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Stochastic Nonlinear Image Restoration
Using the Wavelet Transform
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Abstract—The dominant methodology for image restoration is &
to stabilize the problem by including a roughness penalty in addi- !SI
tion to faithfulness to the data. Among various choices, concave &S|
stabilizers stand out for their boundary detection capabilities, J
but the resulting cost function to be minimized is generally mul- 4()
timodal. Although simulated annealing is theoretically optimal .A(-)
to take up this challenge, standard stochastic algorithms suffer 9 ;
from two drawbacks: i) practical convergence difficulties are
encountered with second-order prior models and ii) it remains )
computationally demanding to favor the formation of smooth i
contour lines by taking the discontinuity field explicitly into ac- Dj
count. This work shows that both weaknesses can be overcome in
a multiresolution framework by means of the 2-D discrete wavelet
transform (DWT). We first propose to improve convergence
toward global minima by single-site updating on the wavelet do-
main. For this purpose, a new restricted DWT space is introduced
and a theoretically sound updating mechanism is constructed on
this subspace. Next, we suggest to incorporate the smoothness of
the discontinuity field via an additional penalty term defined on /. 7
the high frequency subbands. The resulting increase in complexity =~
is small and the approach requires the specification of a unique
extra parameter for which an explicit selection formula is derived. 77

N, N*

Index Terms—tmage restoration, inverse problems, metropolis 57, S”
dynamics, simulated annealing, wavelets. S,
U(k)

NOMENCLATURE o

BSNR Blurred signal-to-noise ratio. U§ :

DWT Discrete wavelet transform.

ISNR Improvement in signal-to-noise ratio. Vi

LB “Locally bounded.” Wy

WaRD Wavelet-based regularized deconvolution. 0

« Concavity parameter of the-function. r

(Bn) Cooling schedule. T\s

A Scale parameter.

n Additive, zero-mean, Gaussian white noise field

corrupting the blurred image.

A Image smoothing parameter.

A Wavelet smoothing parameter.

AFA* Lower bounds for\ and ), respectively.

o Standard deviation of.

¢ “Potential function.”

o) kth-order prior.

an original intensity distribution:® =
defined over a 2-D rectangular lattidefrom its measurement
d = {ds;s € S’ C S} degraded by the sensing environment.
In many situations, the transformation from? to d is well
described by the familiar additive linear degradation model
ds = (Hx)s + ns, whereH is a linear operator representing

Wavelet smoothing term.

LB image subspace.

Restricted wavelet space.

Annealing onQ!5!.

Annealing orfl!]sl.

DWT analysis matrix.

Degraded observation (data).

kth-order discrete derivative operator.

Gradient operator in a vertical £ 1) or horizontal
(« = 2) direction.

Blurring operator.

Wavelet decomposition level.

Neighborhood structures (a neighborhood systém
on a set is denoted byV(C) andA,(C) stands for
the set of neighbors of € C).

Communication kernels oftS! and Q7' respec-
tively.

Low resolution residual.

Rectangular lattices respectively supportidy r
andw’.

DWT synthesis matrix.

kth-order posterior cost function defined on the
image space.

Second-order posterior cost function defined on the
wavelet domain.

Cost function/ (V) + \&.

Detail subband with orientatiohat decomposition
level j.

Original intensity distribution.

Configurationz with x, removed.

I. INTRODUCTION

HE discrete image restoration problem is to recover

{20;s € S}

a (possibly space-variant) point spread function and the noise
process) = {ns;s € S’} consists of independent and identi-
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tegral equation), the normal matrix’ H is poorly conditioned where thekth-order differences are null but is also stable with
and hence the error propagation level from the datathe so- respect to small variations of the data [20].

lution is most often unacceptable. In order to circumvent this Because of the concavity ¢f U*) is most often nonconvex
difficulty, many image restoration methods include prior corand typically exhibits numerous local minima. The minimiza-
straints about the true imagé in addition to those implicit in tion of /(*) is thus nontrivial and one can employ either sub-
coherence to the data. A common estimate‘cthat arises from optimal algorithms such as iterated conditional modes [2] and
bayesian modeling [1], [2] or, equivalently, from a likelihoodyraduated nonconvexity [19], [21], [22] or stochastic relaxation
model with regularization [3], [4], is defined as any global minwith annealing which has the remarkable property to be asymp-
imum of a cost function totically optimal when properly tuned [23]-[25]. The stochastic
approach, which is considered in this paper, gives satisfactory
results using finite-time exponential cooling schedules and car-
rying out the minimization on a locally bounded image subspace
[26]. However, such algorithms still suffer from two drawbacks:

U* RIS S R

z = ||Ha —d||3 + )\<I><k)(a:) Q)

oy (k) . _
where the stabilize®'*) promotes the formation of smooth re 1) Markov chain Monte Carlo algorithms defined on a

gions separated by:(— 1)th-order discontinuities andl € R
governs the trade-off between the degree of stabilization of the
solution and its faithfulness to the data. Confining ourselves to
approximately piecewise constart & 1) or planar ¢ = 2)
original distributions, we consider the widespread model

L k)

