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We discuss the asymptotic behavior of time-inhomogeneous Metropolis chains for
solving constrained sampling and optimization probldmaddition to the usual in-
verse temperature schedy)@,).cn+, the type of Markov processes under consid-
eration is controlled by a divergent sequenég).cn- Of parameters acting as
Lagrange multipliersThe associated transition probability matri¢Eg, 4, )nen- are
defined byPg » = q(x, y)exp(—B(W,(y) — W,(x))™) for all pairs(x, y) of distinct
elements of afinite s&1, wheregis anirreducible and reversible Markov kernel and
the energy functioi, is of the formW, = U + 6V for some functions),V: Q — R.

Our approachwhich is based on a comparison of the distribution of the chain attime
nwith the invariant measure &;_, , requires the computation of an upper bound
for the second largest eigenvalue in absolute vall®;of . We extend the geomet-

ric bounds derived by Ingrassia and we give new sufficient conditions on the control
sequences for the algorithm to simulate a Gibbs distribution with eteogypthe con-
strained sef) = {x € O : V(x) = min,e V(2)} and to minimizeU overQ.

© 2002 Cambridge University Press  0269-96@8 $1250 427



428 M. C. Robini, Y. Bresler, and I. E. Magnin

1. INTRODUCTION

Let Q be a general but finite state space andldte a proper subset 6f defined by
0= {x E0:V(x) = minV(z)}, (1.1)
zeQ

whereV is a nonconstant real-valued function &n Let U:Q — R be another
nonconstant functiarOur primary goal is to study the asymptotic behavior of a class
of discrete-timgnonhomogeneous Markov chains controlled by a temperature vari-
able together with a parameter acting as a Lagrange multiplier in order to solve the
following two problems

Problem 1 (Sampling with Constraints):et B8, € R%. Sample from the Gibbs
distribution

Tgo(X) = Zg M xeayexp(—BoU(X), X € Q, (1.2)

where the constanZ,, the partition function is given by Z, = X.cq

exp(—BoU(2)).

Problem 2 (Global Optimization with ConstraintsMinimize U over O; that is
determine the set

Qi := {x e0:U(x) = mipU(z)}.

zeQ)

The class of Markov processes under consideration is based on an extension of
the dynamics introduced by MetropagliRosenbluthRosenbluthand Teller{29].

Let u be a probability distribution o) that charges every point and lgte an
irreducible transition probability matrix ofy called the communication kernel

We assume thaj is u-reversible in the sense thptx)q(x,y) = n(y)q(y, x) for

all x,y € Q. Next, for any two parameterg,d € R’ , define the transition prob-
ability matrix Pg 4, on Q by

a(x, y)exp(—B(W,(y) — Wy(x))") if y#x
1- > Pgo(x2) if y=x,

ZFX

Pgo(X,y) = (1.3)

wherew™ := w0 andW,: Q — R is a nonconstant function parameterizeddby
Under our assumption®; , is primitive (i.e., irreducible and aperiodjcand its
unique equilibrium probability measure is the-Weighted” Gibbs distributiomr o
at temperaturg@ ! defined by

Tp,0(X) = Zgy H(X)eXp(=BW(X)), X E Q, (1.4)
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whereZz 4 = X ,cq M(Z)exp(—BW,(2)) (the letterZ is used throughout to denote
appropriate normalizing constantse corresponding expressions will be omitted in
the sequel provided there is no ambiguitiyinally, let us put

W,(x) = U(x) + 8V(x) forallxe Q (1.5)

and consider two strictly positiv@eondecreasing sequende, ) cr+ and(6,)nen-
such that lim_ .60, = +oo. We will study the family of nonhomogeneous
Markov chaing X,,)ern With the initial law of X, given byr and transitions PX,, =
YIXn-1=X%) = Pg_4 (X, ¥), X,y € Q. Such chains are Metropolis-type algorithms
with state space), energy function(1.5) controlled by(6,),en+, COMMunication
kernel g, and inverse temperature sched(f,),.cn+. We shall use the notation
M (Q,U,V,q,(Bn),(6,)) for short

Substituting(1.5) into (1.4), we find that for any 8, € R’ and for allx € Q,

Wim 75,500 = 7,0(0) = Zpdodpea HORXH-BoU (), (1.6)

which reduces ta@7;, (1.2) wheng is symmetric It can also be checked thai; ,
tends to a distribution which gives strictly positive mass to every configuration
X € Qmin asB, 8 — +oo. More precisely

M 7000 = 70 1= Ze e WO (L.7)

From these observationsy analogy with the unconstrained case., V = con-
stan), M(Q, U, V, q, (Bn), (6,)) will be referred to as stochastic relaxatiorgif =
constant and as simulated annealing ifJim . 8, = +cc. The key idea is thafor
sufficiently slowly increasing control sequengtee lawy,, of X,, should be close to
g, 6, @Nd we can expect that

lim  sup [v,— I =0, (1.8)

n—+co voEM(Q)

where M (Q) denotes the set of all probability measurespdl = 7, .. (1.6) or
7. (1.7) depending on whether relaxation or annealing is considaretithe vari-
ation distance between probabilitiesnd7 on a finite setQ is defined by

1
|v = 7l := maX{w(E) — w(E)| = = X [v(x) — 7(x)|.
ECQ 2 ico
Discrete-time Metropolis algorithms have been extensively studied during the

last 15 yearsWe refer to Metropolis et a[29], Hastings[19], Peskun31], and
Kirkpatrick, Gelatt and Vecch[28] for original accountgo Hajek[ 18], Chiang and
Chow[7], Holley and StroocK20], and Caton{4-6] for theoretical work on an-
nealing to Ingrassid22], and Franc¢oi$12] for results associated with relaxation
and to Azencotf1], Tierney[36], and Gidag17] for synthetic reviewsHowever

most of the available convergence results concern the unconstrainedciasgdly,
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when dealing with deterministic constraing®@me theoretical results relating to the
Gibbs sampler on a finite product space can be found in Geman and G&&and
Winkler[37] (see also Gemdri4] and Gidag17]), whereas for Metropolis chains
the only convergence results we are aware of were recently established [88Yao
(see Gidag17] for the continuous-time cageAdopting Dobrushin’s contraction
techniqueYao[38] proved tha{1.8) holds for both relaxation and annealing if the
control sequences satisfy

Bnen = {In(n + Cl) + C2
for some constants; > 0, ¢, = 0, and 0< ¢ < (£dy) %, where
by i= max{|V(y) - V(X)|:x,y € Q, q(x,y) > 0}

and< is the smallest integer such tHag e, , Ps,. 0, IS @ positive matrix fok large
enough Still, this sufficient condition can be greatly improvér anyx, y € Q, let
us denote by;, the set of all simple path@dmissible forg) from xtoy and let

V(X,y) := min maxV(z) (1.9)
YELy z&Y
be the minimal communication level betweeandy on the constraints landscape
(Q,V,q). Let o be the set of proper local minima 6, V, g); that is x € Q. if it
is not a global minimunti.e., x & Q) and no statg with V(y) < V(x) is such that
V(X,y) = V(x). We shall show thal.8) is guaranteed by the less restrictive condi-
tion £ < hy?, where the constant

hy := max{V(x,y) — V(x) = V(y)} + minV(z)
X, yEQ zeQ

max V(X,y) — minV(z), (1.10)
zeQ

XEQUQ o, YEO : X#y

the critical height of(Q,V,q), can be described as the minimal constraint barrier
separating any local or global minimum @b, V,q) from another state if). This
nonnegative quantity was first introduced by Holley and Strd@t{ and Chiang

and Chow{ 7]; it reduces to the constant of Hajek8] when the involved energy
landscape has a unique global minimustill, our results differ from the work of
these authors in that the latter provide asymptotic annealing convergence conditions
for the unconstrained casthat is asV can then be assumed to be zeronditions
involving only (B,)nen+ andhy, = hy.

