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Stochastic Nonlinear Image Restoration
Using the Wavelet Transform

Marc C. Robini, Member, IEEE,and Isabelle E. Magnin, Member, IEEE

Abstract—The dominant methodology for image restoration is
to stabilize the problem by including a roughness penalty in addi-
tion to faithfulness to the data. Among various choices, concave
stabilizers stand out for their boundary detection capabilities,
but the resulting cost function to be minimized is generally mul-
timodal. Although simulated annealing is theoretically optimal
to take up this challenge, standard stochastic algorithms suffer
from two drawbacks: i) practical convergence difficulties are
encountered with second-order prior models and ii) it remains
computationally demanding to favor the formation of smooth
contour lines by taking the discontinuity field explicitly into ac-
count. This work shows that both weaknesses can be overcome in
a multiresolution framework by means of the 2-D discrete wavelet
transform (DWT). We first propose to improve convergence
toward global minima by single-site updating on the wavelet do-
main. For this purpose, a new restricted DWT space is introduced
and a theoretically sound updating mechanism is constructed on
this subspace. Next, we suggest to incorporate the smoothness of
the discontinuity field via an additional penalty term defined on
the high frequency subbands. The resulting increase in complexity
is small and the approach requires the specification of a unique
extra parameter for which an explicit selection formula is derived.

Index Terms—Image restoration, inverse problems, metropolis
dynamics, simulated annealing, wavelets.

NOMENCLATURE

BSNR Blurred signal-to-noise ratio.
DWT Discrete wavelet transform.
ISNR Improvement in signal-to-noise ratio.
LB “Locally bounded.”
WaRD Wavelet-based regularized deconvolution.

Concavity parameter of the-function.
( ) Cooling schedule.

Scale parameter.
Additive, zero-mean, Gaussian white noise field
corrupting the blurred image.
Image smoothing parameter.
Wavelet smoothing parameter.
Lower bounds for and , respectively.
Standard deviation of.
“Potential function.”

th-order prior.
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Wavelet smoothing term.
LB image subspace.
Restricted wavelet space.
Annealing on .
Annealing on .
DWT analysis matrix.
Degraded observation (data).

th-order discrete derivative operator.
Gradient operator in a vertical ( ) or horizontal
( ) direction.
Blurring operator.
Wavelet decomposition level.
Neighborhood structures (a neighborhood system
on a set is denoted by and stands for
the set of neighbors of ).
Communication kernels on and , respec-
tively.
Low resolution residual.
Rectangular lattices respectively supporting,
and .
DWT synthesis matrix.

th-order posterior cost function defined on the
image space.
Second-order posterior cost function defined on the
wavelet domain.
Cost function .
Detail subband with orientationat decomposition
level .
Original intensity distribution.
Configuration with removed.

I. INTRODUCTION

T HE discrete image restoration problem is to recover
an original intensity distribution

defined over a 2-D rectangular latticefrom its measurement
degraded by the sensing environment.

In many situations, the transformation from to is well
described by the familiar additive linear degradation model

, where is a linear operator representing
a (possibly space-variant) point spread function and the noise
process consists of independent and identi-
cally distributed zero-mean Gaussian random variables. In the
following, we assume that both and the noise variance
are known.

Using lexicographic ordering, we obtain the underdetermined
linear system , where , ,
and . Owing to the ill-posedness of the initial con-
tinuous problem (a particular case of a first-kind Fredholm in-
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tegral equation), the normal matrix is poorly conditioned
and hence the error propagation level from the datato the so-
lution is most often unacceptable. In order to circumvent this
difficulty, many image restoration methods include prior con-
straints about the true image in addition to those implicit in
coherence to the data. A common estimate ofthat arises from
bayesian modeling [1], [2] or, equivalently, from a likelihood
model with regularization [3], [4], is defined as any global min-
imum of a cost function

(1)

where the stabilizer promotes the formation of smooth re-
gions separated by ( )th-order discontinuities and
governs the trade-off between the degree of stabilization of the
solution and its faithfulness to the data. Confining ourselves to
approximately piecewise constant ( ) or planar ( )
original distributions, we consider the widespread model

(2)

where is taken to be even, increasing in and
such that , is the matrix implementa-
tion of a th-order discrete derivative operator, and is
a scale parameter. For the first-order case,is the number of
two-sites cliques associated with the eight-nearest
neighbor system. Let be the row index of corresponding
to a given clique . Then if is horizontal or
vertical and if is diagonal. For the
second-order case, the summation is over three- and four-sites
cliques of the form

i ii iii

and is defined by if is of type
(i) or (ii) and if is of type (iii).

The form of the “potential function” in (2) plays a crucial
role in the estimation process. In recent years, deriving condi-
tions for the -function to preserve or to detect discontinuities
has been an active research area [5]–[10]. On one hand, some
authors [6], [7], [11]–[15] encourage the use of convex-func-
tions to ensure the convexity of while preserving edges
in the sense that smoothing is reduced in their vicinity. On the
other hand, one can be interested in nonconvex-functions [5],
[16]–[19] which yield sharper edges and allow to achieve better
resolution [8] at the expense of instability. In accordance with
the latter standpoint, following Geman and Reynolds [5], we use
functions of the form

(3)

which are strictly concave in . For any , one very
important property of is that it admits a strictly positive right
derivative at zero ( ). It follows that
almost any strict minimizer of not only recovers regions

where the th-order differences are null but is also stable with
respect to small variations of the data [20].

