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We discuss the asymptotic behavior of time-inhomogeneous Metropolis chains for
solving constrained sampling and optimization problems+ In addition to the usual in-
verse temperature schedule~bn!n[N* , the type of Markov processes under consid-
eration is controlled by a divergent sequence~un!n[N* of parameters acting as
Lagrange multipliers+The associated transition probability matrices~Pbn,un

!n[N* are
defined byPb,u 5 q~x, y!exp~2b~Wu~ y! 2 Wu~x!!1! for all pairs~x, y! of distinct
elements of a finite setV,whereq is an irreducible and reversible Markov kernel and
the energy functionWu is of the formWu 5U1uV for some functionsU,V :V rR+
Our approach,which is based on a comparison of the distribution of the chain at time
n with the invariant measure ofPbn,un

, requires the computation of an upper bound
for the second largest eigenvalue in absolute value ofPbn,un

+We extend the geomet-
ric bounds derived by Ingrassia and we give new sufficient conditions on the control
sequences for the algorithm to simulate a Gibbs distribution with energyU on the con-
strained setEV 5 $x [ V :V~x! 5 minz[V V~z!% and to minimizeU over EV+
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1. INTRODUCTION

Let V be a general but finite state space and letEV be a proper subset ofV defined by

EV :5 Hx [ V :V~x! 5 min
z[V

V~z!J, (1.1)

whereV is a nonconstant real-valued function onV+ Let U :V r R be another
nonconstant function+Our primary goal is to study the asymptotic behavior of a class
of discrete-time, nonhomogeneous Markov chains controlled by a temperature vari-
able, together with a parameter acting as a Lagrange multiplier in order to solve the
following two problems+

Problem 1 (Sampling with Constraints):Let b0 [ R1
* + Sample from the Gibbs

distribution

Jpb0
~x! 5 EZb0

211l $x[ EV% exp~2b0U~x!!, x [ V, (1.2)

where the constant EZb0
, the partition function, is given by EZb0

5 (z[ EV

exp~2b0U~z!!+

Problem 2 (Global Optimization with Constraints):Minimize U over EV; that is,
determine the set

EVmin :5 Hx [ EV :U~x! 5 min
z[ EV

U~z!J+
The class of Markov processes under consideration is based on an extension of
the dynamics introduced by Metropolis, Rosenbluth, Rosenbluth, and Teller@29# +
Let m be a probability distribution onV that charges every point and letq be an
irreducible transition probability matrix onV called the communication kernel+
We assume thatq is m-reversible in the sense thatµ~x!q~x, y! 5 µ~ y!q~ y, x! for
all x, y [ V+ Next, for any two parametersb,u [ R1

* , define the transition prob-
ability matrix Pb,u on V by

Pb, u~x, y! 5 Hq~x, y!exp~2b~Wu~ y! 2 Wu~x!!1! if y Þ x

12 (
zÞx

Pb,u~x, z! if y 5 x,
(1.3)

wherew1 :5 w ∨ 0 andWu :V r R is a nonconstant function parameterized byu+
Under our assumptions, Pb,u is primitive ~i+e+, irreducible and aperiodic! and its
unique equilibrium probability measure is the “m-weighted” Gibbs distributionpb,u

at temperatureb21 defined by

pb,u~x! 5 Zb,u
21 µ~x!exp~2bWu~x!!, x [ V, (1.4)
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whereZb,u 5 (z[V µ~z!exp~2bWu~z!! ~ the letterZ is used throughout to denote
appropriate normalizing constants; the corresponding expressions will be omitted in
the sequel provided there is no ambiguity!+ Finally, let us put

Wu~x! 5 U~x! 1 uV~x! for all x [ V (1.5)

and consider two strictly positive, nondecreasing sequences~bn!n[N* and~un!n[N*

such that limnr1` un 5 1`+ We will study the family of nonhomogeneous
Markov chains~Xn!n[N with the initial law ofX0 given byn0 and transitions P~Xn5
y6Xn21 5 x! 5 Pbn, un

~x, y!, x, y [ V+ Such chains are Metropolis-type algorithms
with state spaceV, energy function~1+5! controlled by~un!n[N* , communication
kernel q, and inverse temperature schedule~bn!n[N* + We shall use the notation
M ~V,U,V,q, ~bn!, ~un!! for short+

Substituting~1+5! into ~1+4!, we find that, for anyb0 [ R1
* and for allx [ V,

lim
ur1`

pb0, u~x! 5 pb0,`~x! :5 Zb0,`
21 1l $x[ EV% µ~x!exp~2b0U~x!!, (1.6)

which reduces to Jpb0
~1+2! whenq is symmetric+ It can also be checked thatpb,u

tends to a distribution which gives strictly positive mass to every configuration
x [ EVmin asb,u r 1`+ More precisely,

lim
b, ur1`

pb,u~x! 5 p`~x! :5 Z`
211l $x[ EVmin% µ~x!+ (1.7)

From these observations, by analogy with the unconstrained case~i+e+, V [ con-
stant!, M ~V, U, V, q, ~bn!, ~un!! will be referred to as stochastic relaxation ifbn [
constant and as simulated annealing if limnr1`bn 5 1`+ The key idea is that, for
sufficiently slowly increasing control sequences, the lawnn of Xn should be close to
pbn, un

and we can expect that

lim
nr1`

sup
n0[M~V!

7nn 2 P7Var 5 0, (1.8)

whereM~V! denotes the set of all probability measures onV, P 5 pb0,` ~1+6! or
p` ~1+7! depending on whether relaxation or annealing is considered, and the vari-
ation distance between probabilitiesn andp on a finite setV is defined by

7n 2 p7Var :5 max
E,V
6n~E! 2 p~E!65

1

2 (
x[V

6n~x! 2 p~x!6+

Discrete-time Metropolis algorithms have been extensively studied during the
last 15 years+ We refer to Metropolis et al+ @29# , Hastings@19# , Peskun@31#, and
Kirkpatrick,Gelatt, and Vecchi@28# for original accounts, to Hajek@18# ,Chiang and
Chow @7# , Holley and Stroock@20#, and Catoni@4–6# for theoretical work on an-
nealing, to Ingrassia@22#, and François@12# for results associated with relaxation,
and to Azencott@1# , Tierney@36#, and Gidas@17# for synthetic reviews+ However,
most of the available convergence results concern the unconstrained case+Actually,
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when dealing with deterministic constraints, some theoretical results relating to the
Gibbs sampler on a finite product space can be found in Geman and Geman@15# and
Winkler @37# ~see also Geman@14# and Gidas@17# !, whereas for Metropolis chains,
the only convergence results we are aware of were recently established by Yao@38#
~see Gidas@17# for the continuous-time case!+ Adopting Dobrushin’s contraction
technique, Yao @38# proved that~1+8! holds for both relaxation and annealing if the
control sequences satisfy

bnun 5 z ln~n 1 c1! 1 c2

for some constantsc1 . 0, c2 $ 0, and 0, z , ~,dV!21, where

dV :5 max$6V~ y! 2 V~x!6 : x, y [ V, q~x, y! . 0%

and, is the smallest integer such that)n5k11
k1, Pbn,un

is a positive matrix fork large
enough+ Still, this sufficient condition can be greatly improved+ For anyx, y [ V, let
us denote byGxy the set of all simple paths~admissible forq! from x to y and let

V~x, y! :5 min
g[Gxy

max
z[g

V~z! (1.9)

be the minimal communication level betweenx andy on the constraints landscape
~V,V,q!+ Let EVloc be the set of proper local minima of~V,V,q!; that is, x [ EVloc if it
is not a global minimum~i+e+, x Ó EV! and no statey with V~ y! , V~x! is such that
V~x, y! 5 V~x!+We shall show that~1+8! is guaranteed by the less restrictive condi-
tion z , hV

21, where the constant

hV :5 max
x, y[V

$V~x, y! 2 V~x! 2 V~ y!% 1 min
z[V

V~z!