=1

)

whereg : R — RT is taken to be even, increasingf. and
such thatp(0) = 0, D*) ¢ RE+*IS1 is the matrix implementa-
tion of akth-order discrete derivative operator, a\de R? is
a scale parameter. For the first-order cdseis the number of

large state space with loosely coupled sites experience
difficulties when pixels are updated singly (see, e.g.,
Jennison’s discussion in [27]). More specifically, the
convergence is slow when the low cost regions of the
state space correspond to configurations having a strong
low frequency content. This is particularly true for
distributions involving a second-order prior sucH&$),

a common practical situation since many images are
better described by planar areas separated by roof-edges
than by constant regions [5], [28]. Indeed, second-order
models produce more complex energy landscapes than
first-order models, which translates to a less stable
inversion process.

two-sites cliqueg(s, ¢} C S associated with the eight-nearest 5y | the case of a first-order model, the minimization of

neighbor system. Lét be the row index oD(!) corresponding

to a given clique:. Then[DWx);. = =, — =, if cis horizontal or
vertical andDMz];. = (zs — 2¢)/V/2 if ¢ is diagonal. For the
second-order case, the summation is over three- and four-sites
cliques of the form

(ii) o

on

(e o o

(iii )

IS

v

andD? is defined by{DPz];,. =z, — 2z, + z, if cis of type
(i) or (i) and [DPz];, = x4 — x¢ — . + z, if cis of type (iii).
The form of the “potential functiond in (2) plays a crucial

UM leads to noisy object boundaries which are not
faithful to the original distribution. This behavior is
quite predictable as the model does not embed any prior
knowledge on the geometry of edges. Unfortunately, the
mutual dependance between neighboring discontinuities
is difficult to take into account unless an explicit line
process is introduced [1], [3], [29], which results in a se-
vere increase in computational complexity. Furthermore,
the penalties for the various edge configurations to be
specified then are so many additional hyper-parameters
to deal with.

Our concern is to show that the above difficulties can be al-

role in the estimation process. In recent years, deriving contiviated in a multiresolution framework by means of the 2-D
tions for theg-function to preserve or to detect discontinuitiesliscrete wavelet transform (DWT):

has been an active research area [5]-{10]. On one hand, somgy sijnce single-site updating on the spatial frequency space

authors [6], [7], [11]-[15] encourage the use of conyefunc-
tions to ensure the convexity & (%) while preserving edges

in the sense that smoothing is reduced in their vicinity. On the
other hand, one can be interested in noncor«#mnctions [5],
[16]-[19] which yield sharper edges and allow to achieve better
resolution [8] at the expense of instability. In accordance with
the latter standpoint, following Geman and Reynolds [5], we use
functions of the form

|w]

P(w) = T

a € (0,1] 3)
which are strictly concave iR.. For anya € (0, 1], one very
important property of is that it admits a strictly positive right
derivative at zerol{m,,_,o+ w™'¢(w) = 1). It follows that
almost any strict minimizer of/*) not only recovers regions

corresponds to some block-site updating on the spatial
domain, wider site connections are achieved by min-
imizing the composite of the inverse DWT arid .
This approach is conceptually simple and fundamentally
different from the renormalization group method [30]
as well as multi-grid Monte Carlo algorithms [31]; it is
based on the obvious fact that the set of true image esti-
mates{z € RISI |U®) (z) = min, UP)(2)} also writes

{z € RS | UP)(2) = min~ UP(67)}, where is the
synthesis matrix associated with the transform under con-
sideration. In order to achieve efficient sampling of the
state space, we introduce a restricted DWT space, say
2, with finite discrete coefficients and locally bounded
subbands. In particular, we show that it is possible to con-
struct a single-site updating dynamics@ithat preserves
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the theoretical convergence properties of annealing. Where a™ := max{a,0}, and let(83,).en: be a nonde-
comparison with annealing on the digital image spacereasing positive real sequence called the cooling schedule.
the proposed inversion process is more stable and durMetropolis-type annealing algorithm onE(U,q) is a
experiments show significant benefits in terms of botbiscrete-time nonhomogeneous Markov chaiX,,),en
final energy level and improvement in signal-to-noisevith transitions P(X,, = y|X,-1 = z) = Pg, (z,y),
ratio. z,y € FE. We shall use the notatioM(E,U,q, (f,)) for

2) In order to encourage the formation of smooth contourshort. Under our assumptionB; is irreducible and aperiodic.
we suggest to incorporate the smoothness features of tieunique equilibrium probability measure is the Gibbs dis-
line field implicitly rather than explicitly. To be more tribution 75 with energyU at temperature3—! defined by
precise, we consider the minimization of an augmented;(z) = Z ' exp(—BU(x)), z € E, whereZ is a normalizing
functional constant. It is easy to check thay tends to the uniform

5| distribution on the sek,,;;,, of global minima ofU as( tends to

ViR =R infinity. Hence, the key idea of annealing is that, for sufficiently
z—UD (z) + A0 (Az) slowly increasing cooling schedule, the law &f, should be

close torrg, and, consequently, one can expect that
wherefl is a DWT analysis matrix¥ is a penalty term

operating on horizontal and vertical detail subbands by lim iDEP(Xn € Enin|Xo=2) = 1.

