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Abstract—In this paper we propose a novel feature-based contrast enhancement approach to enhance the quality
of noisy ultrasound (US) images. Our approach uses a phase-based feature detection algorithm, followed by
sparse surface interpolation and subsequent nonlinear postprocessing. We first exploited the intensity-invariant
property of phase-based acoustic feature detection to select a set of relevant image features in the data. Then, an
approximation to the low-frequency components of the sparse set of selected features was obtained using a fast
surface interpolation algorithm. Finally, a nonlinear postprocessing step was applied. Results of applying the
method to echocardiographic sequences (2-D� T) are presented. The results demonstrate that the method can
successfully enhance the intensity of the interesting features in the image. Better balanced contrasted images are
obtained, which is important and useful both for manual processing and assessment by a clinician, and for
computer analysis of the sequence. An evaluation protocol is proposed in the case of echocardiographic data and
quantitative results are presented. We show that the correction is consistent over time and does not introduce any
temporal artefacts. (E-mail: djamal@robots.ox.ac.uk) © 2002 World Federation for Ultrasound in Medicine &
Biology.

Key Words: Image enhancement, Feature detection, Image quality, Phase congruency, Surface interpolation,
Echocardiography, Ultrasound.

INTRODUCTION

The first step toward automatic analysis or evaluation of
images frequently consists of feature detection and seg-
mentation. In the field of medical image analysis, robust-
ness, accuracy and reproducibility are critical. Tradition-
ally, in early (low-level) processing and analysis meth-
ods, the data are used directly without feature
enhancement or bias field (i.e., intensity inhomogeneity)
correction. The most important preprocessing step inves-
tigated and applied is denoising, which improves the
signal-to-noise ratio (SNR). However, denoising is only
a partial solution because it cannot correct the image for
artefacts introduced by the imaging system. Indeed, it
often depends on the imaged object, which finally leads
to nonhomogeneous regions in the image. Intensity in-
homogeneities are a well-studied problem in the area of

image analysis of magnetic resonance imaging (MRI)
and ultrasound (US) B-scan images (Hughes and Duck
1997; Xiao et al. 2000). Recently, following the publi-
cation of the work by Wells et al. (1996) on bias field
correction of MRI data, several authors have investigated
this problem and several approaches have been proposed
for MRI (Guillemaud and Brady 1997; Velthuizen et al.
1998). Although bias field correction is often necessary
for good segmentation, many approaches have exploited
the idea that a good segmentation also helps estimation
of the bias field (Ahmed et al. 1999; Leemput et al. 1999;
Zhang et al. 2001). By contrast, intensity inhomogeneity
correction for US images has received relatively little
attention, possibly because of the high noise level of
B-mode images. Some recent intensity-based adaptive
segmentation approaches, which intrinsically take into
account the nonuniformity of the tissue classes, have
yielded promising results (Ashton and Parker 1995;
Boukerroui et al. 1999; Boukerroui 2000). More re-
cently, a novel technique for finding acoustic boundaries
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in 2-D and 2-D � T echogram sequences has been
proposed (Mulet-Parada 2000; Mulet-Parada and Noble
2000). The most important advantage of this technique is
its intensity-independence. However, because the noise
rejection in this method involves an intensity-based noise
threshold, the method is not truly intensity-invariant and
is highly sensitive to noise. The 2-D � T version of the
published technique takes advantage of temporal conti-
nuity to improve its robustness to noise and detect only
relevant and continuous features over time. The authors
have reported that spatiotemporal estimation is insuffi-
cient for low frame-rate sequences and that there are a
number of localisation problems because of the nonuni-
formity of wall velocity during the cardiac cycle (Mulet-
Parada 2000). This underlines the need for development
of a feature enhancement approach to correct the image.
To our knowledge, the first attempt to adapt bias field
correction of Wells et al. (1996) to B-scan US data is the
method proposed in (Xiao et al. 2000). Results shown for
breast and cardiac US images demonstrate that it can
successfully remove intensity inhomogeneities, and signif-
icant improvement is achieved in tissue contrast and in the
resulting image segmentation. The approach is promising.
However, as reported in (Xiao et al. 2000), it still requires
user interaction to set the image model parameters.

In this paper, we propose a novel feature-based
contrast enhancement approach. Our approach is based
on a phase-based feature detection algorithm, followed
by sparse surface interpolation and subsequent nonlinear
postprocessing. We first exploited the intensity-invariant
property of phase-based acoustic feature detection to
select the relevant features in the data. Then, an approx-
imation to the low-frequency components of the sparse
set of selected features was obtained, using a surface
interpolation algorithm. Finally, a nonlinear postprocess-
ing step with one control parameter was applied.

The paper is organised as follows. In the Methods
section, we briefly describe the mathematical framework
underlying the sparse surface interpolation algorithm
(Yaou and Chang 1994), review the feature asymmetry
(FA) measure for 2-D acoustic boundary detection (Mu-
let-Parada 2000), and then present the nonlinear postpro-
cessing stage. The proposed evaluation protocol in the
special case of echocardiographic data, as well as quan-
titative results using the approach, are presented and
discussed in the Results section. The authors’ conclu-
sions are summarised in the Conclusion section.