Because of the concavity of, is most often nonconvex
and typically exhibits numerous local minima. The minimiza-
tion of is thus nontrivial and one can employ either sub-
optimal algorithms such as iterated conditional modes [2] and
graduated nonconvexity [19], [21], [22] or stochastic relaxation
with annealing which has the remarkable property to be asymp-
totically optimal when properly tuned [23]–[25]. The stochastic
approach, which is considered in this paper, gives satisfactory
results using finite-time exponential cooling schedules and car-
rying out the minimization on a locally bounded image subspace
[26]. However, such algorithms still suffer from two drawbacks:

1) Markov chain Monte Carlo algorithms defined on a
large state space with loosely coupled sites experience
difficulties when pixels are updated singly (see, e.g.,
Jennison’s discussion in [27]). More specifically, the
convergence is slow when the low cost regions of the
state space correspond to configurations having a strong
low frequency content. This is particularly true for
distributions involving a second-order prior such as ,
a common practical situation since many images are
better described by planar areas separated by roof-edges
than by constant regions [5], [28]. Indeed, second-order
models produce more complex energy landscapes than
first-order models, which translates to a less stable
inversion process.

2) In the case of a first-order model, the minimization of
leads to noisy object boundaries which are not

faithful to the original distribution. This behavior is
quite predictable as the model does not embed any prior
knowledge on the geometry of edges. Unfortunately, the
mutual dependance between neighboring discontinuities
is difficult to take into account unless an explicit line
process is introduced [1], [3], [29], which results in a se-
vere increase in computational complexity. Furthermore,
the penalties for the various edge configurations to be
specified then are so many additional hyper-parameters
to deal with.

Our concern is to show that the above difficulties can be al-
leviated in a multiresolution framework by means of the 2-D
discrete wavelet transform (DWT):

1) Since single-site updating on the spatial frequency space
corresponds to some block-site updating on the spatial
domain, wider site connections are achieved by min-
imizing the composite of the inverse DWT and .
This approach is conceptually simple and fundamentally
different from the renormalization group method [30]
as well as multi-grid Monte Carlo algorithms [31]; it is
based on the obvious fact that the set of true image esti-
mates also writes

, where is the
synthesis matrix associated with the transform under con-
sideration. In order to achieve efficient sampling of the
state space, we introduce a restricted DWT space, say

, with finite discrete coefficients and locally bounded
subbands. In particular, we show that it is possible to con-
struct a single-site updating dynamics onthat preserves
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the theoretical convergence properties of annealing. In
comparison with annealing on the digital image space,
the proposed inversion process is more stable and our
experiments show significant benefits in terms of both
final energy level and improvement in signal-to-noise
ratio.

2) In order to encourage the formation of smooth contours,
we suggest to incorporate the smoothness features of the
line field implicitly rather than explicitly. To be more
precise, we consider the minimization of an augmented
functional

where is a DWT analysis matrix, is a penalty term
operating on horizontal and vertical detail subbands by
means of gradient operators, and weights the in-
fluence of . To avoid the introduction of an additional
free parameter, we use some ideas introduced in [5] to
prove a lower bound on for the true image to be a
coordinate-wise minimum of with probability greater
than some specified threshold value. This bound is ex-
pressed as a function of, , , the sum of squares of the
blur coefficients (assuming is space-invariant) and the
noise standard deviation. Our restoration results show that
the proposed method yield state-of-the-art performance
under the considered experimental conditions.

The paper is organized as follows. Metropolis-type an-
nealing algorithms and their “conventional” application to
image restoration are briefly discussed in the next section.
Section III is devoted to image restoration by annealing on a
restricted wavelet space. In Section IV, we describe our solution
to the issue of edge continuation along with the choice of.
Experimental results appear in Section V and conclusions are
presented in Section VI.

II. BACKGROUND

A. Annealing in a Few Words

Let us consider an energy landscape ( ), where is a fi-
nite set called the configuration space or state space,
is a real-valued function to be minimized on, and

is a symmetric and irreducible Markov matrix (i.e.,
, and

for all ). In most practical situations, the “communi-
cation kernel” is defined by selecting a neighborhood system

and setting

(4)

For any , define the transition probability matrix on
by

if

if

(5)

where , and let be a nonde-
creasing positive real sequence called the cooling schedule.
A Metropolis-type annealing algorithm on ( ) is a
discrete-time nonhomogeneous Markov chain
with transitions ,

. We shall use the notation for
short. Under our assumptions, is irreducible and aperiodic.
Its unique equilibrium probability measure is the Gibbs dis-
tribution with energy at temperature defined by

, , where is a normalizing
constant. It is easy to check that tends to the uniform
distribution on the set of global minima of as tends to
infinity. Hence, the key idea of annealing is that, for sufficiently
slowly increasing cooling schedule, the law of should be
close to and, consequently, one can expect that

Early results [1], [23]–[25] show that this desirable property
holds for suitably adjusted logarithmic schedules. Still, it has
been rigorously demonstrated [32] and experimentally verified
[26] that the associated algorithms generally perform poorly as
soon as one deals with a finite number of iterations and that ex-
ponential schedules should be preferred.