5 max
x[ EVø EVloc, y[ EV : xÞy

V~x, y! 2 min
z[V

V~z!, (1.10)

the critical height of~V,V,q!, can be described as the minimal constraint barrier
separating any local or global minimum of~V,V,q! from another state inEV+ This
nonnegative quantity was first introduced by Holley and Stroock@20# and Chiang
and Chow@7#; it reduces to the constant of Hajek@18# when the involved energy
landscape has a unique global minimum+ Still, our results differ from the work of
these authors in that the latter provide asymptotic annealing convergence conditions
for the unconstrained case; that is, asV can then be assumed to be zero, conditions
involving only ~bn!n[N* andhW0

5 hU +
Clearly, hV , ,dV wheneverhV . 0, and the ratio,dV0hV is substantially

large in many situations of practical interest~we are not interested in the special case
hV 5 0 which can be tackled with more efficient approaches!+ Indeed, as far as
annealing is concerned, paralleling the constrained optimization problem with the
unconstrained one shows that the improvement we offer here is similar to the im-
provement provided by Holley and Stroock@20# and Chiang and Chow@7# over
standard convergence results based on ergodicity theorems~see, e+g+, Geman and
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Geman@16# and Mitra,Sangiovanni-Vincentelli, and Sangiovanni-Vincentelli@30# !+
Before proceeding with the outline of this article, note that some related work about
annealing with time-dependent energy function can be found in Frigerio and Grillo
@13# and Del Moral and Miclo@8# + Nevertheless, our contribution does not fit into
this framework, as the associated assumptions would force the sequence~un!n[N* to
be bounded above+

Let L2~10p!, wherep is a strictly positive distribution onV, be the real vector
spaceR6V6 endowed with the inner product^f,c&10p :5 (x[V f~x!c~x!~p~x!!21,
from which we derive the vector norm7f710p :5 ^f,f&10p

102+ Then, let us putpn :5
pbn, un

as defined by~1+4! and~1+5! and let

jn :5 7nn 2 pn710pn
, (1.11)

that is, jn
2 is the chi-square contrast ofnn with respect topn ~see, e+g+, Brémaud

@3# !+ Since 7nn 2 pn7Var # 1
2
_jn and limnr1`7pn 2 P7Var 5 0, it turns out that

limnr1`jn5 0 is a sufficient condition for~1+8! to hold+ Starting from this straight-
forward observation, the purpose of Section 2 is to compute an upper bound onjn

in the general case of a nonhomogeneous Markov chain with transitions~Pn!n[N*

having the property that, for all n, Pn is irreducible and reversible relative to some
probability distributionpn+ Our conclusions are contained in Theorem 2+1, the ap-
plication of which goes through the estimation of an upper bound on the second
largest eigenvalue in absolute value of eachPn+ In order to meet this requirement,
Section 3 is dedicated to the extension of the eigenvalue bounds computed by In-
grassia@22#; it gives rise to new spectral estimates that may be of interest in their
own right+ Finally, in Section 4, we make use of these estimates together with Theo-
rem 2+1 in order to prove the main result of this article, Theorem 4+1, which states
the basic conditions on the control sequences for the quantityjn associated with
Pbn, un

to be bounded above by a strictly positive power ofn21+ The convergence
properties of Metropolis-type relaxation and annealing then follow directly and we
derive expressions for the convergence rates which allow the measurement of the
benefits resulting from our improvement in the upper bound onz+

2. GENERAL RESULTS

Let V be a finite state space+ We consider the general context of a discrete-time,
nonhomogeneous Markov chain~Xn!n[N on V with irreducible and reversible tran-
sition probability matrices~Pn!n[N* + In other words, each operatorPn defined as
@Pnf# ~x! 5 (y[V Pn~x, y!f~ y!, x [ V, f :V r R, is a self-adjoint contraction on
L2~pn!, the real vector spaceR6V6 endowed with the inner product^f,c&pn

:5
(x[V f~x!c~x!pn~x!+ Also, recall that these hypotheses imply that, for all n, the
spectrum ofPn, say $ln, i % i51, + + + ,6V6, is real with 15 ln,1 . ln,2 $ {{{ $ ln,6V6 $
21 andln,6V6 . 21 if and only if Pn is aperiodic+ We shall denote the second
largest eigenvalue in absolute value ofPn by r~Pn! :5 ln,2 ∨ 6ln,6V6 6+

CONSTRAINED RELAXATION AND ANNEALING 431



Let nn be the law ofXn and letpn be the unique invariant distribution ofPn+Our
goal here is to compute an upper bound onjn :5 7nn 2 pn710pn

in order to provide a
starting point for the characterization of the variation distance betweennn andpn in
the specific case of Metropolis algorithms+ As will become clear, r~Pn! plays a
central role toward this end+

Proposition 2.1: For all n [ N \$0,1%, we havejn # r~Pn!~anjn21 1 bn!, with
an :5 76Dn

2102Dn21
102 762 and bn :5 7pn21 2 pn710pn

, where Dn :5 diag~pn! and 76{762
is the matrix norm induced by the Euclidian vector norm.

The proof appeals to the following lemma+We denote by1 the function which
is identically equal to 1 onV ~in vector notation, 15 ~1, + + + ,1!T!+

Lemma 2.1: Let P be an irreducible,p-reversible transition probability matrix on
V. Then, for eachf :V r R such that̂ f,1&p 5 0, we have7Pf7p # r~P!7f7p.

Proof: DefineS5 D102PD2102 by D :5 diag~p!+ Clearly, SandP have the same
eigenvalues 15 l1 . l2 $ {{{ $ l 6V6 $ 21+ Moreover, from the reversibility of
P, the matrixS is symmetric and therefore real orthogonally diagonalizable+ Let
$vi % i51, + + + ,6V6 be an orthonormal set of right eigenvectors ofS such thatvi corre-
sponds to the eigenvalue with the same subscript+ The vectorswi :5 D2102vi
~i 5 1, + + + ,6V6! form an orthonormal basis inL2~p! and they also form a set of
right eigenvectors ofP+ Consequently, for any f :V r R, we can writef 5

(i ^f,wi &p wi andPf 5 (i l i ^f,wi &p wi so that7f7p2 5 (i ^f,wi &p
2 and7Pf7p2 5

(i l i
2^f,wi &p

2 + Sincew1 5 1, it follows that if ^f,1&p 5 0, then

7Pf7p2

7f7p2
5

(
i52, + + + ,6V6

l i
2^f,wi &p

2

(
i52, + + + ,6V6

^f,wi &p
2

# r2~P!+ n

Proof of Proposition 2.1: Sincenn 2 pn 5 Pn
Tnn21 2 Dn1 5 Dn Pn Dn

21nn21 2
DnPn1, we haveDn

2102~nn 2 pn! 5 Dn
102Pn~Dn

21nn21 2 1! and, hence, jn 5
7Pn~Dn

21nn21 2 1!7pn
+ Observe that̂Dn

21nn21 2 1,1&pn
5 ^nn21,1& 215 0+ There-

fore, applying Lemma 2+1, we obtain

jn # r~Pn!7Dn
21nn21 2 17pn

5 r~Pn!7nn21 2 pn710pn

# r~Pn!~7nn21 2 pn21710pn
1 bn!,

where

7nn21 2 pn21710pn
5 7Dn

2102Dn21
102 Dn21

2102~nn21 2 pn21!72

# 76Dn
2102Dn21

102 7627Dn21
2102~nn21 2 pn21!72

5 anjn21+ n

Proposition 2+1 is all that is needed to initiate the proof of the following result+
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Theorem 2.1: Assume that there exists a constant N[ N \$0,1% and two bounded
functions f, g : ~a,1`! r R1

* , with a , N, such that the following hold:

(i) For all positive integers n$ N, f ~n! # 2ln~ r~Pn!an! and g~n! $ r~Pn!bn.
(ii) f and g are continuously differentiable and decreasing in~a,1`!.