METHODS

Overview of algorithm
A block diagram of our new feature-based contrast

enhancement method is shown in Fig. 1. First, features
are detected in the image I(x, y). This provides a nor-

malised likelihood image FA2-D(x, y) where the intensity
value at a position (x, y) is proportional to the signifi-
cance of the detected features. The FA2-D(x, y) measure
varies from a maximum of 1 (indicating a very signifi-
cant feature) down to 0 (indicating no significance). The
feature detector that we used is based on phase congru-
ency (PC) (Morrone and Owens 1987; Kovesi 1999)
because it provides a single unified theory that is capable
of detecting a wide range of features, rather than being
specialised for a single feature type, such as an intensity
step edge. Inspection of cardiac B-mode US images
reveals features of a number of quite distinctive kinds;
for example, the intensity ridge corresponding to (a large
part of) the epicardial wall and the mitral valve. Further,
PC is theoretically invariant to brightness and contrast.
Hence it is, in principle, robust against typical variations
in image formation. The disadvantage of PC is a direct
result of contrast invariance; namely, its high sensitivity
to noise. The poor SNR of B-mode US, including heavy
speckle, means that this is a problem that has particularly
to be addressed when applying PC to cardiac US.

Following feature detection, the sparse data at fea-
ture locations are then interpolated by a fast sparse sur-
face interpolation algorithm using the likelihoods to es-
timate the degradation field; then, a novel nonlinear
processing method using the degradation field is applied
to the original data to enhance or de-emphasise feature
values. These steps are described next.

2-D sparse surface interpolation
In this section, we review the method we employ for

fast sparse surface interpolation. This is based on Yaou
and Chang (1994), to which the reader is referred for
further details.

Surface interpolation from a sparse set of noisy mea-
sured points is an ill-posed problem because an infinite set
of surfaces can satisfy any given set of constraints. Hence,
a regularisation procedure, taking into account the visual
relevance and computational efficiency is usually applied,
so that the interpolation problem becomes a minimisation of
an energy functional of the form:

U� f � � Ud� f, d� � �Ur� f �. (1)

The first term in eqn (1) is a faithfulness measure of the
approximating surface f to the measured data d and is called
the “cost or constraint functional.” The second is the regu-
larisation functional; � is a nonnegative (Lagrange multi-

Fig. 1. Block diagram of the feature enhancement method.
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plier) parameter controlling the amount to which the data
are to be considered (piecewise) smooth. A commonly used
cost functional is the weighted sum of squares:

Ud� f, d� � �
i�1

n

wi� f� xi, yi� � di�
2, (2)

which measures the difference between the measured
field d �{(xi, yi, di)} and the approximating surface
f(xi,yi); and where w � {0 � wi � 1} is the correspond-
ing set of weights for the measured field, reflecting the
confidence of the measured information at each position
(wi � 0 means the absence of information at (xi, yi)); n
being the number of data points. Regarding the regulari-
sation term, a common approach has been to use a
variational functional to constrain the solution, often
expressed as a thin plate energy, otherwise known as the
quadratic variation (Grimson,1981):

Ur� f � � �� �� �2f

� x2� 2

� 2� �2f

� x� y�
2

� � �2f

� y2� 2�dxdy.

(3)

In general, obtaining an analytic solution of the Euler–
Lagrange equations resulting from the above optimisa-
tion problem is difficult. Therefore, an approximation to
the continuous problem using discrete operators is used.
This leads to a numerical solution. Suppose that the data
d is defined on a regular rectangular lattice G � {(xi, yj),
1 � i, j � N}, and that a discrete representation of the
surface is defined using a set of nodal variables � � {�i,j

� f(xi, yj)}. The discrete representation of the cost func-
tional in eqn (2) is:

Ud��, d� � �
i, j

wi, j��i, j � di, j�
2. (4)

By concatenating all the nodal variables �i,j and the data
di,j, respectively, into column vectors � and d, we obtain
the usual matrix representation of eqn (4),

Ud��, d� � �� � d�TAw�� � d�, Aw � diag��wi, j��.

(5)

Regarding the regularisation term, the finite element
method provides a continuous surface approximation,
which is a good means of converting the continuous
expression for the energy and leads to a tractable discrete
problem that has a numerical solution. The discrete form
of the thin plate is given by:

Ur��� � �
i, j

� ��i�1, j � 2�i, j � �i�1, j�
2

�2��i�1, j�1 � �i, j�1 � �i�1, j � �i, j�
2

� ��i, j�1 � 2�i, j � �i, j�1�
2

� ,

(6)

which can be reorganised as follows:

Ur��� � �
i, j

�
m,n

�i, jai, j,m,n�m,n, (7)

where the coefficients ai,j,m,n describe the relations be-
tween the nodal variables �i,j and �m,n and are called
relation coefficients. Hence, the discrete version of the
continuous regularisation term given by eqn (3) is:

Ur��� � �T��Ar��, (8)

where Ar is N2 	 N2 sparse matrix and contains at most
13 nonzero elements per line. Finally, by adding eqns (5)
and (8), we obtain the corresponding discrete version of
the functional in eqn (1):

U��� � �TA� � 2�Tb � c, (9)

where, A � �Ar � Aw and b � Awd, and c is a constant.
The resulting energy function has a minimum at � � �*,
the solution of the linear system A� � b, with a very
sparse system matrix A.