B. Conventional Annealing-Based Image Restoration

In straightforward applications of Metropolis-type annealing
to image restoration, the state space is of the form, where

, , ,
, and a common choice for the communication kernel (4)

is defined by

However, because the proposed new pixel values are uniformly
generated over , quickly gets close to zero as

increases. It follows that outlier intensity values frequently
subsist and that image boundaries are difficult to alter. As shown
in [33] and [26], this problem can be overcome by restricting

to a locally bounded (LB) image subspace, that is, a set of
configurations such that, for all

(6)

where and is a predefined neighbor-
hood system on (a typical choice is a four-nearest neighbor
system together with , e.g., if ). Such a
set is denoted by and the corresponding
single-site updating Metropolis dynamics can be briefly de-
scribed as follows. Given , let be the configuration

with removed and let be the configuration defined
by . We denote the section of

at by , that is, .
Then, for all such that , the communication
kernel on is defined by

if
otherwise

(7)
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where is the set of configurations satisfying
and . Reconsidering (6), one can find

the answer to what makes this dynamics appropriate to piece-
wise smooth image recovery. At the beginning of the annealing
process, that is, when is low, the visited states are noisy and
thus is wide for all . Conversely, as increases, a
smoother image is gradually formed so thatbecomes smaller
at most sites. In other words, adequate sampling of the state
space is allowed at high temperatures while the generation of
very unlikely candidates is avoided at low temperatures. An-
other strong point is that can be shown to be symmetric and
irreducible [33]. Therefore, the convergence results mentioned
in Section II-A hold for .

III. I MAGE RESTORATION IN A WAVELET BASIS

Depending on the cost function to be minimized, the
annealing algorithms can still show
mediocre performance despite the benefits resulting from the
restriction to an LB subspace. A case in point is
(1)–(2) for , as second-order models produce “perverse”
energy landscapes whose structure strongly limits the moves
between high probability areas of the state space separated by
low probability regions. An immediate solution to this problem
is to generate new candidates by changing several pixel values
simultaneously, which can be implicitly carried out by means
of single-site updating on the wavelet domain.

In a wavelet basis, an imageis represented by a set of subim-
ages , where is the ap-
proximation of at resolution 2 and the spatially oriented
high-frequency (HF) subbands , also called the
detail subbands, convey the difference of information between

and the coarser approximation(we refer to [34], [35] for
a comprehensive introduction). By arrangingtogether with
the ’s in a single column vector, the basis transfer scheme
can be implemented with an analysis and synthesis matrix pair
(see, e.g., [36]): , . Consequently, a config-
uration is a global minimum of if and only if is a
global minimum of

so that the minimization can be equivalently performed on
the wavelet domain. Working with wavelet representations
is fruitful as regards restriction of the state space. The HF
wavelet coefficients lend themselves well to quantization and
their amplitude range can be estimated on the basis of the
knowledge of the maximum discontinuity amplitude to be
found in the original image. Moreover, the spatial orientation
of the detail subbands allows LB descriptions with spatially
oriented neighborhoods. This gives rise to a finite DWT
space with reduced cardinality which is rich enough to
contain close approximations to most piecewise smooth scenes.
The construction of is the subject of Section III-A and
annealing on this subspace is discussed in Section III-B.

A. Restricted Wavelet Space

Without loss of generality, we assume that the supportof
the true image is with . Let

and denote the and grids
supporting the low resolution residual and the HF subband

, respectively. Since there necessarily exists a closed interval
such that , the DWT space can be

restricted to the set

where is defined by the maximum absolute
value of the wavelet coefficients in the detail subband
associated with DWT . Our first goal is to estimate . As-
suming that rests on a torus, can be obtained by convolving

with the impulse response of a 2-D high-pass filter and sub-
sampling by 2 along the rows and columns. Let us respectively
denote the DWT analysis low-pass and high-pass filters by
and . We have

where is the -D discrete convolution operator and

if ,
if ,
if

(8)

with (the notation
stands for the signal obtained by inserting zeros between
each neighboring samples of), if

and . Let be the support of . Obviously,
satisfies

(9)

but this upper bound is far from being sharp whenis piece-
wise smooth. Inasmuch as we are concerned with nearly piece-
wise planar images, it is fair to limit the domain in (9)
to configurations having a single first-order discontinuity in a
vertical ( ), horizontal ( ) or diagonal ( ) direction.
In other words, given the maximum discontinuity amplitude
to be found in , we consider the three sets

, , of distributions depicted in Fig. 1, that is,

if ,
otherwise

(10)

(11)

and
if ,

otherwise.
(12)