. . | i n—oo re
means of gradient operators, ahdt R} weights the in- Early results [1], [23]-[25] show that this desirable property

fluence ofV. To avoid the mtroc.iuctlor? of an add".['onalholds for suitably adjusted logarithmic schedules. Still, it has
free parameter, we use some ideas introduced in [5] (0

prove a lower bound on for the true image:® to be a béen rigorously demonstrated [32] and experimentally verified

coordinate-wise minimum of” with probability greater [26] that the associated algorithms generally perform poorly as

than some specified threshold value. This bound is e§((_)on as one deals with a finite number of iterations and that ex-

pressed as a function af A, «, the sum of squares of theponennal schedules should be preferred.
blur coefficients (assuming is space-invariant) and theg - conyentional Annealing-Based Image Restoration
noise standard deviation. Our restoration results show that

the proposed method yield state-of-the-art performance'” straightforward applications of Metropolis-type annealing
under the considered experimental conditions. to image restoration, the state space is of the farfl, where

The paper is organized as follows. Metropolis-type azs = {al+0:1=0,....0 -1}, Q € N\ {0,1}, a € RY,
nealing algorithms and their “conventional” application t < RZ and a common choice for the communication kernel (4)
image restoration are briefly discussed in the next sectidﬁ.def'ned by
Section Il is devoted to image _restoration by a_mnealing ona - (A|5|) _ {y c AlSI | (3ts € ) [ys # xs]}.
restricted wavelet space. In Section IV, we describe our solution
to the issue of edge continuation along with the choice\.of However, because the proposed new pixel values are uniformly
Experimental results appear in Section V and conclusions @yenerated ovek, P(X,, # X,,_1) quickly gets close to zero as
presented in Section VI. (r increases. It follows that outlier intensity values frequently

subsist and thatimage boundaries are difficult to alter. As shown
Il. BACKGROUND in [33] and [26], this problem can be overcome by restricting
AlS! to a locally bounded (LB) image subspace, that is, a set of

A. Annealing in a Few Words configurationsz € AlS! such that, for alk € S

Let us consider an energy landscapel, q), whereF is a fi- )
nite set called the configuration space or state sgacef; — R ten(s)t T (0 ST S rens) Tt +Ca ®)
is a real-valued function to be minimized d andq : E x ) i .
E — [0, 1] is a symmetric and irreducible Markov matrix (i.e.Yhere¢ € {1,...Q — 1} and\/(S) is a predefined neighbor-
. pa(z,2) = 1, q(z,y) = q(y, ) andsup, ey 4" (2, y) > hood system o1$ (a typical choice is a four-nearest neighbor
z€ ) ' ’ ) neN ) . K _ orx
0 for all =,y € E). In most practical situations, the “communi—sysFer(‘j1 togetger witly <j\/Q, e-{i-jf I_S\O Ifth— 256). Sucr(;_a
cation kernel’q is defined by selecting a neighborhood systerset IS denoted b(¢, A, N'(S)) =: 2”1 and the corresponding

N(E) = {N.(E):z € E} and setting single-site updating Metropolis dynamics can be briefly de-
e scribed as follows. Given € Q/°1, letz\ ; be the configuration
4(z,y) = Lyen. (2)) N (E)| L. (4) « Wwith z, removed and let\,(£) be the configuration defined

by (2\s(£)): = lyp=s} £ + ljs25) 7. We denote the section of
For anyj € R*, define the transition probability matrik; on 5! ata,, byv.(x), thatis,ys () = {£ € A|2\,(£) € 151}
FE by Then, for allz,y € Q'S such that: # v, the communication
kernelq’ on Q5! is defined by

¢ (z,y; ¢, A, N(S))
_ { (1S] - Ps(@)) ™" ify € D(a,9),

0 otherwise

®) ()

Ps(x,y)

_ { q(z,y) exp (—ﬂ (Uly) - U(x))+) ity # x,
1—Zz¢mPﬂ(x,z) ify=ua
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whereT'(z, s) is the set of configurations satisfyingz, = andsS; denote the~7M x 2=/ M and2~7M x 277 M grids
T\s andz; € v,(v) \ {zs}. Reconsidering (6), one can findsupporting the low resolution residua} and the HF subband
the answer to what makes this dynamics appropriate to pieeg- respectively. Since there necessarily exists a closed interval
wise smooth image recovery. At the beginning of the annealiNg= [Y .., Timayx] Such that:® € Y!5I, the DWT space can be
process, that is, whef, is low, the visited states are noisy andestricted to the set
thus+, is wide for alls € S. Conversely, ag,, increases, a _

. . J 3 NEH
smoother image is gradually formed so thabecomes smaller YISl « ( X X ("r;) i >
at most sites. In other words, adequate sampling of the state j=li=1
space is allowed at high temperatures while the generatlonm% eTL
very unlikely candidates is avoided at low temperatures. A
other strong point is that' can be shown to be symmetric an
irreducible [33]. Therefore, the convergence results mention
in Section II-A hold forM(QIS!, U, ¢/, (3,)).