Resolution in the wavelets space
The surface interpolation problem described in the

last section leads to the solution of a large linear system
with a sparse system matrix A. Therefore, the equation
system is nearly singular and results in poor convergence
when simple iterative methods are used. To obtain fast
surface interpolation, a scheme is needed that can im-
prove the numerical conditioning. The multigrid (Terzo-
poulos 1983) and hierarchical basis techniques (Szeliski
1990) have been applied successfully to speed up con-
vergence. Both of these techniques use a multiresolution
approach. However, in both cases, the spatial frequency
domain property of the interpolation problem is not ef-
fectively utilized. Recently, a more tractable approach, in
terms of simplicity and efficiency, has been proposed
(Yaou and Chang 1994). The approach utilizes the con-
cept of preconditioning in a wavelet transform space.
Preconditioning techniques aim to reduce the condition
number � of the system matrix (defined as the ratio
between the magnitude of the largest and the smallest
eigenvalues), which implies speeding up the rate of con-
vergence. Wavelet transform analysis provides a power-
ful way to simultaneously filter data in space and scale
and is easily implemented using filter banks (Mallat
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1999). Yaou and Chang (1994) use vector space decom-
position reconstruction of the wavelet transform to ana-
lyse the multiresolution representation of the surface
interpolation problem. The authors exploit the fact that,
usually, the high-frequency component of the interpola-
tion problem converges much faster than the low-fre-
quency component in surface interpolation. Interestingly,
this is the same observation that inspired Terzopoulos’
use of the multigrid algorithm. The use of the discrete
wavelet transform (DWT) allows the low-frequency
component and the high-frequency component of the
interpolation problem to be solved separately.

In other words, the minimisation is carried out in a
wavelet space using an asynchronous iterative computa-
tion and a biorthogonal spline wavelet basis for the
preconditioning step (Yaou and Chang 1994). The DWT
preconditioning transfers the equation system to an
equivalent one with new nodal variables ṽ and a new
system matrix, Ã, that is much denser than the original
one, A. This implies that a more global connection be-
tween the interpolation nodes can be made which con-
siderably improves the convergence rate of the iterative
solution. To give the reader some insight on the relative
convergence rate with and without preconditioning in
our problem, for a 64 	 64 interpolation problem, the
value of � is reduced by a factor of 2.5 and 5.4, respec-
tively, when two and three decomposition levels for the
DWT are used. We refer the reader to Yaou and Chang
(1994) for more details about fast surface interpolation
using the multiresolution wavelet transform, and to Co-
hen et al. (1992), Daubechies (1992), and Mallat (1999)
regarding the biorthogonal wavelet basis and the associ-
ated filter banks.

Phase-based feature detection
Phase-based feature detection has been investigated

extensively following the publication of the local energy
model of feature detection (Morrone and Owens 1987).
This model postulates that features can be defined and
classified using their phase signatures, or their phase
congruency (PC). In other words, feature information is
encoded at points where all the Fourier components are
maximally in phase. Thus, the PC is maximum. These
observations have led to the development of a number of
phase-based feature detection algorithms (Kovesi 1999;
Mulet-Parada 2000; Mulet-Parada and Noble 2000) (and
references therein). In particular, measures based on
phase information seem to be more appropriate for
acoustic feature detection because US images are char-
acterized by a low SNR due to the presence of speckle
and to the high range of imaging artefacts, causing the
alteration of the intensity magnitude of equally signifi-
cant features in the data.

Strictly speaking, the concept of PC is only defined

in one dimension because its definition involves the
Hilbert transform. Typically, the computation of PC (and
the related concept of local energy) uses a pair of quadra-
ture filters (Venkatesh and Owens 1990), normally log-
Gabor filters. A series of oriented 2-D filters can, for
example, be constructed by ‘spreading’ a log-Gabor
function into 2-D. In this way, extension to 2-D of the
1-D phase measure may be obtained (Kovesi 1999).

In our work, we have used the 2-D feature asym-
metry (FA) measure used in Mulet-Parada (2000), and
Mulet-Parada and Noble (2000) for feature detection.
This measure provides good detection of asymmetric
image features, such as step edges, and has the advantage
of being intensity invariant. The 2-D FA measure is
defined by:

FA2-D� x, y� � �
m

 	om� x, y�	 � 	em� x, y�	 � Tm

om

2 � x, y� � em
2 � x, y� � 	

,

(10)

which is a sum over m orientations of a normalised
measure of the difference between the odd om(x,y) and
the even em(x, y) filter responses. Here,   denotes ze-
roing of negative values, 	 is a small positive number to
avoid division by zero and Tm is an orientation-depen-
dent noise threshold, defined by (Mulet-Parada 2000):

Tm � k � std
	om� x, y�	 � 	em� x, y�	�, (11)

where k is a positive factor controlling the noise thresh-
old and std is the standard deviation (SD). For more
details about the implementation and the setting param-
eters of the log-Gabor filters and the spreading functions,
see Kovesi (1999), Mulet-Parada (2000) and Mulet-
Parada and Noble (2000).

The output of applying the FA algorithm is a loca-
tion image, which is a normalised likelihood image [0,
1], where the intensity values can be interpreted as a
confidence measure of feature detection.

