude) can then be easily introduced.

Fig. 11. Convergence rates: (i) exponential cooling schedule and total im-
age space [algorithmd?, _ (33)]; (i) exponential cooling schedule, locally

exp

bounded image space and increasing concave transform of the cost functional

[algorithm AL (35),50 0 U = In(b™ — (b—U)7), b = 6.42-10°, 7 = 10).

APPENDIX A
CycLE DECOMPOSITION AND DIFFICULTY
OF THE ENERGY LANDSCAPE

N is fixed by the available amount of computing time, and the -
choice (Xmax, Xmin) = (0.8,5 - 10~*) remains appropriate in  Let us define on¥' the communication relatior’ at level
any case SiNC&max and xmin are independent of the energys € R by z <y if either z = y andU(z) < v or there exists
landscape. Therefore, we are only left with the choicepof a finite family (s )o<k <, Of configurations such that = s,
As suggested by Theorem 2 and our experimental results, ane sp. ¢(sk,sk+1)>0forall 0 < k<p andU(sy) < v for
should systematically resort t@}“”’ (20). Though itis always all 0 < & < p. It follows from the symmetry of that < is an
possible to set = 1 anda = 0 for simplicity, 7 = 10 is quite equivalence relation of. Let C,(E, U, ¢) be the partition of
fair, a = |S’|o? is suitable when the noise variance is known& formed by the set of all the equivalence classes-gfwe
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define the set of cycles of the energy landsc@bel, q) by Let us fix an arbitrary positive value fgf, and choose
¢ = N"1InN —In(af)). It is easy to check that (43) and
C(B,U,q) = U Co(E, U, q)- (36) (44) hOld( ife > 50((N) )i max{exp(—N),en}, whereey
Vel is such that
An immediate consequence of the above definition is that the IS
inclusion relation o€ ( E, U, q) defines a tree whose leaves are N 1 In <£>
the points ofE and whose root i€ itself. Hence, two cycles In(ey') BN afo

in E are either disjoint sets or have full intersection. For any .
! ence, for any € (0,1), there existsNy(e) < oo such that
cyclel” € C(E, U, g)\{ £} we define the boundary df by o o itions (43) and (44) are fulfillsdN > No(e). Using
B(I) ={z € E\I'| 3z € I, q(=, 2) > 0} (37) inequalities (11) and (45), we can then write

its energy by NP < M(N) < kago(N)
UM =minU(z) (38) . .
z€l for some positive constants;, k, linked to the energy
its depth by landscape. Thus
Hy(T) = min (U(z) - U@)*t (39) p-l< 1 In M, (N) < I lneo(N)
=< B(I) Dot = lim — s im N

and its difficulty b
s where the upper bound reduceslittiy ... (In N) L lney =

dy(I') = Hy(1)/(U(L') - U(E)). (40) _p-! and it follows thatM,(NV) is of order N—Pa" for N
Using the above definitions, the difficulty of the energy landiufficiently large or, equivalently, as — 0.
scape(£,U, q) at levela € RY writes
APPENDIX C

D.(E,U,q) = Inax{dU(F)|F eC(E,U,g\{E}, MARKOV KERNEL ON A LOCALLY BOUNDED IMAGE SPACE
Consider a configuratior € Qfl and lety be the new
Ul) >U(E) + Oé} (41) candidate generated fromby affecting a gray level valukto
a randomly selected site From (15), an immediate condition
APPENDIX B for y to be in lesl is
EXPONENTIAL COOLING SCHEDULES

le AN{ min z,—46,---, max ¢+ 6}
We give here a limited form of [26, Th. 8.1] and we show TCNL(S) tCN:(S) '
that, as a straightforward consequence, carefully chosen finiigyever, this condition does not appear to be sufficient, since
time exponential coollplg schedules make it possible to obtajk new valud also provides bounds for the neighborssof
My (N) of order N~ (F.U0) for N sufficiently large and By applying (15) to a given sité € A,(S), we get
« small enough. Let us pud, = D,(E, U, q) and define, for
any subsetA of E, M(A) to be the partition of4 formed by min{/, ENH(%I)l\{ }ﬂiu} -6
the maximal elements dP(A) N C(E, U, q), whereP(A) is <ux ; Im;{l max w4
the power set ofA. _ == e s