Clearly hy, < ¢by wheneverh, > 0, and the ratiofd, /hy is substantially
large in many situations of practical interése are not interested in the special case
hy = 0 which can be tackled with more efficient approaghé&sdeed as far as
annealing is concernegaralleling the constrained optimization problem with the
unconstrained one shows that the improvement we offer here is similar to the im-
provement provided by Holley and Stroofk0] and Chiang and Choy7] over
standard convergence results based on ergodicity theqisEga®.g., Geman and
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Gemar{ 16] and Mitrg Sangiovanni-Vincentelland Sangiovanni-Vincente[l80]).
Before proceeding with the outline of this artictete that some related work about
annealing with time-dependent energy function can be found in Frigerio and Grillo
[13] and Del Moral and Micld8]. Neverthelessour contribution does not fit into
this frameworkas the associated assumptions would force the sequéngey- to
be bounded above

Let L?(1/7), wherer is a strictly positive distribution of, be the real vector
spaceR !l endowed with the inner produ¢, ¥/, := Sucq ¢(X) & (X) (7 (X)),
from which we derive the vector norf||,,,, := (¢, $)1/2. Then let us puter,, :=
mg,.0, @S defined by1.4) and(1.5) and let

fn = ”Vn - 7Tn||1/‘n-n’ (111)

that is &2 is the chi-square contrast of, with respect tor, (see e.g., Brémaud

[3]). Since|v, — Talvar = 3&, and limy_, |7, — I|var = O, it turns out that
lim,_ .. &, = 0is asufficient condition fof1.8) to hold Starting from this straight-
forward observationthe purpose of Section 2 is to compute an upper boungj,on

in the general case of a nonhomogeneous Markov chain with trans(fpns -

having the property thator all n, B, is irreducible and reversible relative to some
probability distributions,,. Our conclusions are contained in Theorerh #he ap-
plication of which goes through the estimation of an upper bound on the second
largest eigenvalue in absolute value of e®¢hln order to meet this requirement
Section 3 is dedicated to the extension of the eigenvalue bounds computed by In-
grassid22]; it gives rise to new spectral estimates that may be of interest in their
own right Finally, in Section 4we make use of these estimates together with Theo-
rem 21 in order to prove the main result of this articldhheorem 41, which states

the basic conditions on the control sequences for the quatigsociated with

Ps..0, to be bounded above by a strictly positive powemnot. The convergence
properties of Metropolis-type relaxation and annealing then follow directly and we
derive expressions for the convergence rates which allow the measurement of the
benefits resulting from our improvement in the upper bound.on

2. GENERAL RESULTS

Let Q be a finite state spac®/e consider the general context of a discrete-time
nonhomogeneous Markov chdiK,,),cr 0n Q with irreducible and reversible tran-
sition probability matricegP,),.en+. In other words each operatoP, defined as
[Pad](X) = Zyea Pa(X, Y)d(y), X E Q, ¢:Q — R, is a self-adjoint contraction on
L2(7r,), the real vector spac&/®' endowed with the inner producip, V) =
Sea P (X)) (X)m,(X). Also, recall that these hypotheses imply thiair all n, the
spectrum ofP,, say{A, i1 o, isrealwith 1= 1,1 > A= -+« = Apj =

—1 andA, o > —1 if and only if P, is aperiodic We shall denote the second
largest eigenvalue in absolute valueRytby p(P,) := Ano O|An ql.
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Lety, be the law ofX,, and letr, be the unique invariant distribution Bf. Our
goal here is to compute an upper boundtn= | v, — 7,4, in order to provide a
starting point for the characterization of the variation distance betweand,, in
the specific case of Metropolis algorithm&s will become clearp(P,) plays a
central role toward this end

ProrosiTioN 2.1: For all n € N\{0,1}, we havef, = p(P,)(a,&n-1 + by), with
an = ||y V2DaAll and by := |-y — 71/, Where By := diag(a,) and |- ||
is the matrix norm induced by the Euclidian vector norm.

The proof appeals to the following lemm&/e denote byl the function which
is identically equal to 1 of (in vector notationl = (1,...,1)7).

LemMA 2.1: Let P be an irreduciblez-reversible transition probability matrix on
Q. Then, for eachp : O — R such that ¢, 1),, = 0, we have|Pe|,, = p(P)| | ..

Proor: DefineS= DY2PD %2 by D := diag(w). Clearly SandP have the same
eigenvalues & Ay > A, = --- = A|q) = —1. Moreover from the reversibility of
P, the matrixSis symmetric and therefore real orthogonally diagonalizabdd
{viti—1...|o be an orthonormal set of right eigenvectorsS$uch that; corre-
sponds to the eigenvalue with the same subscfipe vectorsw; := D~ Y2y,

(i =1,...,]Q]) form an orthonormal basis ih?(7) and they also form a set of
right eigenvectors oP. Consequentlyfor any ¢:Q — R, we can write¢p =
Zi{b, W), Wi andPep = i Ai(d, Wi ), w; so that|p|Z = 2 (¢, w;)7 and|[P|Z =
> A%, W )2, Sincew, = 1, it follows that if (¢, 1), = 0, then

/\i2<¢’wi >727

9E TS (ew

ProoF oF ProposiTiON 2.1: Sincev, — 7w, = Plv,_; — D,1=D,P,D; v, 1 —
D,P.,1, we haveD,Y?(v, — m,) = D¥?P,(D,*v,., — 1) and hence &, =
IP.(Dntvn-q — 1), . Observe tha¢D, *v,—; — 1, 1), =(vn_1,1) —1=0.There-
fore, applying Lemma 2., we obtain

én= p(Pn)” Dr;lvnfl - 1”77'” = p(Pn)Hanl - 77'nH1/7-rn

= p(Pn)(Hanl - ’77'n71||1/7rr| + bn)’

=p?(P). u

where
lvn-1— 7Tn—1“1/77n = Dn_l/2 Dr}izl Dn_—lil/.z(vn—l — 72
= [IDs ¥2DaA ll2IDn (w1 = T2l
= anén-1. u

Proposition 21 is all that is needed to initiate the proof of the following result
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THEOREM 2.1: Assume that there exists a constanENN\{0,1} and two bounded
functions fg: (a,+o0) — R* , with @ < N, such that the following hold:

(i) Forallpositive integerse=N, f(n) =< —In(p(P,)a,) andgn)=p(P,)b,.
(i) fand g are continuously differentiable and decreasingadn+).
(iii) There exists a real constant& (—1,+o0) such that g(x)) 1(g/f) (x) =c¢
forallx € [N+ 1,+00).