(iii) There exists a real constant c[ ~21,1`! such that~g~x!!21~g0f !'~x! $ c
for all x [ @N 1 1,1`!.

Then, for all positive integers n. N,

jn , JN21 exp~2F~n 1 1! 1 F~N!! 1
x

11 c
exp~ f ~n 1 1!!

g~n 1 2!

f ~n 1 2!
, (2.1)

whereJN21 (see (2.2)) is a positive constant determined by the initial lawn0 and
the transitions~Pn!2#n,N , F is a primitive of f in~a,1`!, and x :5 sup$g~x!0
g~x 1 2! : x [ @N,1`!%.

Proof: Taking that)k5l
n r~Pk!ak 5 1 if l . n, Proposition 2+1 gives

jn # j1 )
k52

n

r~Pk!ak 1 (
m52

n

r~Pm!bm )
k5m11

n

r~Pk!ak 5: Jn (2.2)

for all n $ 2+ Observe that, for all n $ N,

)
k5m

n

r~Pk!ak 5: S)
k5m

N21

r~Pk!akDS )
k5m∨N

n

r~Pk!akD
# S)

k5m

N21

r~Pk!akDexpS2 (
k5m∨N

n

f ~k!D,
with

(
k5m∨N

n

f ~k! $ E
m∨N

n11

f ~x! dx 5: F~n 1 1! 2 F~m ∨ N!+

Hence, settingSn :5 (m5N
n g~m!exp~F~m1 1!!, we obtain

jn # JN21 exp~2F~n 1 1! 1 F~N!! 1 exp~2F~n 1 1!!Sn+ (2.3)

We have

Sn # x (
m5N

n

g~m1 2!exp~F~m1 1!!

# xIn,

In :5E
N

n11

g~x 1 1!exp~F~x 1 1!! dx+ (2.4)

CONSTRAINED RELAXATION AND ANNEALING 433



Our task now is to derive an upper bound onIn+ The substitutiony 5 F~x 1 1!
yields

In 5E
F~N11!

F~n12!

~G + F21!'~ y!exp~ y! dy,

whereG is a primitive ofg in @N11,1`!+ Note that~G + F21!'~ y! 5 ~g + F21!~ y!0
~ f + F21!~ y! . 0 for all y [ @F~N 1 1!,1`!+ Integrating by parts, we get

In 5 F g~ y!

f ~ y!
exp~F~ y!!G

N11

n12

2 Jn,

with

Jn 5E
F~N11!

F~n12!

~G + F21!''~ y!exp~ y! dy$ In min
y[@F~N11!,F~n12!#

~G + F21!''~ y!

~G + F21!'~ y!

5 In min
x[@N11, n12#

1

g~x!
S g

f
D'~x! $ Inc,

and it follows that

In # ~11 c!21F g~ y!

f ~ y!
exp~F~ y!!G

N11

n12

, ~11 c!21 exp~F~n 1 2!!
g~n 1 2!

f ~n 1 2!
+

(2.5)

Finally, from ~2+3!–~2+5!, we obtain

jn , JN21 exp~2F~n 1 1! 1 F~N!! 1
x

11 c
exp~F~n 1 2! 2 F~n 1 1!!

g~n 1 2!

f ~n 1 2!

and the theorem follows from the fact that sincef is decreasing, F is concave and,
hence, F~n 1 2! 2 F~n 1 1! # f ~n 1 1!+ n

A straightforward example of functions satisfying conditions~ii ! and ~iii ! in
Theorem 2+1 is given byf ~x! 5 K1 x2«1 andg~x! 5 K2 x2«2, whereK2, «2, and«1 ,
«2 ∧ 1 are strictly positive constants andK1 . ~«22 «1!~N1 1!«121+ In this case, the
interesting thing is that the upper bound in~2+1! has the limit 0 asnr 1`+ Indeed,
in Section 4, a similar choice will be made for the application of Theorem 2+1 to the
convergence of the class of algorithmsM ~V,U,V,q, ~bn!, ~un!!+However, to be able
to do so, we must provide some upper bounds foran, bn, andr~Pn!+ This task turns
out to be easy when consideringan andbn ~see Lemma 4+1!, but the lack of spectral
estimates for generic Metropolis chains makes it much harder for the second largest
eigenvalue in absolute value+ The following section is intended to introduce some
results that will allow us to overcome this difficulty+
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3. GEOMETRIC BOUNDS FOR EIGENVALUES OF METROPOLIS CHAINS

Consider an irreducible, reversible transition probability matrixP on a finite setV
and letr~P! be the second largest eigenvalue in absolute value ofP; that is, r~P! 5
l2 ∨ 6l 6V6 6, wherel2 , 1 andl 6V6 $ 21 respectively stand for the second largest
and the smallest eigenvalues+ Motivated by the well-known fact thatr~P! governs
the rate of convergence of the time-homogeneous Markov chain with transitionP,
several authors~Sinclair and Jerrum@35# , Diaconis and Stroock@10# , Sinclair@34#,
and Desai and Rao@9# ! have developed upper bounds forl2 and lower bounds for
l 6V6 ~see Ingrassia@21# for a synthetic review on the subject!+ Nevertheless, these
spectral estimates depend on some geometric quantities associated with the transi-
tion graph ofP, which are difficult to compute for generic updating dynamics like
the Gibbs sampler and Metropolis-type algorithms+ In such situations, the tightest
eigenvalue bounds known to us were derived by Ingrassia@22# from the estimates of
Diaconis and Stroock@10# +

When treating Metropolis chains, Ingrassia@22# restricted his study to specific
symmetric communication kernels+ Here, we extend the results of this author to any
irreducible and reversible communication+We first introduce some definitions and
we recall the estimates of Diaconis and Stroock@10# in order to state the problem
clearly+ Then, an upper bound onl2 and a lower bound onl 6V6 are proved for the
purpose of studying the constrained relaxation and annealing processes described in
the Introduction+Although these results allow us to bound the mixing time of general
Metropolis chains, it is worthwhile noting that tighter convergence time bounds can
be obtained for specific problems involving particular instances of either the Me-
tropolis dynamics or the closely related Glauber dynamics+ For instance, polynomial
time bounds were proved by Jerrum and Sinclair@25# for sampling nearly perfect
matchings in bipartite graphs and matchings in weighted graphs~see also Jerrum
and Sinclair@26# !+ Positive results of a similar flavor can be found in Jerrum@24#
and Dyer et al+ @11# for sampling vertex colorings of a low-degree graph, and in
Jerrum and Sorkin@27# for the graph bisection problem+ Still, in addition to our
preoccupation, general bounds can be useful for understanding complex chains such
as the ones that arise in image processing inverse problems~see, e+g+, Geman and
Geman@16# and Robini, Rastello, and Magnin@32# ! or for other problems that have
been shown to produce negative~i+e+, super-polynomial or exponential time! con-
vergence results—such problems include finding maximum matchings in arbitrary
graphs~Sasaki and Hajek@33# !, reaching a maximum clique in a random graph
~Jerrum@23# !, or theq-state Potts model and the independent set problem on rect-
angular subsets of an hypercube lattice~Borgs et al+ @2# !+

3.1. Notation and Preliminaries

We assume that the irreducible Markov kernelP :V 3 V r @0,1# is reversible with
respect to its invariant distributionp; that is,