Our estimate for then writes



894 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

For and assuming the mother wavelet has at least
two vanishing moments, this gives

and

The next step toward the construction of the restricted DWT
space is to quantize the wavelet coefficients. The motivation
for discretization is twofold. First, positive convergence results
dealing with the finite-time behavior of annealing are restricted
to finite state spaces [32], [37]. Second, efficient selection of the
final inverse temperature requires the computation of an isolated
minimum through coordinate-wise deterministic minimization
[26], which cannot be done on the Cartesian product of uncount-
ably infinite sets and is far too time-consuming under floating-
point approximation. We use linear scalar uniform quantization,
although it is well-known that the statistical properties of the
detail subband coefficients are adequately summarized by gen-
eralized Gaussian distributions [34], [38], [39]. The reason for
this simple choice is that both blur and noise contaminate the
necessary information for fixing the parameters of the general-
ized Gaussian model — estimating these parameters from the
data actually presents many difficulties in exchange for uncer-
tain results. Let (resp., ) be the number of quantization
bins associated with (resp., ). The quantized DWT sub-
space is

with

and

Of course, the ’s have to be odd so that the detail subband
coefficients can be equal to zero. In practice, we use the same
number of quantization bins, say , for all the detail sub-
bands: for all

. It is also worthwhile noting that the expected max-
imum discontinuity amplitude can be over-estimated in order
not to penalize possible abrupt intensity changes. We suggest to
choose , which corresponds to
grey levels in standard 8-bit images. Then, from our experience,
setting and is appropriate to most
applications.

An immediate refinement in this quantized subspace is to re-
strict the set of low resolution residuals to an LB subset
with level and four-nearest neighbor system — this
subset is denoted by in accordance with the
notation introduced in Section II-B. Besides, keeping in mind
that the detail subbands can be interpreted as spatially oriented
HF channels, the most likely configurations in should
be well-described by an LB subspace with suitably oriented

Fig. 1. Prototypical distributionsz [see (10)–(12)] considered for the
estimation of the amplitude ranges of the detail subbands: (a)i = 1; (b) i = 2;
(c) i = 3; and (d) intensity change along thet-axis.

neighborhood system. Since gives the horizontal high fre-
quencies (i.e., vertical edges), the vertical high frequencies
(i.e., horizontal edges) and the high frequencies in both di-
rections, it is natural to choose the 2-nearest vertical and hori-
zontal neighbor systems for and , respectively, and
the 4-nearest diagonal neighbor system for . Hence, the
restricted space we propose to consider is the set

(13)

where denotes the LB approximation
level associated with the ’s and

In a large number of experiments, we have found that
( gives consistently
good descriptions. In fact, the subspace defined by this
set of parameter values is rich in the sense that for any rea-
sonably smooth image and for any such that

, there exists an whose DWT is in such that
and are not visually distinguishable. This is illustrated by

the examples in Fig. 2. We used biorthogonal spline wavelets
with two vanishing moments [40] and the restricted wavelet
space approximations [Fig. 2(c) and (d)] of the original images
displayed in Figs. 2(a) and (b) were obtained by estimating

using an annealing procedure.
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Fig. 2. Restricted wavelet space approximation: (a)–(b) 256� 256 original
images in[0;255] ; (c)–(d) images with DWT in the set
 (13) defined
by J = 2,K = 128 and(Q ; � ; Q ; � ) = (128,10,127,10).

B. Annealing on

The communication mechanism associated with the
Metropolis dynamics working on (13) is implemented in
the following manner. A new candidateis generated from the
current configuration, say

by first randomly selecting a sitefrom

and then setting and affecting to a random value
in the section of at if or
in the section of at if .
Note that the site selection step can be equivalently performed
by randomly choosing a grid from

with probability 4 for and 4 for any and
then picking a site from . Thus, the communication kernel

on can be defined by (see (14) at the bottom of the
next page) for all such that , where is
given in (7). Since is symmetric and irreducible, we can see
from (14) that so is and it follows that the theoretical conver-
gence properties of annealing hold for . In
particular, there exists finite-time exponential cooling schedule

with initial inverse temperature
independent of the horizon that are “logarithmically almost
optimal” [32]: for any positive real , one can choose as a
decreasing function of such that the logarithm of the conver-
gence measure

is asymptotically equivalent to the logarithm of the best achiev-
able convergence rate (i.e., ) for small enough.

Furthermore, it should be stressed that is
not limited to cost functions defined on the image space. Al-
though we have not investigated this possibility, our algorithm
is also applicable to any locally computable penalty defined on
the wavelet domain. This includes, for example, stabilization
schemes based on complexity penalties [41], Gaussian mixture
models [42], or generalized Gaussian distributions [43].

In practice, the estimate of the true image is ob-
tained by computing the inverse DWT of the output of

, where the length
of the annealing chain is fixed by the available computing
resources. The parameters and of the cooling schedule
are selected in accordance with the following well-accepted
criterions.

• Most transitions should be accepted at the beginning of the
annealing process, that is, the initial inverse temperature

should be such that

is close to one for almost all , where is the
transition kernel (5) associated with the energy landscape
( ).

• Conversely, given an isolated local minimum of
( ) (i.e., and for all

such that ), the probability to escape from
should be virtually equal to zero when the number of
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iterations approaches . In other words, the final inverse
temperature should be such that

is close to zero.
We refer to [26] for a description of efficient procedures to per-
form these estimation tasks. Explanations about the computa-
tion of the variation of the cost function
when changing a wavelet coefficient are provided in Appendix I,
where we also discuss the complexity of the algorithm. It can be
seen that if the size of the blurring kernel is a fixed fraction of
the size of the image to be recovered, then the computational
complexity of annealing on is asymptotic to the computa-
tional complexity of annealing on the image space.