= [—cj,c}] is defined by the maximum absolute
alue cJ of the wavelet coefficients in the detail subbamgj
gsouated with DW(E°). Our first goal is to estimate’. As-

gumlng thatS restsona torus;,; can be obtained by convolvmg

z% with the impulse response of a 2-D high-pass filter and sub-

sampling by 2 along the rows and columns. Let us respectively

denote the DWT analysis low-pass and high-pass filteré by

Depending on the cost functiofi to be minimized, the andg. We have
annealing algorithmsM(QIS!, U, ¢, (8,)) can still show

I1l. | MAGE RESTORATION IN A WAVELET BASIS

mediocre performance despite the benefits resulting from the w;(m:n) = (1170 ®2 A;) (2jm72jn)

restriction to an LB subspace. A case in poinfis= U®)

(1)~(2) fork = 2, as second-order models produce “pervers&‘here@n is then-D discrete convolution operator and
energy landscapes whose structure strongly limits the moves hj_1(m)gj_1(n) ifi=1

between high probability areas of the state space separated by Aj(mm) ={ gi—1(m)hj_1(n) ifi=2, 8)

low probability regions. An immediate solution to this problem

is to generate new candidates by changing several pixel values

simultaneously, which can be implicitly carried out by meangith 1; = h®; (h 1 2) ®; --- ®; (h T 27) (the notatiorh 1 2!

of single-site updating on the wavelet domain. stands for the signal obtained by insertiﬁgL 1 zeros between
Inawavelet basis, animages represented by a set of subimeach neighboring samples bj, g;i = hj 1® (g 1 2)if

ages{r;,wj; j = 1,...J, i = 1,2,3}, wherer, is the ap- j > landgy = g. LetS(AY) be the support oft}. Obviously,

proximation ofz at resolution 2‘7 and the spatially oriented CJ satisfies

high-frequency (HF) subbam{iw], 1 = 1,2, 3}, also called the

detail subbands, convey the difference of information between . .

r;_1 and the coarser approximation(we refer to [34], [35] for ¢; <  max Z z(m,n)A%(m,n) 9)

a comprehensive introduction). By arranging together with e T | myes (i

can Be implomentedt with an anatysis and synivesis matr pair = (Tmex = Tuia) > (A(mom)”

(see, e.g., [36))Z = Az, © = & yz. Consequently, a config- (m.n)€S(A3)

urationz* is a global minimum ofU if and only if A ;z* is a

global minimum of

gj—1(m)gj_1(n) ifi=3

but this upper bound is far from being sharp whénis piece-
wise smooth. Inasmuch as we are concerned with nearly piece-
U RIS SR, 7 U (6,7) wise planar images, it is fair to limit the domaii® 43! in (9)
to configurations having a single first-order discontinuity in a
so that the minimization can be equivalently performed Qpgrtical ¢ = 1), horizontal { = 2) or diagonal{ = 3) direction.
the wavelet domain. Working with wavelet representationg other words, given the maximum discontinuity amplitude

is fruitful as regards restriction of the state space. The HE be found in:°, we consider the three sdts 1 a ER, L€
wavelet coefficients lend themselves well to quantization and ; = 1,2, 3, of distributions depicted in Fig. 1, that is,

their amplitude range can be estimated on the basis of the

knowledge of the maximum discontinuity amplitude to be 1 (m,n) = (K=a)(n=1) ifn=>I, (10)
found in the original image. Moreover, the spatial orientation a, LR a(l —n) otherwise
of the detail subbands allows LB descriptions with spatially ;2 (/. n) =2}, (n,m) (11)

oriented neighborhoods. This gives rise to a finite DWT

= and
spaceQ"f| with reduced cardinality which is rich enough to

(K—a)(m+n—21)
contain close approximations to most piecewise smooth scenes. ;3 (m,n) =<, ,,_, Y2 ' (12)
The construction of2'?! is the subject of Section III-A and o 7 otherwise.

annealing on this subspace is discussed in Section I1I-B. _ ‘ _
Our estimate for; then writes

A. Restricted Wavelet Space

Without loss of generality, we assume that the supoof ¢i(K) = max

Z;llC(mn)‘A7(mvn) .
the true image® is M x M with 2=/ M € N\ {0,1}. LetS; a€R,I€Z Z ” J

m,n
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For)_, h(n) = 1 and assuming the mother wavelet has at least ——

two vanishing moments, this gives ml
~1 _
2 J(K) =23(K) = K max Z>l<m - ngj_l(m)‘ ‘

and 2 %(K) :\/EICIPE:JLZX Z gi—1(m)gj—1(n)|.

m+n>21

t
The next step toward the construction of the restricted DWT (b)
space is to quantize the wavelet coefficients. The motivation
for discretization is twofold. First, positive convergence results
dealing with the finite-time behavior of annealing are restricted
to finite state spaces [32], [37]. Second, efficient selection of the
finalinverse temperature requires the computation of an isolated
minimum through coordinate-wise deterministic minimization
[26], which cannot be done on the Cartesian product of uncount-
ably infinite sets and is far too time-consuming under floating-
point approximation. We use linear scalar uniform quantization,
although it is well-known that the statistical properties of the
detail subband coefficients are adequately summarized by gen- Prototypical distributions; . [see (10)-(12)] considered for the
eralized Gaussian distributions [34], [38], [39]. The reason fgﬁlmatlon of the amplitude ranges olf’;he detail subbands:£a}; (b): = 2;
this simple choice is that both blur and noise contaminate tw: = 3; and (d) intensity change along thexis.
necessary information for fixing the parameters of the general-
ized Gaussian model — estimating these parameters from tigdghborhood system. Sinee} gives the horizontal high fre-
data actually presents many difficulties in exchange for uncejuencies (i.e., vertical edgeso2 the vertical high frequencies
tain results. LeiQ; (resp.,Qj) be the number of quantization(i.e., horizontal edges) and? the high frequencies in both di-
bins associated with (resp .w’). The quantized DWT sub- rections, it is natural to choose the 2-nearest vertical and hori-