Q~x, y! :5 p~x!P~x, y! 5 Q~ y, x! for all x, y [ V+

CONSTRAINED RELAXATION AND ANNEALING 435



The transition graphG~P!5 @V, :A# associated withP is the directed graph with
set of verticesV and set of arcs :A5 $xr y : x, y [ V, P~x, y! . 0% ;we shall use the
notation ?a 5 ~a2,a1! for an arc with initial vertexa2 and end vertexa1+

Given any two verticesx, y [ V, we denote bygxy a path fromx to y on G~P!
and we define itsQ-length by

6gxy6Q 5 (
?a[gxy

~Q~ ?a!!21+ (3.1)

SinceP is irreducible, we can construct a collectionG 5 $gxy: x, y [ V, x Þ y% of
paths onG~P! containing one simple path for each ordered pair of distinct ver-
tices~x, y! [ V 3 V+ The first geometric quantity of interest, the “Poincaré coeffi-
cient,” is

kG :5 max
?a[ :A (

gxy[G : gxy] ?a
6gxy6Qp~x!p~ y!+ (3.2)

Assuming thatP is aperiodic, we can choose a setS 5 $sx : x [ V% of cycles on
G~P! containing one cycle with an odd number of arcs for each vertex+ The second
geometric quantity to be considered is related toS as follows:

iS :5 max
?a[ :A (

sx[S :sx] ?a
6sx 6Qp~x!, (3.3)

where theQ-length6sx6Q is defined by analogy with~3+1!+
This notation allows us to state the spectral estimates computed by Diaconis and

Stroock@10# +

Proposition 3.1: Let P be an irreducible,p-reversible transition probability ma-
trix on V. Then, the second largest eigenvaluel2 of P satisfies

l2 # 12 kG
21 (3.4)

withkG defined in (3.2). Moreover, if P is aperiodic, then its smallest eigenvaluel 6V6
satisfies

l 6V6 $ 211 2iS
21 (3.5)

with iS defined in (3.3).

Obviously, for some particular case of interest, the quality of the eigenvalue
bounds that can be derived from the above results depends on making a judicious
selection of the setsG andS+ In the following subsections, we focus on Metropolis
chains with transition probability matrixP on V defined by

P~x, y! 5 q~x, y!exp~2b~W~ y! 2 W~x!!1! if y Þ x, (3.6)

where the inverse temperatureb [ R1
* is fixed, the energy functionW:V r R is

nonconstant, and the communication kernelq :V3V r @0,1# is taken to be irreduc-
ible and reversible with respect to its invariant distributionm+ Therefore, P is
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primitive and its equilibrium probability measure is the Gibbs distributionp~x! 5
Zb

21 µ~x!exp~2bW~x!!, x [ V+
To compute our spectral estimates,we shall adopt the approach of Ingrassia@22#

based on Proposition 3+1+ Let

S~x! :5 $ y [ V \$x% : x r y [ :A%

be the set of proper neighbors ofxand letd, :5 maxx[V6S~x!6+ Ingrassia’s results are
limited to symmetric communication kernels of the form

q~x, y! 5 5
~d, !21 if y [ S~x!

~d, !21~d, 2 6S~x!6! if y 5 x

0 otherwise,

with the additional assumption that6S~x!6 5 d, for all x [ $ y [ V : ~ ∃z [
S~ y!!@W~z! . W~ y!#% 5: Y when considering the smallest eigenvalue+ Our contri-
bution is to extend these results to arbitrary irreducible and reversibleq+ The same
proof techniques are used and this generalization mainly involves dealing with the
two following awkward elements: q~x, y! is no longer constant for all pairs~x, y!
such thaty [ S~x!, andq~x, x! is not necessarily zero ifx [ Y+

3.2. An Upper Bound on l2

Given any pair of distinct vertices~x, y! [ V 3 V, the set of all simple paths fromx
to y on G~P! will be denoted byGxy+ Let h be the critical height of the energy land-
scape~V,W,q! defined by analogy with~1+9! and ~1+10!+ A path gxy is said to be
W-admissible if

max
z[gxy

W~z! 2 W~x! 2 W~ y! 1 min
z[V

W~z! # h (3.7)

~it is said to be strictlyW-admissible if the inequality is strict!+ Obviously, there is
at least oneW-admissible simple path between every pair of distinct vertices
~x, y! [ V 3 V+ Like Ingrassia@22# , we consider a setG 5 $gxy: x, y [ V, x Þ y%
of W-admissible simple paths onG~P!+ Let bG be the maximum number of
pathsg [ G that use the same arc and let,G be the length of the longest path inG;
that is,

bG :5 max
?a[ :A
6$g [ G : g ] ?a%6 (3.8)

and

,G :5 max
g[G
6g 6, (3.9)

where6g 6 denotes the number of arcs ing+The following result is obtained by means
of ~3+4! in Proposition 3+1+
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Theorem 3.1: Let P be a transition probability matrix of the form (3.6) with ir-
reducible and µ-reversible communication kernel. Then, the second largest eigen-
valuel2 of P satisfies

l2 # 12
6Vmin6qmin

µ,
2 bG ,G

exp~2bh!, (3.10)

whereVmin5 $x [ V :W~x!5minz[V W~z!% is the set of global minima of W, qmin5
min$q~ ?a! : ?a [ :A, a2 Þ a1% denotes the minimum communication probability over
proper transitions, and µ, 5 max$µ~x!0µ~ y! : x, y [ V% measures the fractional
communication dissymmetry.

Proof: We haveQ~ ?a! 5 p~a2!P~ ?a! 5 Zb
21 µ~a2 !q~ ?a!exp~2b~W~a2 ! ∨ W~a1!!!

and hence

6gxy6Qp~x!p~ y! 5 Zb
21 µ~x!µ~ y! (

?a[gxy

~µ~a2 !q~ ?a!!21

3 exp~b~W~a2 ! ∨ W~a1 ! 2 W~x! 2 W~ y!!!

for anygxy [ G+ From our choice ofG ~3+7!, sinceW~a2! ∨ W~a1! # max$W~z! :
z [ gxy% , we have

6gxy6Qp~x!p~ y! # Zb
21 µ~x!µ~ y!expSbSh 2 min

z[V
W~z!DD (

?a[gxy

~µ~a2 !q~ ?a!!21

#
µ,

2 6gxy6

uZb qmin

exp~bh!,

uZb :5 (
z[V

expS2bSW~z! 2 min
x[V

W~x!DD+
Thus, by the definitions ofbG ~3+8! and,G ~3+9!, and sinceuZb $ 6Vmin6, the quantity
kG ~3+2! satisfies

kG #
µ,

2 bG ,G

6Vmin6qmin

exp~bh!

and the theorem follows from Proposition 3+1+ n

Note 3.1: The upper bound~3+10! is similar to the one computed by Holley and
Stroock@20# , the difference being that we can express the constant appearing in
front of exp~2bh!+ In addition to its intrinsic importance, this specification is needed
to set the basis for the proof of our main results~Section 4! because of the depen-
dence uponu in the case of relaxation and annealing with constraints+

Note 3.2: In place of~3+4!, other geometric estimates can provide a starting point
for computing an upper bound onl2+ For instance, based on some previous work
~Sinclair and Jerrum@35# !, Sinclair@34# proved the following bounds:
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l2 # 12
1

8hG
2 , hG :5 max

?a[ :A
~Q~ ?a!!21 (

gxy[G : gxy] ?a
p~x!p~ y!, (3.11)

l2 # 12
1

ThG

, ThG :5 max
?a[ :A

~Q~ ?a!!21 (
gxy[G : gxy] ?a

6gxy6p~x!p~ y!+ (3.12)

Adopting a similar reasoning as in the proof of Theorem 3+1, the bound~3+11! gives

l2 # 12
1

8S 6Vmin6qmin

µ,
2 bG

D2

exp~22bh!, (3.13)

whereas~3+12! leads to the same upper bound as~3+10!+Alternatively, provided that
W has a unique global minimumIx andp~ Ix! . ~c103 1 4