Our experimental results about piecewise planar image
restoration using the above described stochastic process appear
in Section V-A.

IV. WAVELET DOMAIN EDGE CONTINUATION

In many image restoration problems involving a first-order
model, the exploitation of the fundamental smoothness features
of the object boundaries can help to improve the quality of the
results. This section describes an efficient way to do so by im-
posing simple penalties on the wavelet coefficients.

A. Method

We start with the common observation that the level curves of
most images deserving interest are noiseless. From the wavelet
domain standpoint, this prior information translates to the fact
that the horizontal and vertical detail subbands are respectively
vertically- and horizontally-oriented, that is, the vertical (resp.
horizontal) gradient amplitudes values to be found in
(resp. are expected to be small. Hence, the prolon-
gation of discontinuities at different resolution levels can be fa-
cilitated in a natural way by means of an additional penalty term

(15)

where the function is even, increasing in
and such that , is the matrix implementation of
a gradient operator in a vertical ( ) or horizontal ( )
direction, and . The action of is easy to understand
in the frequency domain: it penalizes configurations that convey
significant information in the regions schematized in Fig. 3(a)
and exemplified in Fig. 3(b). This shows thatnot only favors
the formation of horizontal and vertical edges but also preserves
diagonal boundaries. In addition, it avoids the introduction of
an explicit line process (either Boolean [1], [29] or continuous

[44], [45]) and the associated increase in problem complexity is
small if is chosen to be convex.

A guideline for selecting in (15) is that should preserve
both sharp transitions and smooth variations along the orienta-
tion directions of the wavelet subbands. By way of illustration,
consider the contribution to of any column of a given hori-
zontal subband , i.e.,

Our wish is that this contribution does not introduce any partic-
ular bias toward a discontinuous or smooth approximation to the
original signal . Hence, according to comments
made by Bouman and Sauer [13], we shall use .
Our estimate of the original distribution is then defined as
any global minimum of an augmented cost function of the form

(16)

where (2)–(3) was specified in the introduction and
weights the influence of the wavelet smoothing term

(17)

(the scale parameter has been absorbed by).
From our experience, annealing on the wavelet domain and

annealing on the image space exhibit similar performance in
the case of a first-order prior model. Therefore, in practice, we
suggest to minimize by using as defined
in Section II-B. Implementation details are given in Appendix I,
where it is shown that, for large support blurring kernels, the
extra processing cost associated with the treatment of (17) is a
small fraction of the overall processing cost.

B. Parameter Selection

The hyper-parameters associated with(16)–(17) are , ,
, and . In practice, is typically chosen to be of the order

of the mean discontinuity amplitude to be recovered and the pa-
rameter , which controls the sharpness of the restored edges,
is fixed by the requirements of the application. Also, a useful
lower bound for can be found in [5]. In truth, the main dif-
ficulty here is to select an appropriate value for. Immediate
suggestions include the Chi-square choice (see, e.g., [46]), gen-
eralized cross-validation [47], or the L-curve method [48]. In
our case, however, there is no clear justification for any of these
approaches and, on top of this, the corresponding computational
requirements would be very high. Instead, in a Bayesian frame-
work, we could adopt a maximum likelihood estimation ap-
proach (see, e.g., [16], [49]) or we could construct an a priori
distribution for and estimate it together with the original image

if

if
(14)
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Fig. 3. (a) Frequency regions penalized by the wavelet smoothing term (15)
and (b) 3 dB passbands of the filtering operations associated withD w [ �]
for biorthogonal spline wavelets with two vanishing moments.

using the maximum a posteriori criterion. Still, owing to the
nonconvexity of , both possibilities also present many com-
putational difficulties. Alternatively, starting with some ideas of
Geman and Reynolds [5], we have found a simple and efficient
way to select as a function of , , , , and the noise stan-
dard deviation . More specifically, Geman and Reynolds es-
tablished a condition on in terms of , and such that

has the following property: if belongs to a certain class
of prototypical images, then there is a high probability that
is a coordinate-wise minimum of , that is, a change of
at anyone of the pixel values will result in an increase of .
For our part, we have chosen to seek a condition onsuch that

satisfies that same property.
Let be the configuration defined by ,

. We say that is a coordinate-wise minimum of
if . Set

(18)

where the argument reminds us the dependence on the noise
process, and let be the event that is a coordinate-wise min-
imum of , i.e.,

(19)

Then, given , , , and , our concern is to find a constraint
to place upon in order to guarantee P , ,
when is a member of a relevant image class. Following [5],
we analyze the case of a vertical (or, equivalently, horizontal)
step-edge, which amounts to assume that, for all,

if is greater than some appointed value, 0 otherwise.
We also suppose that is space-invariant, is a Gaussian white
noise, and rests on a torus. Under these assumptions, we have
the following theorem whose proof appears in Appendix II (the
finite support signals and involved in the definition of the
quantity (22) are defined in Section III-A).