T
(@)

space is zontal neighbor systems for= 1 and: = 2, respectively, and
B B PN the 4-nearest diagonal neighbor systemifee 3. Hence, the
A!f' —AlSsl « < X X (A;) ! ) restricted space we propose to consider is the set
j=li=1
N J41 oSl =a (¢, A N(S
with A :{Ymin + (Tmax - Tmin) (;_72)5 / (CJ ( J))
! X ( % %0 (CDS,N N (51))) (13)
l :07 QJ — 1} J=li=1
where(ps € {1,..., Ops — 1} denotes the LB approximation

and/~\§. _ {E‘;()C) <(2lQ—t 1) _ 1) 1=0,... Qj- _ 1} ' level associated with thej-’s and

g Ny (87) ={(m = 1,n), (m + 1,n),
Of course, theQ’’s have to be odd so that the detail subband (m,n —1),(m,n+1)},
coefficients can be equal to zero. In practice, we use the same N<m n) (S} ={(m - L,n),(m+1,n)},
number of quantization bins, sa@ps, for all the detail sub- A2 1 1
bands:Q% = Ops € N\ {0,1} for all (i,j) € {1,2,3} x Gnmy (87) ={(m,n = 1), (m,n + 1)},
{1,...,J}. Itis also worthwhile noting that the expected max- N(m,n) ( j) ={(m-1,n—-1),(m+1,n-1),
imum discontinuity amplitude can be over-estimated in order (m—1,n+1),(m+1,n+1)}.

not to penalize possible abrupt intensity changes. We suggest to
ch00SEC & (T max — Tunin) /2, Which corresponds tis ~ 128 In a large number of experiments, we have found that

grey levels in standard 8-bitimages. Then, from our experiené&7> ¢7> s, (ps) = (128,10,127,10) gllves consistently
settingQ; > 27 and Qps = Q; — 1 is appropriate to most 90od descriptions. In fact, the subspafc‘.?g defined by this
applications. set of parameter values is rich in the sense that for any rea-

An immediate refinement in this quantized subspace is to @nably smooth image € YI5 and for anyJ > 1 such that
strict the set\!S7! of low resolution residuals to an LB subse® ’M > 1, there exists an’ whose DWT is 'rﬂl | such that
with level (s and four-nearest ne|ghbor SySthf'(S.]) —this <« andz’ are not V|suaIIy dlstlngwshable This is illustrated by
subset is denoted b (¢, A, N(S;)) in accordance with the the examples in Fig. 2. We used biorthogonal spline wavelets
notation introduced in Section II-B. Besides, keeping in mindith two vanishing moments [40] and the restricted wavelet
that the detail subbands can be interpreted as spatially orient@@ce approximations [Fig. 2(c) and (d)] of the original images
HF channels, the most likely configurations(ii)/%il should  displayed in Figs. 2(a) and (b) were obtained by estimating
be well-described by an LB subspace with suitably orientéds ming s |Gz — «°||3 using an annealing procedure.
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by first randomly selecting a sitefrom

J 3
s UUs;
j=1li=1
and then setting, , = 7\, and affecting taj, a random value
in the section of2(¢s, A, N'(Sy)) at (rs[F])\, if s € Sy or
in the section of2(¢ps, Ak, N¥(S7)) at (wi[z])\, if s € S
Note that the site selection step can be equivalently performed
by randomly choosing a griéifrom{S;, S%; j=1,...,.J,i =
1,2,3} with probability 47 for S; and 47/ for any S¢ and
then picking a sites from S. Thus, the communication kernel
¢ on Q‘JS‘ can be defined by (see (14) at the bottom of the
next page) for alk,y € ?z'f‘ such thatz # g, whereq’ is
given in (7). Since;’ is symmetric and irreducible, we can see
from (14) that so ig’ and it follows that the theoretical conver-
gence properties of annealing hold di(Q'”, U7, 7, (8,,)). In
particular, there exists finite-time exponential cooling schedule
(Brn) = (Bo exp(kn))1<n<y With initial inverse temperaturg,
independent of the horizalN that are “logarithmically almost
(a) (b) optimal” [32]: for any positive realy, one can choose as a
decreasing function a¥ such that the logarithm of the conver-
gence measure
X - )

Mo (N)

is asymptotically equivalent to the logarithm of the best achiev-
able convergence rate (i.enf 3, M. (N)) for o small enough.
Furthermore, it should be stressed tM(ﬁ!f', ~q,(Bn)) Is

not limited to cost functions defined on the image space. Al-
though we have not investigated this possibility, our algorithm
is also applicable to any locally computable penalty defined on
the wavelet domain. This includes, for example, stabilization
schemes based on complexity penalties [41], Gaussian mixture
models [42], or generalized Gaussian distributions [43].