9
_c2103 2 2

3
_!2, c :5 190271

M3309, the approach proposed by François@12# leads to an estimate of the form

l2 # 12 K exp~22bh! (3.14)

for some constantK . 0 andb large enough+ Finally, one can resort to the results of
Desai and Rao@9# from which it is possible to obtain

l2 # 12 K ' exp~2bDW! (3.15)

for some constantK '. 0 andDW :5 max$W~x! 2 W~ y! : x, y [ V% + Still, except for
the trivial caseh5 0 and the extreme caseh5 DW, the upper bound of Theorem 3+1
becomes sharper than~3+13!–~3+15! asb increases+ Furthermore, this observation
holds in the context of relaxation and annealing with constraints+

3.3. A Lower Bound on l_V_

Let LP be the set defined byLP 5 $x [ V :P~x, x! . 0% + For any vertexx [ V, we
denote byrx the minimum number of arcs ofG~P! that are needed to joinx to an
element ofLP+ In other words,

rx :5 1l $xÓLP% min
y[LP

min
g[Gxy

6g 6+

Following Ingrassia@22# , we consider a setS 5 $sx : x [ V% of odd cycles onG~P!
reachingLP through a minimum number of arcs; that is,

sx 5 Hgxx if x [ LP

~gxy,gyy,gyx! otherwise,
(3.16)

wheregxx :5 xr x, the vertexy is an element ofLP, the pathgxy is such that6gxy65
rx, andgyx stands forgxy reversed+ Finally, let d be the minimum nonzero jump ofW
over proper transitions,

d :5 min
x[V

min
y[S~x! :W~ y!ÞW~x!

6W~x! 2 W~ y!6,
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and letbS be the maximum number of cycless [ S' :5 S \$gxx: x [ LP% that use the
same arc,

bS :5 max
?a[ :A
6$s [ S' :s ] ?a%6+

Theorem 3.2: Let P be a transition probability matrix of the form (3.6) with ir-
reducible and µ-reversible communication kernel, and let µ* and qmin be as defined
in Theorem 3.1. Then, the smallest eigenvaluel 6V6 of P satisfies

l 6V6 $ 211 2qminFASqmin

Sqmin

∨
1

12 exp~2bd!D1 BG21

, (3.17)

where A5bS µ*11,B52bS r*µ*with r*5max$rx : x[ V%, and Sqmin is the minimum
nonzero self-loop communication probability if such exists; that is,Sqmin 5
min$q~x, x! : x [ Lq% if Lq :5 $x [ V : q~x, x! . 0% Þ B, otherwise Sqmin 5 1.

Let us start with a few lemmas to keep the proof simple+

Lemma 3.1: x Ó LP if and only if q~x, x! 5 0 and W~z! # W~x! for all z [ S~x!.

Proof: The lemma follows directly from the fact that

x Ó LP m (
z[S~x!

q~x, z!exp~2b~W~z! 2 W~x!!1! 5 1+ n

Lemma 3.2: Assume thatV \LP is nonempty. Then, any pathg 5 ~xl !l50, + + + , L on
G~P! such that xl Ó LP for all l [ $0, + + + , L% is a path of constant energy.

Proof: If W~xl ! . W~xl21! for somel [ $1, + + + , L% , thenxl21 [ LP by Lemma 3+1+
Likewise, asx [ S~ y! m y [ S~x! from the irreducibility and the reversibility ofq,
W~xl ! , W~xl21! implies thatxl [ LP+ Hence, g must be of constant energy+ n

Lemma 3.3: For any x[ LP, we have P~x, x! $ Sqmin ∧ ~qmin~12 exp~2bd!!!.

Proof: On one hand, if W~z! # W~x! for all z[ S~x!, thenq~x, x! . 0 by Lemma
3+1 and

P~x, x! 5 12 (
z[S~x!

q~x, z! 5 q~x, x! $ Sqmin+

On the other hand, if there existsz0 [ S~x! such thatW~z0! . W~x!, then

P~x, x! $ S12 (
z[S~x!\$z0%

q~x, z!D2 q~x, z0!exp~2b~W~z0! 2 W~x!!!

$ q~x, z0! 2 q~x, z0!exp~2bd!

$ qmin~12 exp~2bd!!+ n
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Proof of Theorem 3.2: The approach is similar to the proof of Theorem 3+1 in the
sense that we shall compute an upper bound on the geometric quantityiS ~3+3! in
order to apply~3+5! in Proposition 3+1+

For any ?a [ :A, we can write

(
sx[S :sx] ?a

6sx 6Qp~x! 5 (
sx[S :sx] ?a

~1l $xÓLP% 1 1l $x[LP% !6sx 6Qp~x! (3.18)

so that the casesx Ó LP andx [ LP can be considered separately+
Let us first assume thatx Ó LP+ Then, by our choice ofS ~see~3+16!!, sx 5

~gxz,gzy,gyy,gyz,gzx!, wherey [ LP, gyy is a self-loop fromy to y, the pathgzy 5
zr y is simply an arc withz Ó LP, andgxz has all its vertices inV \LP and length
6gxz65 rx 21+Note that from Lemmas 3+1 and 3+2,W~z! $ W~ y! andgxz is a path of
constant energy+ SinceQ is symmetric, we have

6sx 6Qp~x! 5 2~6gxz6Qp~x! 1 6gzy6Qp~x!! 1 6gyy6Qp~x!+ (3.19)

We can provide an upper bound for each of the three terms that appear in the right-
hand side of~3+19!+ First, asgxz is of constant energy,

6gxz6Qp~x! 5 (
?a[gxz

~p~a2 !P~ ?a!!21p~x!

5 (
?a[gxz

~µ~a2 !q~ ?a!!21µ~x! # ~r*2 1!
µ*

qmin

+

Second, sinceW~x! 5 W~z! $ W~ y!,

6gzy6Qp~x! 5
p~x!

p~z!P~z, y!
5

µ~x!

µ~z!q~z, y!
#

µ*
qmin

+

Third, appealing to Lemma 3+3, we have

6gyy6Qp~x! 5
p~x!

p~ y!P~ y, y!
#

µ~x!

µ~ y!P~ y, y!
# µ*~ Sqmin ∧ ~qmin~12 exp~2bd!!!21+

Consequently,

6sx 6Qp~x! #
2r* µ*
qmin

1 µ*S 1

Sqmin

∨
1

qmin~12 exp~2bd!!D
and it follows that

(
sx[S :sx] ?a

1l $xÓLP% 6sx 6Qp~x! #
1

qmin
Fµ*bSSqmin

Sqmin

∨
1

12 exp~2bd!D1 BG+
(3.20)

CONSTRAINED RELAXATION AND ANNEALING 441



Now, let us consider the casex [ LP+ Then, the cyclesx [ S is a self-loop from
x to x and the corresponding treatment is easier+Making use of Lemma 3+3, we have

6sx 6Qp~x! 5 ~P~x, x!!21 # ~ Sqmin ∧ ~qmin~12 exp~2bd!!!21+

Hence, as(sx [S :sx] ?a 1l $x[LP% # 1 for all ?a [ :A,

(
sx[S :sx] ?a

1l $x[LP% 6sx 6Qp~x! #
1

qmin
Sqmin

Sqmin

∨
1

12 exp~2bd!D+ (3.21)

Finally, from ~3+18!, ~3+20!, and ~3+21! and by the definition ofiS ~3+3!, we
obtain

iS #
1

qmin
FASqmin

Sqmin

∨
1

12 exp~2bd!D1 BG
and the theorem follows from Proposition 3+1+ n

3.4. An Upper Bound on the Mixing Time

Starting from a given configurationx [ V, the rate of convergence of a primitive
Markov chain with transition probability matrixP and equilibrium distributionp
can be measured via the “mixing time”Tx :R1