The new feature-enhancement algorithm
Having reviewed the two principal algorithms that

are used in our new feature detection method, we now
address how these are used for feature enhancement.
Briefly, our method involves reconstructing an approxi-
mation to the intensity inhomogeneities that can be
utilised to correct the original corrupted data. A mathe-
matical model for the intensity inhomogeneity in US
images was developed by Hughes and Duck (1997). The
authors used a multiplicative degradation model. Moti-
vated by this, we define a correction equation as:
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Ic� x, y� �
I� x, y�/max�I� x, y��

�*� x, y�/max��*� x, y�� � 

. (12)

Here, �*(x, y) is the interpolated surface and 
 is a
positive control parameter that ensures that Ic(x, y) � I(x,
y) for 
 �� 1. The maximum correction is obtained
when 
  1. Assuming that the image intensities of
occurrences of a single tissue type should be equal, an
estimate of the low frequency components of an intensity
data field can be made by taking the image intensity
values of the image only at the locations of the relevant
features. An estimate of the base frequency of this deg-
radation can be found using the fast surface interpolation
algorithm as follows. We define the set of nodal variables
� and the corresponding weighting field w, by:

� � ��i, j � max
Bi, j

I� x, y� if FA2-D� xi, yj� � 0;

1 � i, j � N � (13)

w � �wi, j � FA2-D� xi, yj�; 1 � i, j � N �. (14)

Here, Bi,j is a small rectangular window centred at pixel
position (xi, yj) and N is the size of the data. Taking the
maximum intensity value in a window centred on the fea-
ture position guarantees that we always take the highest
value of the step edge. Hence, eqns 13 and 14 define the two
inputs for the surface interpolation stage, which provide us
with an estimate of the low-frequency image degradation.

Implementation details
In this section, we present some implementation

details related to our method and its efficiency. The
surface interpolation problem is difficult because the
nodal variables are defined on a very sparse grid. For
instance, in the particular case of echocardiography im-
ages, the nonexistence of any constraint variables
(nodes) in the left ventricular cavity causes problems at
the end diastolic period of the cardiac cycle when the
area of the cavity is very large. On the other hand,
derivation of the system matrix Ã requires O(n2) opera-
tions where n is the number of the nodal variables, so we
aim to keep n small. To avoid these two problems, an
estimation of the surface using low-pass filtered and
subsampled data is carried out; then we interpolate the
resulting surface on a regular grid to provide the estimate
of the bias field of the original data. We found that the
use of low-pass downsampled data benefits both the fast
surface interpolation stage and the 2-D FA detection
stage, because the filtering operation allows reduction of
the speckle noise. Finally, a histogram threshold is found
to eliminate the high values due to the enhancement of

noise peaks. The threshold h, is defined empirically by
the following equation:

PIc
�Ic� x, y� � h� � 0.999. (15)

Here, PIc( � ) is a probability measure. The corrected
image is rescaled between [0 to 255] and the grey value
of the rejected points is set to 255 (see Fig. 2c1). We
found the rejection of a small number of points sufficient
to cut the tail of the distribution without introducing false
edges or modifying the shape of the distribution. Cutting
the tail of the distribution (which contains no informa-
tion) has the advantage of enlarging the intensity range
of the corrected data.

Note that the nonlinear processing given by eqn
(12) and the thresholding operation are applied to the
whole sequence when the processed data are 2-D � T.

RESULTS AND QUANTITATIVE
EVALUATION

All the results presented in this paper are obtained
for k � 0.45 (FA threshold factor), � � 1 (FSI param-
eter) and with 2 decomposition levels for the DWT in the
fast surface interpolation algorithm.

Synthetic data
The aim of the first experiment was to show, for

synthetic data, that the proposed approach is capable of
removing (or at least reducing) the bias field without
introducing any artefacts. Figure 2 shows two images, an
ideal one (a1) and corrupted one (a2) and their correc-
tions (b1 and b2, respectively). We can see that a signif-
icant contrast enhancement is obtained in both cases and
that the corrected images appear visually similar.

Real data
One short-axis and two long-axis sequences of ap-

proximately 100 frames were chosen randomly from the
ADEQUATE project database of routine acquisition
scans at the Hospital General Universitario Gregorio
Marañón, Madrid and at the John Radcliffe Hospital,
Oxford. The data sets were acquired on an HP-SONOS

Fig. 2. Original images: (a1) Ideal; (a2) corrupted, and their
corresponding enhanced images (b1) and (b2). Results obtained

for N � 64 and 
 � 0.2.
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5500 scanner (Agilent Technologies). Data sets 1 and 3
were fundamental mode acquired at a frame rate of
approximately 80 Hz and transducer frequency of 3.6
MHz. Data set 2 was acquired at a frame rate of 25 Hz,
using second harmonic image enhancement (transmit/
receive 1.8/3.6 MHz). The size of the original images
was 720 	 512 pixels. A region-of-interest (ROI) of
512 	 512 in the centre of each frame was extracted.

Figure 3 shows the original data and results at
intermediate stages of processing for an echocardio-
graphic image. The image used in this experiment is
shown in Fig. 4a1. Notice the correlation between the
likelihood image (a1) and the intensity image of the
detected features (a2). Hence, if the SNR is low, the 2-D
FA measure does not yield a clean feature detection
image. In that case, either the noise threshold, eqn (11)
has to be set to a higher value, which increases the
false-negative detection rate, or it has to be set to a low
value, in which case the false-positive rate will increase.
Comparison of the images (a2) and (c2) provides some
(qualitative) insight about how much the features have
been enhanced.