In practice, the estimate of the true image is ob-
tained by computing the inverse DWT of the output of
M(Qlel,UJ,Ef,(ﬂo exp(kn))igngn), Where the lengthV
of the annealing chain is fixed by the available computing
resources. The parametess and « of the cooling schedule
are selected in accordance with the following well-accepted

min U;(2) + a

= sup P|U;(Xy)>
ZGQ‘JS‘

zel’|

-

(©) @ criterions.
¢ Most transitions should be accepted at the beginning of the
Fig. 2. Restricted wavelet space approximation: (a)—(b)2266 original annealing process, that is, the initial inverse temperature
images in[0,255]151; (c)~(d) images with DWT in the sét*! (13) defined hould b h that
by 7 =2,K =128 and(Q,, (s, Qos, {ps) = (128,10,127,10). Bo should be such tha
Y. P (3.2)
B. Annealing orf2’7! zeQl?\ {2}

is close to one for almost all € S~2|JS|, where P; is the
transition kernel (5) associated with the energy landscape
@505 9).
* Conversely, given an isolated local minimum of
@S0, ) (e, i € Q2 andU;(2) > Uy (i) for all
z such thaty’ (i, z) > 0), the probability to escape from
z={r;[z], w; [@];j=1,....J,i=1,2,3} 1 should be virtually equal to zero when the number of

The communication mechanism associated with the
Metropolis dynamics working oﬁzlel (13) is implemented in
the following manner. A new candidaieis generated from the
current configuration, say



896 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

iterations approache¥. In other words, the final inverse [44], [45]) and the associated increase in problem complexity is

temperaturédy = [y exp(xN) should be such that small if ¢ is chosen to be convex. B
~ A guideline for selecting in (15) is that® should preserve
Z Ppy (1, 2) both sharp transitions and smooth variations along the orienta-
zeQlPh\ (i} tion directions of the wavelet subbands. By way of illustration,

consider the contribution t& of any columnn of a given hori-

Is close to zero, zontal subbanav!, i.e
We refer to [26] for a description of efficient procedures to per- gro

form these estimation tasks. Explanations about the computa- ~ [ (w}[&Arz](m,n) — wi[Asz](m —1,n))
tion of the variation of the cost functid(®) : & — U (& ;) Z A :
when changing a wavelet coefficient are provided in Appendix|, ™

where we also discuss the complexity of the algorithm. It can Ur wish is that this contribution does not introduce any partic-
seen that if the size of the blurring kernel is a fixed fraction dflar bias toward a discontinuous or smooth approximation to the
the size of the image to be recovered, then the computatioEBinal signakw; [2;z°](-, n). Hence, according to comments
complexity of annealing oﬁf' is asymptotic to the computa- made by Bouman and Sauer [13], we shall yée) = |w|.
tional complexity of annealing on the image space. Our estimate of the original distributiar? is then defined as

Our experimental results about piecewise planar ima@ey global minimum of an augmented cost function of the form
restoration using the above described stochastic process appear V(e) =UD (x) + X%(a:)

in Section V-A. 5 —
= |Ha — d||; + A\oW) (z) + \®(z) (16)

IV. WAVELET DOMAIN EDGE CONTINUATION whered(!) (2)—(3) was specified in the introduction ahd: R’

In many image restoration problems involving a first-ordeteights the influence of the wavelet smoothing term
model, the exploitation of the fundamental smoothness features = i )
of the object boundaries can help to improve the quality of the ®(w) = _72 zz: ‘ [Djwj [Ql']l]]l‘ (7
results. This section describes an efficient way to do so by im- i=1,2

posing simple penalties on the wavelet coefficients. (the scale parameté‘i has been absorbed ay_

From our experience, annealing on the wavelet domain and
A. Method . . AT .
_ _ annealing on the image space exhibit similar performance in

We start with the common observation that the level curves gfe case of a first-order prior model. Therefore, in practice, we
most images deserving interest are noiseless. From the waveigjgest to minimizé&” by usingM Q11 V, ¢/, (8,)) as defined
domain standpoint, this prior information translates to the fagf Section 11-B. Implementation details are given in Appendix |,
that the horizontal and vertical detail subbands are respectiv@liere it is shown that, for |arge support b|urring kernels, the
vertically- and horizontally-oriented, that is, the vertical (resgxtra processing cost associated with the treatment of (17) is a

horizontal) gradient amplitudes values to be found}ii2l ;2°]  small fraction of the overall processing cost.
(resp.wf[QlJa:O]) are expected to be small. Hence, the prolon-