Then, for all positive integers & N,

gln+2)
f(n+2)°

0 < En_1exXp—F(n+1) + F(N)) + ﬁexp(f(nJrl)) 2.1)

whereEy_1 (see (2.2)) is a positive constant determined by the initial 4gwand
the transitions(P,),=n<n, F is a primitive of f in(a,+00), and y := sup{g(x)/
g(x+ 2):x € [N,+00)}.

Proor: Taking thatlly_, p(Po)a, = 1if | > n, Proposition 21 gives

fnsfll(ljzp(Pk)ak+ ZZP(Pm)bm Hlp(Pk)ak = (2.2)

k=m-+

for all n = 2. Observe thatfor all n = N,

kl:[ p(Poa, =: (kl__I p(Pk)ak>< H p(Pk)ak>

k=mON

= <H p(Pk)ak)exp<— > f(k)>,

k=m k=mCN

with

En: f(k)zfn+ f(x)dx=:F(n+1) —F(mON).

k=mCN mCN
Hence settingS, := >n-n g(m)exp(F(m + 1)), we obtain
En=En_1exXp(—F(n+1) + F(N)) + exp(—F(n+1))S.. (2.3)
We have
S =y gNg(m + 2)exp(F(m+ 1))

= /\/In,

I,:= jn+ g(x + Dexp(F(x + 1)) dx. (2.4)
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Our task now is to derive an upper bound Bn The substitutiony = F(x + 1)
yields

F(n+2)
I, = f (GoF71) (y)exp(y)dy,
F(N+1)

whereG is a primitive ofgin [N + 1,+o0). Note that(Go F 1)’ (y) = (go F 1) (y)/
(feFY)(y)>0forally € [F(N+ 1),+0). Integrating by partsve get

B M :|n+2_
In_[f( y) & PEY| T

with

F(n+2) G ° F—l ”
fp (GeF™Y)"(y)exp(y) dy=1, i (GeF )"y

T = min —
" ey "yelr(N+1.Fe2] (Go F 1) (y)

1
=Zn xE[N+I1nn+2] g(x) < > ) =

and it follows that

[ 9w o g(n +2)
I,=(1+c) {f(y) exp(F(y))]N+1< (1+c) *exp(F(n+2) fnt2)
(2.5)

Finally, from (2.3)—(2.5), we obtain

£ < iexp—F(n+ 1)+ F(N) + —X— exp(F(n + 2) — F(n+ 1)) 372
n S =AN-1 1+c f(n+2)

and the theorem follows from the fact that sirfde decreasingF is concave and
henceF(n+2) —F(n+1) =f(n+1). |

A straightforward example of functions satisfying conditidi$ and (iii ) in
Theorem 21 is given byf (x) = K; x ™ andg(x) = K, x "2, whereK,, &,, ande; <
g, 01 are strictly positive constants aKg > (g, — ;) (N + 1)1, In this casethe
interesting thing is that the upper bound 211) has the limit 0 a® — +oo. Indeed
in Section 4a similar choice will be made for the application of Theoremt® the
convergence of the class of algorithmM$Q, U, V, g, (8,), (6,)). Howeverto be able
to do sq we must provide some upper bounds &gr b,,, andp (P,). This task turns
out to be easy when consideriagandb, (see Lemma 4), but the lack of spectral
estimates for generic Metropolis chains makes it much harder for the second largest
eigenvalue in absolute valu€he following section is intended to introduce some
results that will allow us to overcome this difficulty
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3. GEOMETRIC BOUNDS FOR EIGENVALUES OF METROPOLIS CHAINS

Consider an irreducibjeeversible transition probability matriR on a finite set)
and letp (P) be the second largest eigenvalue in absolute val®e thiat is p(P) =

Az O[Aq)], wherea, < 1 andajq = —1 respectively stand for the second largest
and the smallest eigenvaluédotivated by the well-known fact that(P) governs
the rate of convergence of the time-homogeneous Markov chain with tranBition
several authoré&Sinclair and Jerrurfi35], Diaconis and StroocKLO], Sinclair[34],
and Desai and R4®]) have developed upper bounds forand lower bounds for
Ajq) (see Ingrassif21] for a synthetic review on the subjecNeverthelessthese
spectral estimates depend on some geometric quantities associated with the transi-
tion graph ofP, which are difficult to compute for generic updating dynamics like
the Gibbs sampler and Metropolis-type algorithimssuch situationsthe tightest
eigenvalue bounds known to us were derived by Ingrd@&Hrom the estimates of
Diaconis and StroocKl0].

When treating Metropolis chainkgrassid 22] restricted his study to specific
symmetric communication kerneldere we extend the results of this author to any
irreducible and reversible communicatidie first introduce some definitions and
we recall the estimates of Diaconis and Stropt®] in order to state the problem
clearly Then an upper bound on, and a lower bound on, are proved for the
purpose of studying the constrained relaxation and annealing processes described in
the IntroductionAlthough these results allow us to bound the mixing time of general
Metropolis chaingit is worthwhile noting that tighter convergence time bounds can
be obtained for specific problems involving particular instances of either the Me-
tropolis dynamics or the closely related Glauber dynanfiosinstancegpolynomial
time bounds were proved by Jerrum and Sindlab] for sampling nearly perfect
matchings in bipartite graphs and matchings in weighted grégges also Jerrum
and Sinclaif26]). Positive results of a similar flavor can be found in Jerfi#|
and Dyer et al[11] for sampling vertex colorings of a low-degree graphd in
Jerrum and Sorkifi27] for the graph bisection problenstill, in addition to our
preoccupationgeneral bounds can be useful for understanding complex chains such
as the ones that arise in image processing inverse proliag®.g., Geman and
Gemar{16] and Robinj Rastellg and Magnir{32]) or for other problems that have
been shown to produce negatifiee., super-polynomial or exponential tilmeon-
vergence results—such problems include finding maximum matchings in arbitrary
graphs(Sasaki and Hajek33]), reaching a maximum clique in a random graph
(Jerrum[23]), or theg-state Potts model and the independent set problem on rect-
angular subsets of an hypercube lattiBergs et al[2]).