* r N defined by

Tx~«! 5 min$n [ N* : ~ ∀m$ n!@7Pm~x,{! 2 p7Var # «#%+

As noted by Sinclair@34# , Tx~«! can be bounded above in terms ofr~P! andp~x!:

Tx~«! # ~12 r~P!!21 lnS 1

«p~x!
D+ (3.22)

Hence, Theorems 3+1 and 3+2 give an upper bound on the time to reach~quasi-!
equilibrium from a given initial state+ The following result is noteworthy, although
we shall not use it in the sequel+

Corollary 3.1: Let P be a transition probability matrix of the form (3.6) with
irreducible and µ-reversible communication kernel and let µ*, bG, ,G, qmin, Sqmin, d, A,
and B be the quantities defined as in Theorems 3.1 and 3.2. If

b $ ~d21 ln 2! ∨ Sh21 lnF 6Vmin6

2µ*
2bG ,G

SASqmin

Sqmin

∨ 2D1 BDGD 5: b*,

then

Tx~«! #
µ*

2 ln~10«p~x!!

6Vmin6qmin

bG ,G exp~bh!+ (3.23)
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Proof: Let lu andl l be the upper bound onl2 and the lower bound onl 6V6 given
in ~3+10! and~3+17!, respectively+ If b $ b*, then

lu $ 12 2qminFASqmin

Sqmin

∨ 2D1 BG21

5 1 2 2qminFASqmin

Sqmin

∨
1

12 exp~2dd21 ln 2!D1 BG21

$ 2l l +

Therefore, r~P! # lu and the corollary follows from~3+22!+ n

Note that~3+23! holds for anyb [ R1
* if one considers the slower Markov chain

with transition probability1
2
_~I 1 P! rather thanP, whereI is the6V63 6V6 identity

matrix~i+e+, if one introduces an additional self-loop probability of1
2
_ for each state!+

In both situations, the mixing time is governed by the critical height of the energy
landscape together with the geometric quantitiesbG and,G associated with some set
of admissible paths+ This confirms two basic intuitions about necessary conditions
for rapid convergence to equilibrium: The chain should not contain any bottleneck
and the diameter of its transition graph should be small+

4. CONVERGENCE TOWARD EQUILIBRIUM AND THE GROUND STATES

We now have all of the necessary ingredients to study the class of Metropolis algo-
rithms M ~V,U,V,q, ~bn!, ~un!! defined in the Introduction; that is, the family of
nonhomogeneous Markov chains~Xn!n[N with transitions~Pbn,un

!n[N* defined by
Pb,u~x, y! 5 q~x, y! exp~2b~Wu~ y! 2 Wu~x!!1! for all pairs~x, y! of distinct ele-
ments ofV, where the following assumptions hold:

A1+ q is an irreducible, m-reversible Markov kernel onV+

A2+ Wu 5 U 1 uV is nonconstant for allu [ R1
* +

For eachn, the law ofXn is denoted bynn and, for simplicity,we shall putPn :5 Pbn,un

and writepn for the equilibrium distribution ofPn+
In order to be able to apply Theorem 2+1 for establishing the convergence of

relaxation and annealing, we have to compute upper bounds on the quantitiesan 5
76Dn

2102Dn21
102 762 andbn5 7pn212pn710pn

as well as on the second largest eigenvalue
in absolute valuer~Pb,u!+ These intermediate steps form the subject of Section 4+1+
They will allow us to prove our main theorem, Theorem 4+1, from which we deduce
the convergence results summarized in Corollaries 4+1 and 4+2+

4.1. Upper Bounds on an , bn , and r(Pb, u)

Let us first consideran andbn+ For eachn [ N \$0,1% , we set

sn :5 ~bnun 2 bn21un21!~DU un
21 1 DV !, (4.1)
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whereDJ stands for the oscillation of the functionJ :V r R, defined asDJ :5
maxx, y[V~J~x! 2 J~ y!!+

Lemma 4.1: Assume that the control sequences~bn!n[N* and ~un!n[N* are strictly
positive and monotonic increasing. Then, an # exp~ 1

2
_sn! and bn # exp~sn! 21 for

all n [ N \$0,1%.

Proof: Since

an 5 max$l102 : l [ spectrum~Dn
21Dn21!% 5 max

x[V
Spn21~x!

pn~x! D102

and

bn 5 S(
x[V
Spn21~x!

pn~x!
2 1D2

pn~x!D102

# max
x[V * pn21~x!

pn~x!
2 1* ,

it suffices to show that exp~2sn! # pn21~x!0pn~x! # exp~sn! for all x [ V+
For eachn $ 1, let Cn be the real-valued function onV characterized by

Cn~x! 5 bnFSU~x! 2 min
z[V

U~z!D1 unSV~x! 2 min
z[V

V~z!DG +
The equilibrium distributionpn can then be expressed aspn~x! 5 Zn

21 µ~x! 3
exp~2Cn~x!! with Zn 5 (z[V µ~z!exp~2Cn~z!! and it is easy to check that

expS2max
z[V

~Cn~z! 2 Cn21~z!!D #
Zn

Zn21

#
pn21~x!

pn~x!
# exp~Cn~x! 2 Cn21~x!!

for all n $ 2+ The lemma follows from the fact that

Cn~x! 2 Cn21~x! # ~bn 2 bn21!DU 1 ~bnun 2 bn21un21!DV # sn

for all x [ V+ n

Note 4.1: It can be shown that forn sufficiently large, the inequalities given in
Lemma 4+1 still hold if we replaceDU by max$U~x!2U~ y! : x [ V, y [ EV% in ~4+1!,
where EV is defined by~1+1!+ Moreover, whenbn 5 b0 [ R1

* for all n [ N* ~i+e+, in
the relaxation case!, we obtainan # exp~ 2

12sn
'! andbn # exp~sn

'! 2 1, with sn
' 5

b0~un 2 un21!DV for all n $ 2+ However, we will not appeal to these tighter bounds,
as they do not lead to better convergence results+

Now, let us turn to the second largest eigenvalue in absolute value ofPb,u+Some
of the quantities involved in Theorems 3+1 and 3+2 are functions ofu so that a little
care is needed when applying these results+ In this context, it is important to keep in
mind that the set of arcs onG~Pb,u! that are not self-loops is entirely defined by the
communication kernelq and is therefore independent ofU, V, b, andu+ A few def-
initions are needed before stating our upper bound onr~Pb,u!+
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LetHV be the collection of ordered pairs of distinct states~x, y! [ V 3 V such
that

V~x, y! 2 V~x! 2 V~ y! 1 min
z[V

V~z! 5 hV ,

whereV~x, y! is the minimal communication level betweenx andy on ~V,V,q! and
hV is the critical height of~V,V,q! ~see~1+9! and~1+10!!+Becauseq is irreducible,we
can construct a setGa 5 $gxy: ~x, y! Ó HV, x Þ y% consisting of exactly one strictly
V-admissible simple path onG~Pb,u! for each ordered pair of distinct elements
~x, y! [ ~V3V!\HV+Asimple pathgxyonG~Pb,u! is said to beV-critical if ~x, y! [
HV and max$V~z! : z [ gxy% 5 V~x, y!+ We denote byGc a set$gxy: ~x, y! [ HV%
composed of exactly oneV-critical simple path for each pair~x, y! [ HV, and byGc,
we denote the collection of all such sets of paths+ Finally, let

b* :5 max
Gc[Gc

bGaøGc
and ,* :5 ,Ga

∨ Smax
Gc[Gc

,GcD,
wherebG and,G are respectively defined by~3+8! and~3+9!+

Proposition 4.1: For any constantbm [ R1
* , there exists a constantum [ R1

* such
that, for anyb $ bm and for anyu $ um, r~Pb,u! # 1 2 t exp~2b~2DU 1 uhV!!,
wheret :5 qmin~µ*

2b*,* !
21.