gation of discontinuities at different resolution levels can be f&8. Parameter Selection
cilitated in a natural way by means of an additional penalty term The hyper-parameters associated WittL6)—(17) are\, A,
i a, and . In practice,A is typically chosen to be of the order
~ ~ [D.w»[QlJ:n]]l . L .
O(x) = Z Z ¢ <#> (15) of the mean discontinuity amplitude to be recovered and the pa-
j A rametera, which controls the sharpness of the restored edges,
_ is fixed by the requirements of the application. Also, a useful
where the functionp) : R — R is even, increasing iR, lower bound forA can be found in [5]. In truth, the main dif-
and such that(0) = 0, Dj is the matrix implementation of ficulty here is to select an appropriate value forimmediate
a gradient operator in a vertical & 1) or horizontal { = 2) suggestions include the Chi-square choice (see, e.g., [46]), gen-
direction, andA € R?.. The action of® is easy to understanderalized cross-validation [47], or the L-curve method [48]. In
in the frequency domain: it penalizes configurations that conveur case, however, there is no clear justification for any of these
significant information in the regions schematized in Fig. 3(a@pproaches and, on top of this, the corresponding computational
and exemplified in Fig. 3(b). This shows thhinot only favors requirements would be very high. Instead, in a Bayesian frame-
the formation of horizontal and vertical edges but also preserwesrk, we could adopt a maximum likelihood estimation ap-
diagonal boundaries. In addition, it avoids the introduction gfroach (see, e.g., [16], [49]) or we could construct an a priori
an explicit line process (either Boolean [1], [29] or continuoudistribution for\ and estimate it together with the original image

4=y (7'][%177'][@13 CJvK»N(SJ)) if ry[z] # rslyl,

7@9) = 43¢ (wj-[f],w;'[@]§CDS7/~\§':Ni (S_;)) if w;[ﬂ 7 w;[gﬂ

(14)
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Then,P(£) > 1 — ¢ provided that (see (21) at the bottom of
the page) where := > H?2 denotes the sum of squares of the

=1, i=1
% / 1 ' ) ,J ._. & blur coefficients and
J=Li=
-2 = I I &= Y &
- j=2,i=2 \ (— i=1,...,J Y
f with & @ = ke{omuzlj—l}z hj—1 (27n + k)

n

(a) () ,
— hj,1 (2J(n - 1) + k)‘

Fig. 3. (&) Frequency regions penalized by the wavelet smoothing term (15)

and (b) 3 dB passbands of the filtering operations associatedittt [ ;] ~ . .

for biorthogonal spline wavelets with two vanishing moments. and Ejg = 1. Z |.0j—1 (QJ” + k) | - (22
ke{o,...,2i -1} -

using the maximum a posteriori criterion. Still, owing to the Aq we might expect, the lower bound is an increasing

noncpnvexit_y_oU(_U, both possibilities also present many comynction of o and it decreases asincreases. Moreover, setting
putational difficulties. Alternatively, starting with some ideas of _ ) i, (21), we obtain

Geman and Reynolds [5], we have found a simple and efficient

way to select\ as a function of\, A, «, H, and the noise stan- A > \* .=

darq deviatiorns. !\/!ore sp(_ecifically, Geman and Reynolds es- V27T Aoy if o < VTA

tablished a condition on in terms of A, H and o such that lta 2v2ax

UM has the following property: it belongs to a certain class | 74" (1% (2\/20)( + A)) otherwise

of prototypical images, then there is a high probability that

is a coordinate-wise minimum @f (1), that is, a change af° and one can check that,df = 1, \* identifies with the bound

at anyone of the pixel values will result in an increas&/6Y. computed by Geman and Reynolds [5, Theorem 2] in the first-

For our part, we have chosen to seek a condition soch that order case (note that our parameteorresponds td ! in their

V satisfies that same property. work and that their analysis lead to the same result for the four-
Let£® e RIS be the configuration defined b§; = 1=;£, and eight-nearest neighbor systems). Choogiﬁgx*, we are

L € R*. We say that: € RI°! is a coordinate-wise minimum of free to selech as a function of\. Yet it is important to be clear

(23)

Vif (Vs € S)(VL € R*) [V (z + L%) > V(x)]. Set that the associated restoration results are then roughly equiva-
0 . o lent to the ones obtained by the standard approaghisftoo
8s,cV(n) = V(2 + L) =V (2°) (18)  close to)*, whereas the regions where the first-order differ-

: . ences are null cannot be recovered ifs too small. We have
where the argumen reminds us T.e depend_ence on the N9138und that values of ranging from\* /8 to A\* /2 constitute a
:c;rrﬁl:’ssosf,;nid:ﬁ be the event that” is a coordinate-wise min- good balance. It should also be stressed that Theorem 1 stems
T from a worst-case analysis in the sense that any pixel is assumed
E={n| (Vs € S) (VL € R*) [8,.cV(n) > 0]}. (19) tobe adjacent to an edge. Consequentl{20) can be defined
by a much smaller number th$i|, and our experiments in Sec-
Then, givem\, A, o, H ando, our concern is to find a constrainttion V-B confirm that settingy = 3 is sufficient.
to place upon\ in order to guarantee(P) > 1 —¢, € € (0,1),
whenz? is a member of a relevant image class. Following [5], V. EXPERIMENTS
we analyze the case of a vertical (or, equivalently, horizontaI)TWO sets of experimental results are presented here. One is

_ H 0 —
Step-edge, which amounts to assume that, forall™(m, n) = . for the wavelet domain image restoration approach described in