To understand the effect of using approximate data
at a coarse resolution, we compared feature enhance-
ments using different sampling resolutions. As illustrated
by the example shown in Fig. 4, we have found that we
do not observe any significant difference between the
results obtained using approximations to the original data
(512 	 512) on a 64 	 64 or a 128 	 128 grid. Both
corrections seem to give acceptable corrections and
contrast enhancement (see the profile lines). However,
the plot of the vertical line profile Fig. 4c3 shows that
the background signal (interior of the LV cavity) is
more enhanced for N � 128 than for N � 64. This is
due to the problem of sparse surface interpolation
mentioned in the Implementation Details section. Fig-
ure 4b1, b2, b3 show the results of the 2-D FA bound-
ary detection on the original image and on the en-
hanced images. Significant improvements in boundary
detection on the enhanced images is observed, partic-
ularly in the apex region where the intensity values of
the original image are very low.

In the third experiment, we studied the influence of
the control parameter 
, eqn (12). Figure 5 shows the

Fig. 3. Illustration of steps in the algorithm. (a1) Likelihood image representing the weighting field w, for the surface
interpolation stage; (a2) the original data at the location of the detected boundaries representing the data field �, for the
surface interpolation stage; (b1) the result of surface interpolation superimposed on the data field; (b2) the normalised
interpolated surface with the additional shift, 
 � 0.2, showing clearly the region where the intensity will be lowered
and the region where it will be enhanced; (c1) histogram thresholding operation; (c2) corresponds to (a2), but shows it

after correction.
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enhancement results and the corresponding feature
asymmetry detection on the corrected image for three
different values of 
: 0.4, 0.2 and 0.05. The three results
are good and appear, at first sight, to be similar. How-
ever, on more careful observation, we note that the
enhancement increases when 
 decreases. The plots of
line profiles shown in Fig. 6 offer a clear demonstration
of the influence of 
. Notice that the three results appear
to be in good agreement where the signal is high and low
signal values are more enhanced for 
 � 0.05 than 0.2 or
0.4. However, this observation does not mean that the
enhancement result for 
 � 0.05 (or 
  0.05) is better
than for the other two. Indeed, if 
 � 0.05 enhances the
low signal values better than 
 � 0.2 (0.4), it does the
opposite for high signal values. An objective evaluation
and quantitative results of the enhancement are necessary
to answer the question as to which values of 
 give the

best enhancement. This is described next. Figure 7 shows
the enhancement results and the corresponding feature
asymmetry detection for the original and the corrected
images for the two other data sets (second harmonic long
axis and B-mode short axis).

Quantitative evaluation. A standard protocol in the
evaluation of heart disease is to assess regional and global
left ventricular function, using quantitative and qualitative
measurement based on the myocardial walls (epicardial and
endocardial). This includes heart wall delineation, wall
thickness estimation and motion estimation, like muscle
contraction and the opening and closing of the cardiac
valves. Clinicians desire better image quality. The auto-
matic analysis of echocardiograms is, to date, a challenge
due to the low contrast and very noisy appearance of stan-
dard grey-level (B-mode) images. The quantitative evalua-

Fig. 4. Frame 11 of data set 1. Comparison of (a1) the original image and (a2) the enhanced one obtained with N � 64
and (a3) N � 128. Images (b) show the corresponding feature asymmetry results (likelihood image). Figures (c) show
profile lines: (c1) horizontal line 150; (c2) horizontal line 350; and (c3) vertical line 355. Results obtained with 
 � 0.2.
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tion of the proposed feature-based contrast enhancement
approach will be described next.

Quantitative evaluation of computer vision algo-
rithms is an important task, particularly in the case of
medical imaging. The availability of ground truth makes
this task easier. However, there is no ground truth for the
data available for the current study. To overcome this
problem, we have to answer the question: Which are the
important features in the data and how can an automatic
detection algorithm respond to the features and not oth-
ers? In the case of echocardiographic images, and for the
purpose of this paper, we are interested in the detection
of the endocardial boundary. Because these features are
often modelled as step edges, a measure of the height of
the step is a good evaluation parameter. A second crite-
rion that our enhancement should satisfy is consistency
over time (i.e., the method should not introduce temporal

artefacts). A good measure of temporal consistency is the
correlation coefficient between measures calculated on
the enhanced images and the same measures calculated
on the original data. We investigate both aspects next.

For each image, we define three regions next to the
interesting features: RC is the region located in the
cardiac cavity near to the endocardial wall, RM is the
myocardium, and RE is the region located from the
epicardial border outwards. Briefly, for each image,
seven segments were defined by selecting points on a
manually defined interpolating spline fit to the endocar-
dial border. The intensity profiles crossing the three
regions (RE, RM, RC) could then be automatically de-
fined by computing the normal to the curve and sampling
pixels along the normal direction, as defined before. The
width of each region was about five pixels. This is
illustrated in Fig. 8. For each of the seven segments, the

Fig. 5. Influence of the control parameter 
. The original images correspond to frame 13 of data set 1. Results obtained
for N � 64.