3.1. Notation and Preliminaries

We assume that the irreducible Markov kerRel) X Q — [0,1] is reversible with
respect to its invariant distributiom; that is

Q(x,y) == m(X)P(x,y) = Q(y,x) forallx,y € Q.
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The transition grapts(P) = [Q, A] associated witl is the directed graph with
set of vertices) and set of arcsl = {Xx=vy:x,yE Q,P(x,y) > 0}; we shall use the
notationd = (a_,a, ) for an arc with initial vertexa_ and end vertea. .

Given any two verticeg, y € ), we denote byy,, a path fromxtoy on G(P)
and we define it€)-length by

[volo= 2 Q@)™ 3.1)

aSyyy

SinceP is irreducible we can construct a collectidn= {y,,: X,y € Q, x # y} of
paths onG(P) containing one simple path for each ordered pair of distinct ver-
tices(x,y) € Q X Q. The first geometric quantity of intereshe “Poincaré coeffi-
cient” is

Ky = mag( 2 |7xy|Q7T(X)7T(y)- (32)

aeA YxyEL 1 yxyDa

Assuming thaP is aperiodigwe can choose a sEt= {o,: x € Q} of cycles on
G(P) containing one cycle with an odd number of arcs for each veflte& second
geometric quantity to be considered is related t@s follows

= max Y, |oylom(X), (3.3)

acA g.e35:0,34

where theQ-length|oy|q is defined by analogy witk3.1).
This notation allows us to state the spectral estimates computed by Diaconis and
Stroock[10].

ProrosiTIiON 3.1: Let P be an irreducibles-reversible transition probability ma-
trix on Q. Then, the second largest eigenvalysof P satisfies

Ap=1—kit (3.4)

with k- defined in (3.2). Moreover, if P is aperiodic, then its smallest eigenvalye
satisfies

A‘Ql = _1+ 2L§1 (35)
with ¢y defined in (3.3).

Obviously for some particular case of interestte quality of the eigenvalue
bounds that can be derived from the above results depends on making a judicious
selection of the sets and3. In the following subsectionsve focus on Metropolis
chains with transition probability matri® on Q defined by

P(x,y) = q(x,y)exp(—=B(W(y) — W(x))") if y+#X, (3.6)

where the inverse temperatyBe= R is fixed, the energy functioW: Q — R is
nonconstan@and the communication kerngl Q X Q —[0,1]is taken to be irreduc-
ible and reversible with respect to its invariant distributienTherefore P is



CONSTRAINED RELAXATION AND ANNEALING 437

primitive and its equilibrium probability measure is the Gibbs distributidix) =
Zz pu(x)exp(—BW(x)), X € Q.

To compute our spectral estimates® shall adopt the approach of Ingrad&2]
based on PropositionB Let

S(x) ={ye O\{x}:x>ye A

be the set of proper neighborsyaind letd, := maxc,|S(X)|. Ingrassia’s results are
limited to symmetric communication kernels of the form

(do)* if y € S(x)
q(x,y) =1 (d)*(d, = [S(x¥)]) if y=x
0 otherwise

with the additional assumption th&f(x)| = d, for all x € {y € Q:(z €
S(y))[W(z) > W(y)]} =: Y when considering the smallest eigenval@er contri-
bution is to extend these results to arbitrary irreducible and revergifilee same
proof techniques are used and this generalization mainly involves dealing with the
two following awkward elementsj(x, y) is no longer constant for all paif, y)

such thaly € S(x), andq(x, x) is not necessarily zero¥€ Y.

3.2. An Upper Bound on A,

Given any pair of distinct verticds, y) € Q X Q, the set of all simple paths from
toy on G(P) will be denoted by,. Let h be the critical height of the energy land-
scape(Q, W, q) defined by analogy witt{1.9) and(1.10). A pathy,, is said to be
W-admissible if

maxW(z) — W(x) — W(y) + minW(z) = h (3.7)
Z€yyy zeQ

(it is said to be strictiywW-admissible if the inequality is strictObviously there is

at least oneW-admissible simple path between every pair of distinct vertices

(x,y) € Q X Q. Like Ingrassig 22], we consider a sdt = {y,,: X,y € Q, X # y}

of W-admissible simple paths 0G(P). Let b be the maximum number of

pathsy € I' that use the same arc and {gtbe the length of the longest pathlin

that is

br:=max{y €T:y > &} (3.8)
acA
and
Or = maxyl|, (3.9)
yer

where|y| denotes the number of arcs)jinThe following result is obtained by means
of (3.4) in Proposition 3L.
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THeEOREM 3.1: Let P be a transition probability matrix of the form (3.6) with ir-
reducible and p-reversible communication kernel. Then, the second largest eigen-
value A, of P satisfies
|Qmin|qmin
A =1— ———exp(—Bh), 3.10
2 o XN (3.10)

whereQ i, = {x EQ: W(x) = min,c, W(2)} is the set of global minima of W,.g =
min{q(d):d € A, a_ # a, } denotes the minimum communication probability over
proper transitions, and p= max{u(x)/u(y):x,y € Q} measures the fractional
communication dissymmetry.

Proor: We haveQ(d) = (a_)P(a) = Zgl p(a_)g(@exp(—B(W(a_) OW(ay)))
and hence

[Vylom (X (y) = Zg () p(y) >, (H(a-)q(d)*

a€yyy

X exp(B(W(a_) OW(a,) — W(x) — W(y)))

for anyy,y € T'. From our choice of" (3.7), sinceW(a_) OW(a,) = max{W(z):
Z € vy}, we have

[Yylom (X (y) = Zglu(X)u(y)exp(B(h— rzneigW(Z))) > (ua )q(@)*

aSyyy

HE | 7xy|
ZB qmin

Zs= > exp<—B <W(z) - E(ngigW(x))).

zeQ

=

exp(gh),

Thus by the definitions oby (3.8) and( (3.9), and sinc&Zz = | Qmin|, the quantity
kr (3.2) satisfies

2
o = b €

= exp(Bh)
‘Qmin| qmin p(IB

and the theorem follows from Propositioril3 u

Note 3.1: The upper bound3.10) is similar to the one computed by Holley and
Stroock[20], the difference being that we can express the constant appearing in
front of exp(—Bh). In addition to its intrinsic importancéhis specification is needed

to set the basis for the proof of our main resyBgction 4 because of the depen-
dence upom in the case of relaxation and annealing with constraints

Note 3.2:In place 0f(3.4), other geometric estimates can provide a starting point
for computing an upper bound ox. For instancebased on some previous work
(Sinclair and Jerrumi35]), Sinclair[34] proved the following bounds
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Ap=1- N = r;1€<’:}§<(Q(§))’1 > mom(y), (3.11)

YxyEL 1 yxy28

1
8n¢’

1
Ao=1-—, Fei=max(Q@)™* X |yylr(7(y). (3.12)
n acA

r YxyEL 1 yxy2d
Adopting a similar reasoning as in the proof of Theoref) e bound3.11) gives