Theorem 1: Let and let be defined by

erf (20)

Then, provided that (see (21) at the bottom of
the page) where denotes the sum of squares of the
blur coefficients and

with

and (22)

As we might expect, the lower bound is an increasing
function of and it decreases asincreases. Moreover, setting

in (21), we obtain

if

otherwise
(23)

and one can check that, if , identifies with the bound
computed by Geman and Reynolds [5, Theorem 2] in the first-
order case (note that our parametercorresponds to in their
work and that their analysis lead to the same result for the four-
and eight-nearest neighbor systems). Choosing , we are
free to select as a function of . Yet it is important to be clear
that the associated restoration results are then roughly equiva-
lent to the ones obtained by the standard approach ifis too
close to , whereas the regions where the first-order differ-
ences are null cannot be recovered ifis too small. We have
found that values of ranging from to constitute a
good balance. It should also be stressed that Theorem 1 stems
from a worst-case analysis in the sense that any pixel is assumed
to be adjacent to an edge. Consequently,(20) can be defined
by a much smaller number than , and our experiments in Sec-
tion V-B confirm that setting is sufficient.

V. EXPERIMENTS

Two sets of experimental results are presented here. One is
for the wavelet domain image restoration approach described in
Section III and the other concerns the edge continuation issue
discussed in Section IV.

In every experiment, the data are obtained by degrading a
given original image according to the linear observation
model . The blur is either uniform or generated
by convolving the 3 3 uniform mask with itself times,
which gives a mask ( ) with approximately
Gaussian shape referred to as the “Gaussian ” blur [5].
For the sake of clarity, the variance of is determined via

if

otherwise
(21)
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the decibel level of the blurred signal-to-noise ratio (BSNR)
as defined in [50]; that is,BSNR ,
where is the variance of the exact data . We shall
compare the performance of the proposed methods with
the conventional annealing approach (see Section II-B),
the iterative Wiener filtering technique described in [51],
and the wavelet-based regularized deconvolution (WaRD)
algorithm [52]. The metric used for assessing the quality of
a solution is the improvement in SNR (ISNR), given by
ISNR .

The annealing algorithms under examination operate either
on an LB image subspace or on a restricted wavelet space,
as discussed in Sections II-B and III-B. More specifically, we
consider

(24)

where is defined by 256 quantization levels together with
a four-nearest neighbor system and and

(25)

with (13) defined by the set of parameter values suggested
in Section III-A. Both algorithms start from random configu-
rations and use exponential cooling schedules with initial and
final temperature values selected by means of the procedures
proposed in [26]. Also, in all the experiments where the DWT
is invoked, we use biorthogonal spline wavelets with two van-
ishing moments [40] and a wavelet representation on two reso-
lution levels (i.e., ).

A. Restoration in a Wavelet Basis

This section illustrates the benefits coming with the mini-
mization of the cost function (1)–(3) over the wavelet do-
main. The annealing algorithms considered here are
(24) and (25), where is defined by

for all .
We begin with the restoration of the 128128 piecewise

planar image shown in Fig. 4(a) from the data displayed in
Fig. 4(b). The original distribution has pixel intensity values
in [0,36] and maximum first-order discontinuity amplitude
equal to 3.5. The data were generated by blurring with the
Gaussian 21 21 mask and adding 12 dB noise. Fig. 5 shows
the restorations achieved in the dynamic range [15, 50] when
running and for 8000 iterations, together
with the associated convergence rates. The prior was defined by

and the stabilization parameterwas chosen
according to the Geman and Reynolds’ approach [5]. Because
of the noise, the output of has a mottled appearance.
Clearly, does not suffer from this weakness and
produces markedly sharper discontinuities. Indeed,
offers substantial benefits in terms of both ISNR and final
energy level ( for the image in Fig. 5(a) and

for Fig. 5(b)). Also, we can see from Table I
that 256 000 iterations were not enough for to
produce a better solution than the one obtained with

in only 8000 iterations. From the material presented in
Appendix I, for a blurring kernel, the mean number
of flops per iterations is lower than for

and equal to for . Here, the ratio
of these two quantities is about 2.5 and it follows that the
net computational gain brought by annealing on the wavelet
domain is greater than .

As a second example, consider the restoration problem de-
picted in Fig. 6(a) and (b). The original distribution, a 256256
image with grey level range [13 248], was degraded by uni-
form 11 11 blur and 30 dB noise. Restoration was first per-
formed using iterative Wiener filtering [Fig. 6(c)] and the WaRD
technique [Fig. 6(d)]. Figs. 7(a) and (b) display the restora-
tions achieved with in the dynamic range [0,255] for

and (in both cases, the algorithm was
run for 24 000 iterations and was again selected via the
Geman and Reynolds’ approach). We observe that annealing
on the image space with a second-order prior can outperform
the WaRD algorithm, but it also appears that its practical use is
limited by sensitivity to the choice of the scale parameter. Run-
ning under the same setting, we obtained the solutions
shown in Figs. 7(c) and (d). Clearly, annealing on the wavelet
domain is more stable than . Furthermore, it performs
better than both and WaRD in terms of ISNR.

B. Edge Continuation

In this section, we assess the improvements carried out by
considering the augmented cost function(16)–(17) rather
than . More specifically, we shall compare the performance
of Wiener filtering, WaRD, , and (24). The an-
nealing algorithms are always run for 8000 iterations and

is chosen to be 3 when computing the lower bounds(21)
and (23) for the wavelet smoothing parameterand the sta-
bilization parameter .