Fig. 6. Influence of 
. Line profiles of the results shown in Fig. 5. Left: Horizontal line 150; right: vertical line 355. Observe,
on the right side of the figure, the enhancement of the peak corresponding to the endocardium border on the apex.
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contour was sampled at 600 points to generate 600
intensity profiles. In practice, we tried to avoid the pap-
illary muscles in the cavity. In the case of the short-axis
images, it was difficult to know where the epicardial
border was, so we did not measure RE.

For each image, we computed ten measures: mean
(signal) and SD of the cavity signal (RC), of myocardium
signal (RM), of the signal beyond the epicardial border

(RE) and of the differences (RE � RM and RM � RC).
We then computed the mean and the SD (t, �t) of each
of these measures over time. From this, we could inves-
tigate if there was a significant contrast improvement,
especially at features location, namely the cardiac walls
(see RE � RM and RM � RC values).

Table 1 shows the computed measures on a long axis
data set for the original images and those enhanced for N �
64 and N � 128. Note the similarity of the calculated
measures and the small relative differences, demonstrating
the nonexistence of significant difference between the two
results. This table confirms the conclusion of experiment 2
because the highest relative difference is for the calculated
measures for the cardiac cavity region (RC) (the cavity
signal is more enhanced for N � 128).

Table 1. Quantitative comparison of the enhancement for two
different sampling resolutions (64 and 128)

Data set
1 Long axis

Original
(t, �t)

Corrected
64 (t, �t)

Corrected 128
(t, �t)

RC
Signal 6.81, 1.02 16.37, 2.16 18.88, 2.57
SD 6.94, 1.14 13.07, 2.22 15.59, 2.65

RM
Signal 29.70, 3.29 61.86, 5.45 64.01, 5.47
SD 18.61, 2.21 29.62, 2.42 30.38, 2.38

RE
Signal 61.18, 3.99 107.64, 5.38 107.07, 5.33
SD 35.53, 3.20 44.71, 3.59 45.14, 3.87

RE�RM
Signal 31.48, 4.12 45.78, 6.10 43.06, 6.33
SD 28.59, 2.63 44.96, 3.12 44.88, 3.11

RM�RC
Signal 22.89, 3.20 45.49, 5.70 45.14, 5.64
SD 15.98, 1.77 28.34, 2.35 29.13, 2.37

Here, signal is the spatial mean of the signal. The table shows the
means and the SDs over the frames of one cardiac cycle. 
 � 0.2.

Fig. 8. Illustration of region-of-interest for the evaluation pro-
tocol.

Fig. 7. Correction results on two other data sets. Left: data set 2, frame 17; right: data set 3, frame 0. Results obtained
for N � 64 and 
 � 0.2.
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Table 2 presents the evaluation measures for the
third experiment (influence of 
). Note the small values
of the SD over time for all the computed measures, both
for the original and the enhanced images, indicating a
good time consistency. We observe that the signal en-
hancement is proportional to 
�1 and the SDs for RC and
RM increase slightly. However, the RE SD decreases
with 
�1. This is because, as we have already noted, the
highest grey-level values will be reduced, and the lower
grey-level intensities will be increased (see Fig. 3b2).
When the enhancement is high (
 small), a “saturation
phenomenon” appears at the highest intensity values.
Because the RE region corresponds to the highest grey
values in the images, the spatial SD of this region will
decrease with enhancement.

Analysis of the signal differences reveals that both
the signal and the SD of the difference RM � RC
increase as 
 decreases. However, the signal of the
difference RE � RM increases as 
 decreases until 
 �
0.2 and decreases for 
 � 0.1. This is a consequence of
the “saturation phenomenon” as the step edge RE � RM
is at high intensities.

These observations enable us to understand more
fully the behaviour of the enhancement in function of the

parameter 
. The reader may notice how close the quan-
titative measures are for the different values of the con-
trol parameter. In our experiments, we found that a value
between 0.1 and 0.2 gives acceptable enhancement re-
sults and good trade-offs between the enhancement of
the low (RM � RC) and high (RE � RM) grey-level
intensity features.

Consistency. Because two key parts of our feature
enhancement algorithm do not take into account the
temporal information, the consistency of the enhance-
ment over time needs to be studied to show that no
temporal artefacts are introduced. Figure 9 shows the
spatial correlation curves (where correlation has been
computed between consecutive frames) for the original
sequences and for their corresponding enhanced se-
quences. In other words, each curve shows the temporal
evolution of the spatial correlation coefficient of consec-
utive frames in the sequence. The interesting aspect of
these curves is not the absolute values of the spatial
correlation, but its evolution over the frames. If the
enhancement method is consistent over time, the evolu-
tion of the curves over time should be the same. Indeed,
the curves show that the temporal correlation of the

Table 2. Quantitative analysis of the enhancement and study of the influence of the control parameter 
 on the
enhancement for the three data sets

Original
(t, �t)

Corrected 0.4
(t, �t)

Corrected 0.2
(t, �t)

Corrected 0.1
(t, �t)

Corrected 0.05
(t, �t)

Data set 1 Long axis

RC
Signal 6.81, 1.02 14.80, 1.94 16.37, 2.16 17.65, 2.32 18.49, 2.42
SD 6.94, 1.14 12.17, 2.02 13.07, 2.22 13.59, 2.36 13.90, 2.44