)\2 =1— }( |Qmi2n|Qmin
s br

3 )2 exp(—2Bh), (3.13)

whereag3.12) leads to the same upper bound240). Alternatively, provided that
W has a unique global minimusand (%) > (c¥/2 + gc™¥3 — %)2, ¢c:= 19/27+
\/33/9, the approach proposed by Francfig] leads to an estimate of the form

A, = 1—Kexp(—28h) (3.14)

for some constari > 0 andg large enoughFinally, one can resort to the results of
Desai and Ra@9] from which it is possible to obtain

A, = 1— K’ exp(—BAw) (3.15)

for some constark’ > 0 andA, := max{W(x) — W(y):x,y € Q}. Still, except for
the trivial casén = 0 and the extreme cabe= Ay, the upper bound of Theorem13
becomes sharper thd8.13)—(3.15) asg increasesFurthermorethis observation
holds in the context of relaxation and annealing with constraints

3.3. A Lower Bound on A|q

Let Ap be the set defined byp = {x € Q: P(x, x) > 0}. For any vertex € Q, we
denote byr, the minimum number of arcs @ (P) that are needed to joixto an
element ofAp. In other words

r.:.=1 min min|y]|.
X {X&Ap} e, ‘yEny| Yl

Following Ingrassig22], we consider a s& = {o,.: x € Q} of odd cycles orG(P)
reachingAp through a minimum number of archat is

Yxx if x&e Ap
Oy =

. (3.16)
(Vxys Yyys Yyx)  Otherwise

wherey,, := X — X, the vertexy is an element oA p, the pathy,, is such thafy,,| =
rv, andyy, stands fory,, reversedFinally, let 5 be the minimum nonzero jump &Y
over proper transitions

§:= min min IW(x) — W(y)|,

XEQ YyES(X): W(y)#W(x)
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and letbs be the maximum number of cycless 3’ := 3\{y,,: X € Ap} that use the
same arg

by := max{oc €' :0 > &}|.
aeA
THEOREM 3.2: Let P be a transition probability matrix of the form (3.6) with ir-

reducible and p-reversible communication kernel, and lednpd g, be as defined
in Theorem 3.1. Then, the smallest eigenvalug of P satisfies

Omin 1 -1
Moy = =1+ 20mn| Al 2 0 —F—— | +B]| , (3.17)

Omin 1- EXp(—B5)

where A= by 1, + 1, B=2bs r, 1, with r, = max{r,: x € Q}, andq, is the minimum
nonzero self-loop communication probability if such exists; thatGs., =
min{q(x, X): X € Aq} if Aq:={XE Q:q(x,x) > 0} # J, otherwiseqmin = 1.

Let us start with a few lemmas to keep the proof simple
LemMma 3.1: x € Apif and only if q(x, x) = 0 and W(z) = W(x) for all z € S(x).

Proor: The lemma follows directly from the fact that

X& Ape D q(x,z)exp(—B(W(z) —W(x)") = 1. n

ze8(x)

LemmMa 3.2 Assume thaf\Ap is nonempty. Then, any path= (X)—o, ...
G(P) suchthatx& Apforalll €{0,...,L} is a path of constant energy.

L on

Proor: If W(x) >WI(x,_,) forsomel €{1,...,L}, thenx,_, € Ap by Lemma 3L
Likewise asx € S(y) ©y € S(x) from the irreducibility and the reversibility af,
W(x) < W(x,_1) implies thatx, € Ap. Hence y must be of constant energy B

LemMma 3.3: For any X& Ap, we have PX, X) = Gmin J (Qmin(1 — exp(—=B895))).

Proor: On one handf W(z) = W(x) for all z&€ S(x), thenqg(x, x) > 0 by Lemma
3.1 and

P(X,x) =1— > q(X,2)=d(X X) = Guin.

zES(x)

On the other handf there existsz, € S(x) such thatW(zy) > W(x), then

P(x,X) = (1— S ax z)) — q(x, Zo)exp(— B (W(zo) — W(X)))

zeS(x)\Mzp}
= d(X, Zo) — q(X, Zo)exp(—Bd)
= qmin(l - eXp(_B5))- u
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Proor or THEOREM 3.2: The approach is similar to the proof of Theorerh B the
sense that we shall compute an upper bound on the geometric quani®) in
order to apply(3.5) in Proposition 3L.

For anya € A, we can write

> loylom(X) = > (Mxgapy T Aixen )| oxlom(X) (3.18)

0yEX 0y Da oyEX 0y Da

so that the cases& Ap andx € Ap can be considered separately

Let us first assume that € Ap. Then by our choice off (see(3.16)), o =
(Vx> Y2y Vyy» Yyz Y2x)» Wherey € Ap, v,y is a self-loop fromy to y, the pathy,, =
z— yis simply an arc witte &€ Ap, andwy,, has all its vertices i\ Ap and length
| vxzl = Iy — 1. Note that from Lemmas.B and 32, W(z) = W(y) andy,,is a path of
constant energysinceQ is symmetrigwe have

loxlom (%) = 2([ 7l Qm(X) + [v2ylom (X)) + |yyylom(X). (3.19)

We can provide an upper bound for each of the three terms that appear in the right-
hand side 0f3.19). First, asy,,is of constant energy

[Vidlom(¥) = 2 (m(a-)P(@) *m(x)

8y,
= 3 (Wa @) w0 = (-1 2
SecondsinceW(x) = W(z) = W(y),
7 (x) H(X) _ K

™) = TG G Y T WA Y)  tue

Third, appealing to Lemma.3, we have

70 _ KX
7(YP(y,y)  u(y)P(y,y)

|7yy|Q7T(X) = = M (Gmin O (Omin(1 — exp(—ﬂé)))‘l,

Consequently

oo (X) 21, P N ( 1 . 1 >
Oylom(X) = s
Q Omin H Qmin Qmin(l - eXp(_st))

and it follows that

S Apenyloulom() = 1[ b<q’“‘”m—1 >+B]
x&ApH OxlQ T (X) = = _ .
0yEY 1 0,23 enel ° Omin Mo Omin 1- exp(_lga)

(3.20)
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Now, let us consider the cage= Ap. Then the cycleo, € X is a self-loop from
xtoxand the corresponding treatment is eaditaking use of Lemma.3, we have

loxlom(X) = (P(X, X)) = (Gmin 0 (Gmin(1 — exp(=B5))) "~

Henceasy, cs.poalpen, =1forallde A

S Apenylodor(0 = (q"““ ! ) (3.21)
X a-X o - A o ooy * *
0y ES 0D etel Q Omin \ Omin 1 — exp(_lg‘s)

Finally, from (3.18), (3.20), and (3.21) and by the definition oty (3.3), we
obtain

<

1 |:A< Qmin 0 1 > + B:|
= - -
> Qmin Grmin 1- exp(_ﬁa)

and the theorem follows from PropositioriL3 u

3.4. An Upper Bound on the Mixing Time

Starting from a given configuratiox € Q, the rate of convergence of a primitive
Markov chain with transition probability matri® and equilibrium distributionr
can be measured via the “mixing tim&;: R*. — N defined by