The proof resorts to the following simple lemmas+

Lemma 4.2: The critical height hWu
of the energy landscape~V,Wu,q! satisfies

22DU 1 uhV # hWu
# 2DU 1 uhV.

Proof: Let us respectively denote byJmin andJmax the minimum and the maximum
of a functionJ onV+ It is straightforward to show thatUmin1 uV~x, y! # Wu~x, y! #
Umax1 uV~x, y! for all pair of distinct states~x, y! [ V 3 V and the lemma follows
by considering thatUmin 1 uVmin # minz[V Wu~z! # Umax1 uVmin+ n

Lemma 4.3: There exists a constantum
' [ R1

* such that, for anyu $ um
' , the collec-

tion of sets$G 5 Ga ø Gc : Gc [ Gc% contains some set$gxy~u! : x, y [ V, x Þ y%
exclusively made up of Wu-admissible paths.

Proof: By appealing to Lemma 4+2, we can make the following two observations+

i+ Any strictly V-admissible path becomes strictlyWu-admissible asu in-
creases+ Therefore, there existsta [ R1

* such that any path inGa is Wu-
admissible ifu $ ta+

ii + Let gxy be a path joining two statesx andy such that~x, y! [ HV+ If gxy is not
V-critical, then

max
z[gxy

V~z! 2 V~x! 2 V~ y! 1 min
z[V

V~z! . hV
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and, hence, gxy is notWu-admissible for large values ofu+ Consequently, for
u sufficiently large, anyWu-admissible path linking~x, y! [HV isV-critical+
Because for everyu [ R1

* , there exists aWu-admissible path between every
pair of distinct points~x, y! [ V 3 V, we deduce that foru large enough, at
least one of theV-critical paths linking any pair~x, y! [HV isWu-admissible+
It follows that there existstc [ R1

* such that for everyu $ tc, at least one of
the setsGc [ Gc is exclusively composed ofWu-admissible paths+

Settingum
' 5 ta ∨ tc completes the proof+ n

Proof of Proposition 4.1: We denote byG~u! a set ofWu-admissible simple paths
on ~V,Wu,q! and the dependence ofl2, Vmin ~Theorem 3+1!, l 6V6, A, B, d ~Theo-
rem 3+2! uponu is indicated by the subscriptu+

Clearly, there existsqm [ R1
* such that, for all u $ qm,

du $ min
x[V

min
y[S~x! :U~ y!ÞU~x!

6U~x! 2 U~ y!6 5: dU . 0+

Then, applying Theorems 3+1 and 3+2 with 6Vmin,u6 # 6V6, we obtain that, for any
u $ qm, a sufficient condition for the upper bound onl2,u ~3+10! to be greater than
the absolute value of the lower bound onl 6V6,u ~3+17! is given by

hWu
$ b21 lnF 6V6

2µ*
2bG~u! ,G~u!

SAuSqmin

Sqmin

∨
1

12 exp~2bdU !D1 BuDG 5: L~b,u!+

Hence, by Theorem 3+1 and using the fact that6Vmin,u6 $ 1, if u $ qm andhWu
$

L~b,u!, then

r~Pb, u ! # 12 tu exp~2bhWu
!, tu :5 qmin~µ*

2bG~u! ,G~u! !
21,

# 12 tu exp~2b~2DU 1 uhV !! ~by Lemma 4+2!+

Consequently, given any bm [ R1
* , the above inequality holds for all pairs

~b,u! such thatb $ bm and u [ $q $ qm : hWq
$ L~bm,q!% 5: Du+ Since

sup$L~bm,q! :q [ R1
* % , 1` andhWq

$ 22DU 1qhV by Lemma 4+2,Du . $q $
qm
' % for some constantqm

' $ qm+ The proposition follows by appealing to Lemma
4+3 and then settingum 5 um

' ∨ qm
' + n

4.2. Main Results

In addition to Assumptions A1 and A2 onq andWu, we shall make the following
assumptions on the control sequences~bn!n[N* and~un!n[N* :

A3+ ~bn!n[N* and~un!n[N* are strictly positive and monotonic increasing+

A4+ limnr1`un 5 1`+

A5+ There exists real constantsv [ ~21,1`! and z [ ~0, hV
21! such that

bnun 2 bn21un21 # z~n 1 v!21 for all n [ N \$0,1% +

A6+ The sequence~un0 ln~n 1 v!!n[N \$0,1% decreases eventually+
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By applying Theorem 2+1 together with Lemma 4+1 and Proposition 4+1, we
obtain the following theorem, which shows that the quantityjn ~1+11! has the limit
zero asn r 1` whenever assumptions 3–6 are satisfied+

Theorem 4.1: Under assumptions 3–6, for any positive real constant

C .
zDV

t~11 v!zhV exp~2b1u1hV !
5: C0,

there exists a constant M[ N \$0,1% such thatjn # C~n 1 v!z~2DU un
211hV ! 2 1 for

all n $ M.

Proof: In order to be able to apply Theorem 2+1, we must first provide bounds
for the quantities2ln~ r~Pn!an! and r~Pn!bn+ From Proposition 4+1, we have
ln~ r~Pn!! # 2t exp~2bn~2DU 1 unhV!! for n sufficiently large+ Therefore, by
considering Lemma 4+1 and noting that assumption 5 impliesbnun 2 b1u1 ,
z ln~~n 1 v!0~11 v!!, there existsn1 $ 2 such that, for all n $ n1,

2 ln~ r~Pn!an! . tn~n 1 v!2z~2DU un
211hV ! 2 yn~n 1 v!21

with tn :5 t exp~~z ln~11 v! 2 b1u1!~2DU un
21 1 hV!! andyn :5

1
2
_z~DU un

21 1 DV!+
Since limnr1`un51`andzhV , 1, it follows that for any real constantd1 satisfying

0 , d1 , lim
nr1`

tn 5 t~11 v!zhV exp~2b1u1hV !,

there existsn2 $ n1 such that

2 ln~ r~Pn!an! $ d1~n 1 v!2z~2DU un
211hV ! for all n $ n2+ (4.2)

At the same time, using Lemma 4+1 and assumption 5, we haver~Pn!bn , bn #
exp~2yn~n 1 v!21! 2 1 5: sn for all n $ 2+ Clearly, under assumptions 3 and 4,
the sequence~sn!n[N* is monotonic decreasing and limnr1`sn0~zDV~n1v!21!51+
Consequently, for any real constantd2 . zDV, there existsn3 $ 2 such that

r~Pn!bn # d2~n 1 v!21 for all n $ n3+ (4.3)

We now examine the conditions~i!–~iii ! stated in Theorem 2+1+LetQ : @1,1`!r
R1
* be any monotonic increasing function such thatQ~n! 5 un for all n $ 2 and

Q~x!0 ln~x 1 v! decreases eventually+We define the functionsf andg by

f ~x! 5 d1~x 1 v!2z~2DU 0Q~x!1hV ! and g~x! 5 d2~x 1 v!21 (4.4)

so that, according to~4+2! and ~4+3!, it suffices to chooseN $ n2 ∨ n3 to obtain
condition~i!+ Then, because the derivative off is

f '~x! 5 2zf ~x!FhV~x 1 v!21 1 2DU

d

dx
S ln~x 1 v!

Q~x!
DG ,
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there existsa0 $ 1 such thatf is decreasing in@a0,1`! and, hence, condition~ii !
holds for anya $ a0+ In addition,

1

g~x!
S g

f
D'~x! 5 d2

21S g

f
D~x!FzhV 2 1 1 2zDU ~x 1 v!

d

dx
S ln~x 1 v!