RM
Signal 29.70, 3.29 56.16, 5.23 61.86, 5.45 66.09, 5.51 68.84, 5.48
SD 18.61, 2.21 28.51, 2.64 29.62, 2.42 30.29, 2.19 30.86, 2.07

RE
Signal 61.18, 3.99 101.71, 5.33 107.64, 5.38 110.89, 5.43 112.40, 5.47
SD 35.53, 3.20 45.93, 3.65 44.71, 3.59 42.98, 3.53 41.59, 3.49

RE�RM
Signal 31.48, 4.12 45.54, 5.84 45.78, 6.10 44.81, 6.31 43.56, 6.48
SD 28.59, 2.63 42.67, 3.15 44.96, 3.12 46.72, 3.13 48.03, 3.23

RM�RC
Signal 22.89, 3.20 41.36, 5.33 45.49, 5.70 48.43, 5.85 50.35, 5.90
SD 15.98, 1.77 26.20, 2.26 28.34, 2.35 30.18, 2.52 31.66, 2.74

Data set 2 Long axis

RC
Signal 6.45, 0.64 13.88, 1.12 15.25, 1.20 16.39, 1.27 17.11, 1.33
SD 6.63, 0.67 11.20, 0.97 11.89, 1.05 12.26, 1.12 12.46, 1.19

RM
Signal 30.57, 3.54 57.52, 5.64 63.17, 5.92 67.24, 6.05 69.81, 6.11
SD 19.16, 2.18 29.36, 2.87 30.39, 2.80 30.84, 2.68 31.09, 2.59

RE
Signal 61.87, 3.78 102.56, 4.89 108.39, 4.91 111.52, 4.99 112.90, 5.10
SD 35.67, 2.49 46.18, 3.11 45.03, 3.23 43.35, 3.32 42.01, 3.40

RE�RM
Signal 31.29, 4.63 45.04, 6.50 45.22, 6.75 44.27, 6.97 43.09, 7.14
SD 28.19, 2.35 42.03, 2.64 44.24, 2.70 45.86, 2.82 46.99, 3.01

RM�RC
Signal 24.12, 3.49 43.63, 5.63 47.92, 5.98 50.86, 6.18 52.69, 6.29
SD 16.42, 2.03 26.48, 2.84 28.29, 2.85 29.66, 2.84 30.64, 2.86

Data set 3 Short axis

RC
Signal 1.41, 0.62 4.31, 1.64 5.05, 1.95 5.68, 2.14 5.53, 2.09
SD 2.05, 0.79 5.59, 1.65 6.56, 1.94 7.36, 2.14 7.18, 2.10

RM
Signal 18.55, 3.40 43.17, 8.90 50.76, 11.12 56.28, 12.95 54.78, 12.99
SD 12.04, 1.21 24.94, 2.11 28.85, 2.61 31.72, 3.25 30.72, 3.47

RM�RC
Signal 17.14, 3.01 38.86, 7.74 45.71, 9.72 50.60, 11.39 49.25, 11.46
SD 12.11, 1.33 25.14, 2.13 29.02, 2.30 31.86, 2.57 30.80, 2.63

Here, signal is the spatial mean of the signal. The table shows the means and the SDs over the frames. N � 64.
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original data is well conserved in the corrected sequences
(see the temporal correlation coefficients in the figure
legend). Notice that the temporal continuity is better
conserved for the two first data sets (long axis) than for
the third one (short axis). The lowest correlation coeffi-
cient for the temporal continuity is 0.963 obtained for the
enhancement of data set 3 with 
 � 0.05.

The second experiment analysing temporal consis-
tency involved computing the spatial correlation coeffi-
cient between the enhanced and the original data frame-
by-frame. If the enhancement method is consistent over
time, the value of the spatial correlation should be almost
constant for all the frames. In other words, we expect the
correlation coefficient to be independent of time. Table 3
shows the mean and the SD over the time of this measure
for the three processed data sets. Notice how small the
SDs are, indicating good temporal consistency of the
enhancement.

A comparison between the results of the three data
sets gives us some insight into the robustness of the
proposed approach.

Finally, Fig. 10 shows further enhancement results
obtained on four different data sets (one frame each). The
grey-level data were acquired in the same condition as
“before” data. All examples are typical of those in clin-
ical practice (i.e., were not specifically acquired for this

paper, but were routine scans). The last example (right
image) was acquired using a contrast enhanced power
Doppler (CEPD) imaging system. CEPD detects the con-
trast agent in the cardiac cavity that has been previously
injected into the patient. The enhancement results sug-
gest that the proposed method could be used as a pre-
processing for CEPD images because it reduces the in-
tensity inhomogeneity of the signal in the cavity region.
This potentially suggests that our method may be very
useful for improving automatic detection of the endocar-
dial border. This is currently being investigated in the
ADEQUATE project.