Ti(e) = min{fn € N*: (Om=n)[[P™(X,") = 7lvar = €]}

As noted by Sinclaif34], 7,(s) can be bounded above in termsegdP) and (x):

Ti(e) < (1—p(P))—1|n< ) (3.22)

e (X)

Hence Theorems 3 and 32 give an upper bound on the time to redcuasiy
equilibrium from a given initial statel'he following result is noteworthwlthough
we shall not use it in the sequel

CoroLLARY 3.1: Let P be a transition probability matrix of the form (3.6) with
irreducible and p-reversible communication kernel and lety, €, Gmins Gmin: 05 A,
and B be the quantities defined as in Theorems 3.1 and 3.2. If

B=(6"1n2O(htin 1@l (Gmin 1)) g =: B*
B 2“x2<bl“€l“ Qmin ’

uzIn(1/gm(x))
‘ Qminl qmin

then

Ti(e) = by €1 exp( Bh). (3.23)
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Proor: Let A, andA, be the upper bound ok, and the lower bound oh) ) given
in (3.10) and(3.17), respectivelylf g8 = B*, then

qmin -1
Ay=1- 2qmin[A( — D2> + B]

min

Omin 1 -1
=1-20min|A O — + B = —)\,.
q |: ( Qmin 1- eXp(—55 1in 2) ) :| = :

Therefore p(P) = A, and the corollary follows fron(3.22). |

Note that(3.23) holds for anyB € R if one considers the slower Markov chain
with transition probabilityz(I + P) rather tharP, wherel is the| Q| X | Q| identity
matrix (i.e., if one introduces an additional self-loop probabilityzofor each state
In both situationsthe mixing time is governed by the critical height of the energy
landscape together with the geometric quantitieand(,- associated with some set
of admissible pathsThis confirms two basic intuitions about necessary conditions
for rapid convergence to equilibriurithe chain should not contain any bottleneck
and the diameter of its transition graph should be small

4. CONVERGENCE TOWARD EQUILIBRIUM AND THE GROUND STATES

We now have all of the necessary ingredients to study the class of Metropolis algo-
rithms M (Q,U,V,q,(Bn), (6,)) defined in the Introductionthat is the family of
nonhomogeneous Markov chai(X,),cy with transitions(Pg_ 4 )nen+ defined by
Pso(X,y) = q(Xx,y) exp(—B(W,(y) — W,(x)) ") for all pairs(x, y) of distinct ele-
ments of(), where the following assumptions hold

Al. gis an irreducibleu-reversible Markov kernel ofe.
A2. W, = U + 6V is nonconstant for ah € R%,.

For each, the law ofX,, is denoted by, and for simplicity, we shall pu®,:= P;_,_
and writerr,, for the equilibrium distribution of,.

In order to be able to apply TheoremlZor establishing the convergence of
relaxation and annealingve have to compute upper bounds on the quantitjes
IIDy2Dp/4 I, andb, = [ 77—, — 741/, @s well as on the second largest eigenvalue
in absolute valug (Pg 4). These intermediate steps form the subject of Sectibn 4
They will allow us to prove our main theoremheorem 41, from which we deduce
the convergence results summarized in Corollariésaéd 42.

4.1. Upper Bounds on a,, b,, and p(Ps )

Let us first considea, andb,. For eacm € N\{0,1}, we set

On = (IBnen - anlenfl)(AU Hr:l + AV), (41)



444 M. C. Robini, Y. Bresler, and I. E. Magnin

whereA; stands for the oscillation of the functiah Q — R, defined asj; :=
max yea (J(X) = J(y)).

LemMA 4.1: Assume that the control sequen€@s)ncn+ and (6,).en+ are strictly
positive and monotonic increasing. Thep,exp(30,) and b, = exp(o,) — 1 for
all n € N\{0,1}.

Proor: Since

e 1(X 1/2
a, = max{A¥2: X € spectruntD; D, _,)} = max(L()>
X

co\ mp(X)
and
_ Tn-1(X) _ 2 1/2 - Tn-1(X) B
m_<%<mﬂ) Q”“O =2 00 L

it suffices to show that exp-o,,) = 7,_1(X)/7n(X) = exp(o,) for all x € Q.
For eachn = 1, let ¥, be the real-valued function dn characterized by

W, (X) = Bn[<u(x) - rzneiQU(z)> + 0n<V(x) - TeiQV(z)ﬂ.

The equilibrium distributions,, can then be expressed as(x) = Z;1u(x) X
exp(—V,(x)) with Z, = > ,co U(2)exp(—¥,(2)) and it is easy to check that
Z, 77'n—l(X)

Zn71 = m = eXp(\I’n(X) - \Ifn,l(X))

em@gy%m—wﬂmgs

for all n = 2. The lemma follows from the fact that
\Pn(x) - \I}nfl(x) = (,Bn - ﬁnfl)AU + (Bnen - anlenfl)AV = On
for all x € Q. [ |

Note 4.1: It can be shown that fon sufficiently large the inequalities given in
Lemma 41 still hold if we replacer, by max{U(x) —U(y):x€ Q,y € Q}in (4.1),
where() is defined by(1.1). Moreover whenp, = B, € R* for alln € N* (i.e,, in
the relaxation cagewe obtaina, = exp(30;;) andb, = exp(oy) — 1, with o} =
Bo(6,— 6,_1)Ay for all n = 2. However we will not appeal to these tighter bounds
as they do not lead to better convergence results

Now, let us turn to the second largest eigenvalue in absolute vaRg o0Some
of the quantities involved in Theoremsl3nd 32 are functions o# so that a little
care is needed when applying these resuitthis contextit is important to keep in
mind that the set of arcs dB(P; ) that are not self-loops is entirely defined by the
communication kernej and is therefore independentdf V, 8, andd. A few def-
initions are needed before stating our upper boung @ 4).
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Let H\ be the collection of ordered pairs of distinct statesy) € Q X Q such
that

V(x,y) = V(x) = V(y) + rgiQV(Z) = hy,

whereV(x, y) is the minimal communication level betwerandy on (0, V,q) and

hy is the critical height ofQ,V, g) (see(1.9) and(1.10)). Becauseis irreducible we
can construct a sé&t, = {yy: (X,y) & Hy, X # y} consisting of exactly one strictly
V-admissible simple path o®(P; ,) for each ordered pair of distinct elements
(x,y) € (2 X Q)\Hy.Asimple pathy,, onG(Pg ,) is said to bé/-critical if (x, y) €
Hy and maxV(z):z € vy} = V(X,y). We denote byl a set{y,y: (X,y) € Hy}
composed of exactly oné-critical simple path for each péix, y) € Hy, and byG,,
we denote the collection of all such sets of patfisally, let

b, := maxbyr, and ¢,:= ¢ 0 (max€rc>,

ILEG, ILEG,
whereb; and (- are respectively defined k.8) and(3.9).