Q~x!
DG

.
zhV 2 1

d1

~x 1 v!z~2DU 0Q~x!1hV !21 for x large enough,

and, thus, for any real constantc [ ~21,0!, there existsn4 $ 2 such that condition
~iii ! is satisfied for anyN $ n4+

Finally, applying Theorem 2+1 with f andg defined by~4+4! andN $ n2 ∨ n3 ∨
{a0 1 1} ∨ n4, we obtain that for alln . N,

jn , JN21 exp~2F~n 1 1! 1 F~N!!

1
~11 2~N 1 v!21!d2

~11 c!d1

exp~ f ~n 1 1!!~n 1 v 1 2!z~2DU un12
21 1hV !21,

where the first term in the right-hand side tends to zero exponentially fast asn r

1`+ The theorem follows from the fact that for any real constant« . 0, the con-
stantsd1, d2, c, andN can be chosen in such a way that

0 ,
~11 2~N 1 v!21!d2

~11 c!d1

exp~ f ~n 1 1!! 2 C0 # «

for n sufficiently large+ n

The following two corollaries give simple conditions on the control sequences
for M ~V, U, V, q, ~bn!, ~un!! to converge in variation topb0,` ~1+6! andp` ~1+7!
together with the associated asymptotic convergence rates+

Corollary 4.1 ~Relaxation!: Assume thatbn 5 b0 [ R1
* and

un 5 zb0
21 ln~n 1 c1! 1 c2 for all n [ N*, (4.5)

wherez [ ~0, hV
21!, c1 [ R1

* , and c2 [ R1 are given constants. Then, for any initial
distributionn0,

7nn 2 pb0,`7Var 5 O~n~zhV21!∨~2zdr ! ! as nr 1`,

where

dr :5 min$V~z! : z [ V\ EV% 2 min$V~z! : z [ V%+ (4.6)

Proof: According to~4+5!, b0~un 2 un21! , z~n 2 1 1 c1!21 for all n $ 2 and the
sequence~un0 ln~n211 c1!!n$2 is strictly decreasing+ Therefore, assumptions 3–6
are satisfied and Theorem 4+1 gives

7nn 2 pn7Var 5 O~nz~2DU un
211hV !21! 5 O~nzhV21!+ (4.7)
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For eachn $ 1, let Fn be the real-valued function onV defined by

Fn~x! 5 exp~2b0 @U~x! 1 un tV~x!# !, tV~x! :5 V~x! 2 min$V~z! : z [ V%+

Clearly, Fn~x! 5 O~exp~2b0un tV~x!!! 5 O~n2z tV~x! ! for all x [ V\ EV and we can
write pn~x! 5 Zn

21 µ~x!Fn~x! for all x [ V+ Hence, sinceZn . Zb0,` . 0,

pn~x! 5 O~n2z tV~x! ! for all x [ V\ EV+ (4.8)

Now, if x [ EV, we have

6pn~x! 2 pb0,`~x!6 5 Zb0,`
21 µ~x!exp~2b0U~x!!

Zn 2 Zb0,`

Zn

5 pb0,`~x!pn~V\ EV!,

whereas6pn~x! 2 pb0,`~x!65 pn~x! for all x [ V\ EV+ Consequently,

7pn 2 pb0,`7Var 5 pn~V\ EV!

5 O~n2zdr ! ~by ~4+8!!+ (4.9)

The corollary follows directly from~4+7! and~4+9! by the triangle inequality+ n

Note 4.2: Corollary 4+1 shows that wheneverz # ~hV 1 dr !
21, the asymptotic con-

vergence rate of constrained relaxation is governed by the differencedr ~4+6! be-
tween the smallest constraint outside the feasible setEV and the minimum constraint
value+ It appears that the fastest convergence rate is achieved forz 5 ~hV 1 dr !

21

and, hence, rather surprisingly, setting z arbitrarily close tohV
21 takes us away

from best performance+ Still, it can be checked that our improvement in the upper
bound onz with respect to Yao’s result@38# allows for faster convergence if
hV 1 dr , ,dV, a situation likely to arise in practice, and~,dV!21 , z , hV

21~1 2
dr~,dV!21!; the associated asymptotic convergence speed gain isO~ne !, wheree [
~0,dr~~hV 1 dr !

21 2 ~,dV!21!# +

Corollary 4.2 ~Annealing!: Assume that~bn!n[N* and ~un!n[N* are strictly pos-
itive, monotonic increasing sequences such thatlimnr1`bn 5 limnr1`un 5 1`
and

bnun 5 z ln~n 1 c1! 1 c2 for all n [ N*, (4.10)

wherez [ ~0, hV
21!, c1 [ R1

* , and c2 [ R1 are given constants. Then, for any initial
distributionn0,

7nn 2 p`7Var 5 O~exp~2bnda!! as nr 1`,

where

da :5 min$U~z! : z [ EV\ EVmin% 2 min$U~z! : z [ EV%+ (4.11)
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Proof: For eachn $ 1, let Fn
' be the real-valued function onV defined by

Fn
' ~x! 5 exp~2bn @ EU~x! 1 un tV~x!# !, EU~x! :5 U~x! 2 min$U~z! : z [ EV%+

Then, Fn
' ~x! 5 exp~2bn EU~x!! for all x [ EV\ EVmin and we can writepn~x! 5

~Zn
' !21µ~x!Fn

' ~x! for all x [ V+ SinceZn
' . Z` . 0, we have

pn~ EV\ EVmin! 5 O~exp~2bnda!! (4.12)

and we shall complete the proof by showing that

7nn 2 p`7Var ; pn~ EV\ EVmin! asn r 1`+ (4.13)

If x [ EVmin, we have 6pn~x! 2 p`~x!6 5 Z`
21 µ~x!~Zn

' 2 Z` !0Zn
' 5

p`~x!pn~V\ EVmin!, whereas6pn~x! 2 p`~x!65 pn~x! for all x [ V\ EVmin+ There-
fore, 7pn 2 p`7Var 5 pn~V\ EVmin! and it follows that

6 tn 2 ~11 vn!6 #
7nn 2 p`7Var

pn~ EV\ EVmin!
# tn 1 1 1 vn, (4.14)

where

tn :5
7nn 2 pn7Var

pn~ EV\ EVmin!
and vn :5

pn~V\ EV!

pn~ EV\ EVmin!
+

It is easy to check that assumptions 5 and 6 are satisfied withv 5 211 c1 and thus,
by Theorem 4+1, there exists some real constantsK, e . 0 such that7nn 2 pn7Var #
Kn2e for n sufficiently large+ In the same way, as~4+10! implies that

Fn
' ~x! 5 O~n2z~ EU~x!un

211 tV~x!! ! for all x [ V\ EV,

there exists some real constantsK ', e ' . 0 such thatpn~V\ EV! # K 'n2e ' for n suf-
ficiently large+ Then, since~4+10! and~4+12! give pn~ EV\ EVmin! 5 O~n2zdaun

21
!, we

deduce thattn, vn r 0 asn r 1` so that~4+14! leads to~4+13!+ n

Note 4.3: What emerges from Corollary 4+2 is that the asymptotic convergence rate
of constrained annealing is controlled by the critical constantda ~4+11! defined as the
difference between the second smallest energy value in the feasible setEV and the
constrained minimum+ Clearly, the convergence rate is better for problems with
largerda and for a choice ofz close tohV

21 together with a slowly increasing control
sequence~un!n[N* + It turns out that our improved upper bound onz leads to faster
convergence provided thatbn is taken to be strictly increasing with respect toz for
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n sufficiently large; the resulting convergence speed gain depends on the sequence
~un!n[N* and is up toO~neun

21
!, e 5 hV

21 2 ~,dV!21+
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