Theorem 3: For any energy landscagé’, U, ¢) with sym-
metric and irreducible communication kernel, there exis@d it follows that if z, > max{z.;u € N (S)\{s}} + ¢
positive constant® and X such that for any positive constantd < min{z,;u € N(S)\{s}} — 6), then one must verify
Bo, e<1, a < min{U(') — U(E) | I' € M(E\Epin)}! 1> 2¢—6 > minyen, (5) 7t —06 (Sze+0 < maxye v, (5) Te+6)-
for any initial distribution, and for any finite-time cooling Taking this observation into account for alle NV,(S) leads

schedule(3Y)1<n<n such that straight to the following mathematical description. Define for
N any sites € S the sets/),(,s) = {t € Ny(S) | x>z, +6
P = Poexp(nk), (42) v e N (S\{s)) and P (z,5) = {t € Ny(S) | 2y <wu—6
£ <BePe(ln(e ), (43) v u e N(S)\{s}}. A necessary and sufficient condition for
N > ¢ Yln(n(e™)) — In(aBo)) (44) yto be inQ! is
the finite-time annealing algorithmX)o<,<x associated le An{Y, (), 70 (@,5)} = wl(z)

with (E,U, q,v0,(BY )1<n<n) satisfies

where
(XN >U \ -

P<l (Xy) > U(E) +a) B s) = | MAteat, (o) T = s, if J5(x,s) # 0,

. mimiT minse 7, (s) Tt — 0, otherwise

< Keexp(foD, max Hy(I') ). (45

- p(foDa TEM(E\ Emin) (D) (45) and

1The original form of the theorem authorizes in particular any positive s [ min, s (,9) Tt + 5, if Jiénr(x’ s)#£ 0

value fora by appealing to a quantityp, which can be shown to be equal ’ymax(x, S) = inf s th .

t0 Do if a < min{U(T) — U(E) | T € M(E\Emin)}. maxien,(s) Tt + 0,  Otherwise.
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The communication kernels on Qfl is then defined by

(SI-w2(@)D™t, if ye =2 Vit #s,

Ys € wf(a:)\{a:s},
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theorem, we deduce that there exists an unifye (v, w)

with
A _ e ‘
<% ) (60) = ——F———=%.

Thus, 4’ (6) = 0, ¢/(6) > 0 for all § € (v,6) andy)’(6) <0
forall 8 € (6p, w). Sincey(v) = ¢(w) = 0, we havey(8) >0
and hencey(6) >0 for all # € (v, w). This completes the

e(z,y) =4 0, it |{s|zs #ys}[>1,
1_ZQ6($vz)a |fy=.’L'
7w
(46)
APPENDIX D

PROOF OF THEOREM 1

The proof of the original theorem [30] can be found in
[31]. Using our notationsC (£, ¢ o U, q) = C(E, U, g) follows
directly from the definitions in Appendix A whep is strictly
increasing. Then, it suffices to show thét.y (') < dy (T")
for any cycleI’ € C(E,U,¢)\{E} such thatU(I') > U(F)
and Hy(I')>0. Let x = argmin.cpr)U(z), we have
U(z)>U() and

(1]

(2]
(3]

(4]
(5]

_ ¢ o U@)—p o UD)
polUI)—¢po U(E)

ds&oU(F)

Sincey is strictly concave in an open intervight, 5) covering
the range of/, we havep(us) — ¢(u1) < ¢'(uy)(ua —uy) for
all Uy, Uz € (.A, B), U1 # uz. Thus

(6]

7
0o Ulz)—y o UTD) <y o U(F)(U(a:) - U(F))

[8]
woUT)—¢ o U(E)>¢ o U(F)(U(r) - U(E))

El

such that
Uz) - U(T) "
) —
dyor (1) < U0~ U(E) ~ diy (D) [11]
APPENDIX E (12]
PROOF OF THEOREM 2
One has to verify that, under condition (19),[13]

dy,ou (') <dg,ou(I') for any cyclel’ such that
[14]

axU(z in U(z)>U(l")>U(E).

max U(z) > i (z)>UT) > U(E)
[15]
Letting ¢ = U(I"), v = U(E) andw = min_cp(r) U(2), this
brings us to study the sign of the function [16]
_pi(w) —@i(8)  pi(w) —¢;(6)

C i@ —wilv)  @i(0) —9i(v)

in (v,w) or, equivalently, the sign of

[17]

P(6)

(18]

P(0) = (wi(w) — ¢i(0))(¢;(0) — ¢;(v))
— (pj(w) = ¢;(0)(¢i(0) = wi(v))

which derivative writes
#(0) = @(0)(wi(w) — i(v)) — @i(0) (0 (w) — ;(v)).

From (19), we havey; ()¢’ (6) — ¢ (0)¢i(6) >0 for all [22]
¢ € (v,w), such that the functiory; /¢ is strictly mono- 23]
tonic increasing inv, w). Using the generalized mean value

[19]
[20]

[21]

proof.
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