ProrosITION 4.1: For any constang,, € R* , there exists a constaf, € R*,. such
that, for any 8 = By, and for anyd = 6, p(Ps4) =1 — 7exp(—B(2Ay + 6hy)),
wherer := Oin( H2b, €,)72.

The proof resorts to the following simple lemmas

Lemma 4.2: The critical height k, of the energy landscapg?,W,,q) satisfies
_ZAU + ehv = hWH = ZAU + eh\/

Proor: Let us respectively denote By, andJ,.xthe minimum and the maximum
of afunctionJon (. It is straightforward to show that,;, + 0V (X, y) = W,(Xx,y) =
Umax+ 0V (X, y) for all pair of distinct stategx, y) € Q X Q and the lemma follows
by considering that) iy + 0Viin = Mineo Wy(2) = Unax + OVimin. u

LemMma 4.3: There exists a constaff, € R, such thatfor any6 = 6y, the collee
tion of sets{I' = I}, U I.: I, € G} contains some sdty,,(6): X,y € Q, X # y}
exclusively made up of ¥admissible paths.

Proor: By appealing to Lemma.2, we can make the following two observations

i. Any strictly V-admissible path becomes strictiy,-admissible a9 in-
creasesTherefore there exists, € R’ such that any path i, is W,-
admissible ifo = t,.

ii. Lety,, be apath joining two statesandy such thatx, y) € Hy. If y,yis not
V-critical, then

maxV(z) — V(x) — V(y) + n;igv(z) > hy

ZEyyy
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and hencevy,y is notW,-admissible for large values 6f Consequentlyfor

0 sufficiently large anyW,-admissible path linkingx, y) € H, is V-critical.
Because for ever§ € R’ , there exists &\,-admissible path between every
pair of distinct pointgx, y) € Q X Q, we deduce that fof large enoughat
least one of th&/-critical paths linking any paitx, y) € H. isW,-admissible

It follows that there existg € R’ such that for every = t., at least one of
the setd, € G. is exclusively composed Mj,-admissible paths

Settingé;, = t, Ot. completes the proof u

Proor or ProrosITION 4.1: We denote by (0) a set ofW,-admissible simple paths
on (Q,W,,q) and the dependence af, Oy, (Theorem 31), Aq|, A, B, 6 (Theo-
rem 32) upond is indicated by the subscript

Clearly, there existsd,, € R* such thatfor all 8 = ¥,

8, = min min [U(x) — U(y)| =:6, > 0.

XEQ yES(X): U(y)#U(x)

Then applying Theorems.2 and 32 with | Qn,in 6| = |Q|, we obtain thatfor any
0 = 9, a sufficient condition for the upper bound ag , (3.10) to be greater than
the absolute value of the lower bound bR, , (3.17) is given by

— |Q| ( <qmin 1 ) >:|
hy = In| ——— A 0——— | +8B =:L(B,0).
Vo B |:2p—5br(a)€r(g) v Gmin 1 — exp(—B6éy) o (B.9)

Hence by Theorem 3L and using the fact thafyn 4| = 1, if # = ¥, andhy, =
L(B,0), then

p(Pg o) = 1—1oexp(—Bhy,), 7:= Amin(MEbr(g) €r0)) 7%
=1—7,exp(—B(2A, + 6hy)) (by Lemma 42).
Consequentlygiven any B,, € R%, the above inequality holds for all pairs
(B,0) such thatp = By and 9 € {9 = 9yn:hy, = L(Bm,?)} = D,. Since
SUP{L(Bm, ¥ : 9 ERY } < +ooandhy, = —2Ay + dhy by Lemma 42, D, D {¢ =

I, for some constand;, = 9,,. The proposition follows by appealing to Lemma
4.3 and then setting,,, = 6/, 0 9. [ |

4.2. Main Results

In addition to Assumptions A1 and A2 apandW,, we shall make the following
assumptions on the control sequen@s)nen= and(6,)nen-:
A3. (Bn)nen and(6,).en+ are strictly positive and monotonic increasing
A4. lim, . 0,= +oo.

A5. There exists real constants € (—1,+o) and/ € (0,hy?) such that
Bnbn— Bn-10n-1={(n+ w) 1 for all n € N\{0,1}.

AB. The sequencéd,/In(n + w))nenyo,1; decreases eventually
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By applying Theorem 4 together with Lemma.4 and Proposition 4, we
obtain the following theoreprwhich shows that the quantity, (1.11) has the limit
zero amn — +oo whenever assumptions 3—6 are satisfied

THEOREM 4.1: Under assumptions 3—6, for any positive real constant

c> {Ay
T(l + (l)){hv eXp(—,B101 hv)

= CO’

there exists a constant M N\{0,1} such that¢, = C(n + w)¢@2ub '+ —1 for
alln=M.

Proor: In order to be able to apply Theoreml2we must first provide bounds
for the quantities—In(p(P,)a,) and p(P,)b,. From Proposition 4, we have
In(p(R,)) = —7exp(—Bn(2Ay + 6,hy)) for n sufficiently large Therefore by
considering Lemma .4 and noting that assumption 5 impligs6, — B0 <
{In((n+ w)/(1+ w)), there exist$, = 2 such thatfor all n = ny,

- ln(p(Pn)an) > Tn(n + Ll))ig(ZAugnilJrhV) - vn(n + a))71

with 7, := 7 exp(({ IN(1+ w) — B161) (2Ay 6,1 + hy)) andv,, := 37 (Ay 6,1 + Ay).
Sincelim,_, . 6,= +ooandZhy, < 1, itfollows that for any real constait satisfying

0< 81 < lim Th — T(l + a))ghv eXp(—B161 h\/),

n—-+oo

there existsy, = n; such that
—In(p(Pya,) = 8,(n+ w) ¢@utb ™) foralln=n,. (4.2)

At the same timgusing Lemma 4. and assumption,®e havep(P,)b, < b, =
exp2un(n + w) 1) — 1 =: s, for all n = 2. Clearly under assumptions 3 and 4
the sequences, ) e+ IS Monotonic decreasing and lim. .. S,/({Av(n+ w) ™) =1.
Consequentlyfor any real constari, > Ay, there exist$1; = 2 such that

p(P)b,=8,(n+w)™* foralln=n,. (4.39)

We now examine the conditioig—(iii ) stated in Theorem.2. Let® : [1,+c0) —
R* be any monotonic increasing function such tRen) = 6, for all n = 2 and
®(x)/In(x + w) decreases eventuallve define the functionfandg by

f(X) = 81(X + @) $@2/O00+ ) gnd  g(x) = 8,(X+ w) * (4.4)

so thaf according to(4.2) and (4.3), it suffices to chooséN = n, [ n; to obtain
condition(i). Then because the derivative bfs

f1(x) = —¢f [h + )t 28 E(—IH(H“)))}
(x) = ={F(X) | hy (X + w) U ax\ o0 )



448 M. C. Robini, Y. Bresler, and I. E. Magnin

there existsyy = 1 such thaf is decreasing ifiag, +o0) and hence condition (ii)
holds for anya = ay. In addition

i(g) _8—1<9> |: h 1+2 A + E(M)]
g0 \ 7 ) 0 =8\ 7 )08y =1+ 208, (@) o { =g

hy —1
>§v

(X + w)¢@Au/00Thv)=1 for x large enough
1

and thus for any real constant € (—1,0), there exist$), = 2 such that condition
(i) is satisfied for an\N = n,.