We start with the example depicted in Fig. 8. The original
256 256 image has pixel intensity values ranging from 0
to 255; it is observed through the Gaussian 99 blur and
corrupted by 13 dB noise. Because of the high noise level,
the Wiener filter and the WaRD algorithm perform poorly.
Figs. 9(a)–(d) show the restorations achieved with in
the dynamic range [0,255] for , and ,

, and , respectively ( ). Note that,
compared to , setting reduces the concavity
of the -function (i.e., the amplitude of its second derivative)
and hence the “patchiness” associated with first-order models.
However, many discontinuity flaws are observed and increasing

to correct these errors removes important details in the image.
Moreover, the associated ISNR values show that is
outperformed by the WaRD algorithm in all four situations
(though we do not necessarily find the WaRD restoration
visually more attractive). Let us now introduce the wavelet
smoothing term. Fig. 9(e) displays as a function of (recall
that for all ). The solutions obtained with

for ,
and are shown in Fig. 9(f)–(h). There
are noticeable visual improvements: the boundaries are nearly
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Fig. 4. Piecewise planar image: (a) original and (b) degraded observation:
Gaussian 21� 21 blur+ 12 dB noise.

Fig. 5. Restoration results for the piecewise planar image (see Fig. 4): (a)
annealing on the image space, (b) annealing on the wavelet domain, and (c)
associated convergence rates.

flawless and the residual “patchiness” is unobtrusive. In addi-
tion, the corresponding ISNR values are 0.6 to 2 dB higher than
for the output of the WaRD algorithm.

Similar experiments were conducted on the example show in
Fig. 10. Figs. 11(a) and (b) display the restorations produced
by for and ( ). The
results shown in Figs. 11(c) and (d) were obtained with
for and . Again,
the additional wavelet smoothing term together with Theorem
1 yield better performance than WaRD. It should not be for-
gotten that our analysis for the selection ofis directed toward
the formation of truly horizontal and vertical step-edges. Hence,
for images with few horizontal and vertical boundaries such as

TABLE I
FINAL ENERGY LEVEL AND ISNR VERSUSLENGTH N OF

THE ANNEALING CHAIN A(U ) WHEN APPLIED TO THE

RESTORATIONPROBLEM DEPICTED IN FIG. 4

Fig. 6. Face image: (a) original; (b) degraded observation: uniform 11� 11
blur +30 dB noise; (c) restored by iterative Wiener filtering; and (d) restored
with the WaRD algorithm.

the one considered here, we may ask ourselves whether further
improvements can be achieved by diminishing. This turns out
to be the case, as the results in Figs. 11(e) and (f) show, but the
resulting benefits remain limited.

VI. CONCLUSION

Concave -functions stand out for boundary detection as well
as homogeneous region recovery. Still, their practical use is lim-
ited by the fact that they generally lead to multimodal cost func-
tions. Although simulated annealing is the method of choice to
tackle this problem, standard stochastic restoration algorithms
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Fig. 7. Restoration results for the face image (see Fig. 6). (a) Annealing on
the image space with� = 4. Note that the outlier intensity values are at least
two pixels wide because of the locally bounded description. (b) Annealing on
the image space with� = 8. (c)–(d) Annealing on the wavelet domain with
� = 4 and� = 8, respectively.

Fig. 8. Office image: (a) original; (b) degraded observation: Gaussian 9� 9
blur +30 dB noise; (c) restored by iterative Wiener filtering; and (d) restored
with the WaRD algorithm.

have two weaknesses. First, single-site updating on the dig-
ital image space gets on badly with second-order models in
the sense that it is very easy to be stuck in poor local minima.

Fig. 9. Restoration results for the office image (see Fig. 8).
(a)–(d) Minimization ofU : (a) � = � ; (b) � = � =2; (c) � = � =4;
(d) � = � =8. (e) � (�) curve (21). (f)–(h) Minimization ofV :
(f) � = � (� =2); (g) � = � (� =4); and (h)� = � (� =8).

Second, the incorporation of the local geometry of edges via
an explicit line field drastically increases computational com-
plexity and requires ad hoc extra parameter specification. It has
been shown that both difficulties can be overcome by resorting
to the DWT.

We first demonstrated that the convergence toward global
minima can be substantially improved by single-site updating
on a suitably restricted wavelet space. Other “practical” versions
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Fig. 10. Peppers image: (a) original; (b) degraded observation: Gaussian 9� 9
blur + 13 dB noise; (c) restored by iterative Wiener filtering; and (d) restored
with the WaRD algorithm.

of the proposed algorithm can be designed, but the merit of our
approach is that the associated communication mechanism does
not alter the theoretical convergence properties of annealing.
We agree that our algorithm may seem complex in terms of the
number of parameters defining the state space. However, it is
not sensitive to moderate parameter variations and the suggested
values produce good scene descriptions. Moreover, increasing
the numbers of quantization bins together with the LB levels is
usually useless because of the accuracy limitations imposed by
the sensing environment.