CONCLUSION

The performance of the proposed feature enhance-
ment has been illustrated on two test images and on
several echocardiographic sequences. An evaluation pro-
tocol has been proposed in the case of echocardiographic
images and quantitative results have been presented. The
proposed feature enhancement has one control parame-
ter, 
; its influence on the results has also been studied.
The consistency over time of the enhancement of the
proposed approach has been demonstrated to ensure that
no temporal artefacts are introduced. This is an important
point, both for manual processing and assessment by a
clinician, and for computer analysis of the sequence. The
corrected images produced by the new method facilitate
visual diagnosis by a clinician because the contrast be-
tween the heart wall and the cavity is enhanced. On the
other hand, significant improvement in the results of the
2-D FA detection algorithm has been noted, in compar-
ison with its application on the nonenhanced data.

The approach is original and gives good enhance-
ment results on echocardiographic image sequences. The
performance of the proposed approach is even more
convincing if the processed data are displayed as a movie

Table 3. Evaluation experiment of the consistency over time


 � 0.4; (t, �t) 
 � 0.2; (t, �t) 
 � 0.05; (t, �t)

Data set 1 0.966, 0.003 0.947, 0.004 0.914, 0.007
Data set 2 0.980, 0.003 0.967, 0.005 0.942, 0.009
Data set 3 0.938, 0.003 0.906, 0.004 0.849, 0.010

This table shows the mean and the SD over the frames of the spatial
correlation coefficient between the corrected images to their corre-
sponding original ones. N � 64.

Fig. 9. Evolution over time of the spatial correlation coefficients between consecutive frames. Left: Data set 1; middle:
data set 2; right: data set 3. “Corrected 0.2; 0.990” means results obtained for 
 � 0.2 and the correlation coefficient

of the curve to the equivalent curve of the original data is 0.990. N � 64.
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sequence.1 The proposed approach is relatively fast in
comparison with the existing algorithms in the literature
(13 s/image 512 	 512 on a Pentium 400 MHz), but
would require further speed-up for real-time processing
and its use in a clinical environment (currently it takes 21
min to process one study of 100 frames).
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graphique et échographique 2D et 3D du sein. Ph.D. thesis. CRE-
ATIS, INSA 502. Villeurbanne Cedex (France), 2000.

Boukerroui D, Basset O, Baskurt A, Noble A. Segmentation of echo-
cardiographic data. Multiresolution 2D and 3D algorithm based on
gray level statistics. Cambridge, UK: MICCAI, 1999:516–524.

Cohen A, Daubechies I, Feauveau J-C. Biorthogonal bases of com-
pactly supported wavelets. Commun Pure Appl Math 1992;45:485–
560.

Daubechies I. Ten Lectures on Wavelets. CBMS-NSF Conference
Series in Applied Mathematics, SIAM, Philadelphia, 1992:61.

Grimson WEL. From images to surfaces: Computational study of the
human early visual system. Cambridge, MA: MIT Press, 1981.

Guillemaud R, Brady M. Estimating the bias field in MR images. IEEE
Trans Med Imaging 1997;16:238–251.

Hughes DI, Duck FA. Automatic attenuation compensation for ultra-
sonic imaging. Ultrasound Med Biol 1997;23:651–664.

Kovesi P. Image feature from phase congruency. Videre: J Comp
Vision Res 1999;1:1–26.

Leemput KV, Maes F, Vandermeulen D, Suetens P. Automated model-
base bias field correction of MR images of the brain. IEEE Trans
Med Imaging 1999;18:885–896.

Mallat S. A wavelet tour of signal processing. New York: Academic
Press, 1999.

Morrone MC, Owens RA. Feature detection from local energy. Pattern
Recogn Lett 1987;6:301–313.

Mulet-Parada M. Intensity independent feature extraction and tracking
in echocardiographic sequences. Ph.D. thesis. Dept. of Eng. Sci-
ence, Oxford University, 2000.

Mulet-Parada M, Noble JA. 2D�T acoustic boundary detection in
echocardiography. Med Image Anal 2000;4:21–30.

Szeliski R. Fast surface interpolation using hierarchical basis functions.
IEEE Trans Pattern Anal Machine Intell 1990;12:513–528.

Terzopoulos D. Multilevel computational process for visual surface recon-
struction. Comput Vision Graphics Image Proc 1983;24:52–96.

Velthuizen RP, Heine JJ, Cantor AB, Lin H, Fletcher LM, Clarcke LP.
Review and evaluation of MRI nonuniformity correction for brain
tumor response measurements. Med Phys 1998;25:1655–1666.

Venkatesh S, Owens R. On the classification of image features. Pattern
Recogn Lett 1990;11:339–349.

Wells WM, Grimson EL, Kikinis R, Jolesz FA. Adaptive segmentation
of MRI data. IEEE Trans Med Imaging 1996;15:429–442.

Xiao G, Brady M, Noble JA, Zhang Y. Contrast enhancement and
segmentation of ultrasound images—a statistical method. San Di-
ego, USA: SPIE Med Imaging, Image Processing 2000; 3979:
1116–1125.

Yaou M-H, Chang W-T. Fast surface interpolation using multiresolu-
tion wavelet transform. IEEE Trans Pattern Anal Machine Intell
1994;16:673–688.

Zhang Y, Brady M, Smith S. Segmentation of brain MR images
through a hidden markov random field model and the expecta-
tion-maximization algorithm. IEEE Trans Med Imaging 2001;
20:45–57.

1 MPEG movies of the results are available at: http://www.ro-
bots.ox.ac.uk/�djamal/umb/umb.html
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