Finally, applying Theorem 2 with f andg defined by(4.4) andN = n, On; O
| ap + 1] O n,, we obtain that for alh > N,

En<En_1exp(—F(n+ 1)+ F(N))
1+ 2(N+ w)™1)s,

exp( f(n+1))(n+ @ + 2)¢@subnizrhv)—1
1+ 0o, p(f(n+1)(n+w+2)

where the first term in the right-hand side tends to zero exponentially fastas
+o0. The theorem follows from the fact that for any real constant O, the con-
stantss,, 8, ¢, andN can be chosen in such a way that
1+ 2(N+ w) )5,
(1+c)d,

exp(f(n+1) —Cy=¢

for n sufficiently large u

The following two corollaries give simple conditions on the control sequences
for M(Q, U, V, q, (B,), (6,)) to converge in variation targ .. (1.6) andw, (1.7)
together with the associated asymptotic convergence.rates

CoroLLARY 4.1 (Relaxation: Assume thaB,, = B, € R and
6, = {Botin(n+¢c,) +c, forallneE N (4.5)

where? € (0,hy?), ¢, € R%, and ¢ € R, are given constants. Then, for any initial
distribution vy,

lvn = 7, collvar = O(NEMNVDED)  as n— +oo,
where
8, = min{V(z):z€ O\Q} — min{V(2):z€ Q}. (4.6)

Proor: According to(4.5), Bo(6, — 6,-1) < (N —1+ ¢;)~* for all n = 2 and the
sequencéd,/In(n — 1+ c;)).=» IS strictly decreasingrherefore assumptions 3—6
are satisfied and Theoreml4gives

[0 = alvar = O(né@ula =1y — O(néhv=1), (4.7)
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For eacn = 1, let ®,, be the real-valued function dn defined by
P, (x) = exp(—Bo[U(X) + 6,V(x)]), V(x):=V(x) —min{V(z):z€ Q}.

Clearly @,(x) = O(exp(—BobnV(x))) = O(n~¢YX) for all x € O\Q and we can
write 7n(X) = Zy* u(x) @, (x) for all x € Q. Hence sinceZ, > Z;_ .. > 0,
ma(X) = O(N~¢YX)  forall x € O\Q. (4.8)

Now, if x € Q, we have

Zo— 2y
|T0(X) = Tg,00(X)| = Zg oo H(X)EXP(—BoU (X)) Z—B

= T (X) T (Q\Q),
whereagm,(x) — g, ..(X)| = 7,(x) for all x € Q\Q. Consequently
7m0 = gy collvar = 7, (O\Q)
= 0O(n %) (by(4.8)). (4.9)
The corollary follows directly from{4.7) and(4.9) by the triangle inequality B

Note 4.2: Corollary 41 shows that whenevér= (hy + §,)"%, the asymptotic con-
vergence rate of constrained relaxation is governed by the diffe&neeb) be-
tween the smallest constraint outside the feasibl€setd the minimum constraint
value It appears that the fastest convergence rate is achieved=fath, + §,)7*
and hence rather surprisinglysetting/ arbitrarily close tohy* takes us away
from best performancéstill, it can be checked that our improvement in the upper
bound on¢ with respect to Yao's resuli38] allows for faster convergence if
hy + 8, < €dy, a situation likely to arise in practicand(£dy)™* < ¢ < hy*(1 —
5,(£dy)™1); the associated asymptotic convergence speed gaifms), wheree €
(0,8,((hy + &)~ — (€dy) )]

CoROLLARY 4.2 (Annealing: Assume thatB,).en+ and(6,,),en* are strictly pos-
itive, monotonic increasing sequences such timt_, . .8, = lim,_, .0, = +oo
and

Bnby=CIn(n+c,) +c, forallne N (4.10)

wherel € (0,hyt), ¢, € R%, and ¢ € R_. are given constants. Then, for any initial
distribution vy,

”Vn - 7Too”Var = O(exp(_:BnSa)) as n— +oo,
where

8,:=min{U(2):z€ O\Qpint — Min{U(2): z € O}. (4.11)
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Proor: For eacm = 1, let @}, be the real-valued function an defined by
(%) = exp(—=Ba[U(x) + 6,V(x)]), U(x):=U(x) —min{U(z):z€ O}

Then ®,(x) = exp(—B,U(x)) for all x € O\Qmin and we can writer,(x) =
(Z1) tu(x) P (x) for all x € Q. SinceZ;, > Z., > 0, we have

Ta(O\OQpin) = O(EXP(—Bna)) (4.12)
and we shall complete the proof by showing that
170 — Toolvar ~ 7Tn(O\Qmin)  asn — +oo. (4.13)
If x € Qmin, we have [7,(X) — mo(X)| = Z,'u(X)(Zy — Z,)/Z; =
T oo (X) T (Q\Qmin), Wheread m,(X) — m.(X)| = 7,(x) for all x € Q\Qp,in. There-

fore, |7 — Tollvar = 7n(Q\Omin) and it follows that

”Vn B 7TooHVar

t,— A+ = — =t,+1+v,, 4.14
It — (1 +vp)| () Un (4.14)
where
L an_ﬂn”Var L 77'n(Q\ﬁ)
thi= —=——— and Un = == <.
77'n(Q\Qmin) 77'n(Q\Qmin)

Itis easy to check that assumptions 5 and 6 are satisfiedawith-1 + ¢, and thus
by Theorem 41, there exists some real constakts > 0 such thatv,, — 7 |var =
Kn~< for n sufficiently large In the same wayas(4.10) implies that

P4 (X) = O(N~EUML+V0Y) - for gll x € O\Q,

there exists some real constaKtse’ > 0 such thatr,(Q\Q) < K'n~¢ for n suf-
ficiently large Then since(4.10) and (4.12) give mn(O\Qpin) = O(n~ %% "), we
deduce that,,v, — 0 asn — +oco so that(4.14) leads to(4.13). |

Note 4.3: What emerges from Corollary2is that the asymptotic convergence rate
of constrained annealing is controlled by the critical consiaf.11) defined as the
difference between the second smallest energy value in the feasilileaset the
constrained minimumClearly, the convergence rate is better for problems with
largers, and for a choice of close tohy* together with a slowly increasing control
sequencéf,).en+. It turns out that our improved upper bound dteads to faster
convergence provided that, is taken to be strictly increasing with respecttéor
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n sufficiently large the resulting convergence speed gain depends on the sequence
(Bn)nen- and is up ta(n "), e = hyt — (€dy) 2.
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