We also introduced the idea of “implicitly interacting discon-
tinuities” by means of an additional penalty term defined on the
horizontal and vertical HF channels. In comparison with ex-
plicit line processes, the associated increase in problem com-
plexity is small. Furthermore, we provided an explicit formula
for choosing the extra parameteras a function of the stabiliza-
tion parameter , the blur coefficients, and the noise standard
deviation. Using this result, our experiments show that boundary
sharpness is preserved while the contour lines are smoother and
hence more faithful to natural scenes. Such a behavior is highly
desirable for subsequent feature extraction and segmentation
tasks.

APPENDIX I
IMPLEMENTATION AND COMPLEXITY OF THE

PROPOSEDALGORITHMS

Recall that given an initial state , a realization
of an annealing chain is

generated as follows.

Fig. 11. Restoration results for the peppers image (see Fig. 10). (a)–(b)
Minimization ofU : (a)� = � =4; (b) � = � =8. (c)–(f) Minimization of
V : (c) � = � (� =4); (d) � = � (� =8); (e) � = 1=2� (� =4); and (f)
� = 1=2� (� =8).

for to do
Propose a new state by drawing a

sample from the distribution on
.
if then Set .
else Set with probability

.
endfor

In image restoration applications, the computational com-
plexity is governed by the evaluation of the energy difference

that takes place at each iteration. The fol-
lowing subsections provide some insights into the implemen-
tation of this critical task for annealing on the wavelet domain
(see Section III-B) and for annealing on the image space with
wavelet domain edge continuation (see Section IV). We drop
the subscript to simplify the notation and we denote by a
configuration that is zero everywhere except at site, where it
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assumes the value. Consequently, is of the form
with in the section of the state space at.

A. Annealing on the Wavelet Domain

The energy difference

associated with can be
written as

where and respectively denote theth row and
the ( ) entry of a matrix and . This
suggests to precompute for all and
to store the vectors , , and

into buffers. Thus,

(26)

and, in the event that the proposed move is accepted,, and
have to be updated according to ,

and for all . The number of flops
involved in the computation of (26) or in the buffer updating
procedure is linear in the numbers and
of nonzero entries in columnsof and . Assume
for simplicity that the synthesis filters have the same number of
taps, denoted by. For a blurring kernel with discrete support
of size , we have

and

where stands for the decomposition level of the subband
containing site . Using these expressions, straightforward but
tedious calculations show that the mean number of flops per
iteration of is

where

and

Setting gives the mean number of flops per iteration
of (i.e., annealing on the

image space), which is equal to . Hence, for images
of samples, both and have computational
complexity of , where can be under-
stood as the number of cycles through the pixels, or “sweeps”.

Note that the storage requirements are high in the general case
where the point spread function is space-variant. Still, in such a
situation, the memory needs for remain comparable to
those for : using compressed row storage format with 4
bytes floating point numbers and 4 bytes integer indexes,
and together occupy less than

bytes of memory, while requires about
8 bytes (there is no need to store for annealing on
the image space).

B. Wavelet Domain Edge Continuation

The energy difference to be computed at
each iteration of is of the form

with

and

(27)

where the matrix is any vertical concatenation of the ’s.
Assuming that the analysis filters have the same number of taps,
say , it is easy to check that the number of nonzero entries
in any column of does not exceed 2 . The treatment
of is similar to the treatment of described in the
previous subsection (simply set and replace with

). Also, (27) suggests to store the vector into a
buffer to be updated according to for all if
the proposed move is accepted. It follows that the mean number
of flops per iteration of is less than ,
while in the absence of the wavelet smoothing term (i.e., if
), the mean number of flops per iteration is about .

APPENDIX II
PROOF OFTHEOREM 1

Our proof is divided into two parts: we first compute a lower
bound for (18) (see proposition below) from which we
then show that (21) is a sufficient condition to guarantee that the
event (19) has probability greater than .

Proposition: Let be the zero-mean,
Gaussian random process defined by .
Then, for any and for any
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Proof: Let us put . The energy difference
at site writes

where

and

It has been demonstrated in [5] that

We shall complete the proof by showing that

(i) and (ii)

i) Recall that (and hence ) is a summation
over two-sites cliques associated with the eight-nearest
neighbor system and that is assumed to be a vertical or
horizontal step-edge of size. If is not adjacent to the
edge, then

and we do not have to go any further. Ifis adjacent to
the edge, then

(28)

Since is even, increasing in and strictly concave in
, we have, for all ,

Applying this inequality to (28) gives
.

ii) Since is a vertical or horizontal step-edge, we have
for all and

it follows that

Let be the 2-D impulse response defined by (8). We
have

where the integers and are fixed by the position of site
. Therefore,

so that .
Let be defined by

for all . From the above proposition, we have

and, hence,

P P

where . Since any zero-
mean, Gaussian random process satisfies

P P

for all (see, e.g., [53]), it follows that

P P

erf

Consequently, according to the definition of(20)

(29)

implies P . For the function in (3), the derivative
of is

Clearly, is increasing in so that if , then

, whereas if , then
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, where is the (unique) zero of in . More

specifically, see (30) at the bottom of the page. By substituting
(30) into (29) we obtain (21), which completes the proof of the
theorem.
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