KeRyifnis greater_than some ap_pomt_ed value, 0 Other.W'Sg'ection [Il and the other concerns the edge continuation issue
We also suppose thét is space-invariang; is a Gaussian white . . .
discussed in Section IV.

noise, ands rests on a torus. Under these assumptions, we havc?n everv experiment. the data are obtained by dearading a
the following theorem whose proof appears in Appendix Il (the, y exp ' y deg 9

o 0 . , :
finite support signalé; andg; involved in the definition of the glV((ajn I?l“glrfll émagez_:rh actg:lo@ng_ttr(]) the -If|near observatlog
quantity¢; (22) are defined in Section 111-A). modela = T + 1. 1he bur IS eliher uniform or generate

. : by convolving the 3< 3 uniform mask with itselfm times,
Theorem 1:Lete € (0,1) and lety be defined by which gives a0 x Q mask () = 2m + 3) with approximately

2 e 1/15] Gaussian shape referred to as the “Gaus§lan Q" blur [5].
erfx) = ﬁ/o e dt=(1-e" (29) " For the sake of clarity, the variane@ of 7 is determined via
- & (V2rox — AATY) if A< 20
>\ = ~ 1 ( N 1\ 7 2ax\ 1/ (14a) . (21)
& (Verox + 28 [1 -(1+31)(23) D otherwise
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the decibel level of the blurred signal-to-noise ratio (BSNRh only 8000-|S| iterations. From the material presented in
as defined in [50]; that is(tBSNR)qg = 10log,,(c2/0?), Appendix I, for aQ x Q blurring kernel, the mean number
where ¢ is the variance of the exact datdz®. We shall of flops per iterations is lower tha®(Q? + 9(Q + 63)) for
compare the performance of the proposed methods Wﬁ(ﬁ§2)) and equal t&(Q? + 39) for A(U?). Here, the ratio
the conventional annealing approach (see Section II-B)f these two quantities is about 2.5 and it follows that the
the iterative Wiener filtering technique described in [51]pet computational gain brought by annealing on the wavelet
and the wavelet-based regularized deconvolution (WaRBgmain is greater tha2zh6/(8 - 2.5) = 12.8.
algorithm [52]. The metric used for assessing the quality of As a second example, consider the restoration problem de-
a solutionz is the improvement in SNR (ISNR), given bypicted in Fig. 6(a) and (b). The original distribution, a 26@56
(ISNR)4g = 101og;o(||z° — d||3/||z° — z|3). image with grey level range [13 248], was degraded by uni-
The annealing algorithms under examination operate eittferm 11x 11 blur and 30 dB noise. Restoration was first per-
on an LB image subspace or on a restricted wavelet spaf@med using iterative Wiener filtering [Fig. 6(c)] and the WaRD
as discussed in Sections II-B and I1I-B. More specifically, weechnique [Fig. 6(d)]. Figs. 7(a) and (b) display the restora-
consider tions achieved with4(U/(?) in the dynamic range [0,255] for
(o, A) = (1,4) and(1,8) (in both cases, the algorithm was
A() =M (le‘v e (/3n)) (24)  run for 24000 || iterations and\ was again selected via the
Geman and Reynolds’ approach). We observe that annealing
where(l*| is defined by 256 quantization levels together witlyn the image space with a second-order prior can outperform

a four-nearest neighbor system ahe- 5 and the WaRD algorithm, but it also appears that its practical use is
_ s limited by sensitivity to the choice of the scale parameter. Run-
A() =M (52'] L7, (/3n)) (25) ning A(U{*) under the same setting, we obtained the solutions

shown in Figs. 7(c) and (d). Clearly, annealing on the wavelet

with /1 (13) defined by the set of parameter values suggest&@main is more stable thad(U®)). Furthermore, it performs
: % : . better than botbd(U/(?)) and WaRD in terms of ISNR

in Section IlI-A. Both algorithms start from random configu- .
rations and use exponential cooling schedules with initial and

final temperature values selected by means of the proceduBesEdge Continuation

proposed in [26]. Also, in all the experiments where the DWT

is invoked, we use biorthogonal spline wavelets with two var%—o lr?sitcrj]:as;irfectt#)enA\lljvemaesr?tizs ;2; '?Jﬂ:gi\{;?f é‘])ts(i:%r rlrea?hce)lrjt by
ishing moments [40] and a wavelet representation on two re 9 9

lution levels (i.e.,J = 2) ?PlénU(l). More specifically, we shall compare the performance
o ' of Wiener filtering, WaRD,A(U()), and A(V) (24). The an-

nealing algorithms are always run for 8008 iterations and

X is chosen to be 3 when computing the lower boukti$21)

This section illustrates the benefits coming with the minig, 4y« (23) for the wavelet smoothing parameteand the sta-
mization of the cost functiot(?) (1)~(3) over the wavelet do- (i ation parametea.

main. Thg qu}g)ealing algoritrlngzs) conssidered here,ﬁ(rﬁ(?)) We start with the example depicted in Fig. 8. The original
(342) andA(U;”) (25), wherel;” : RIl — Riis defined by 56, 756 image has pixel intensity values ranging from 0
U§ )(5) = U®)(6,7) for all &. to 255; it is observed through the Gaussian 9 blur and

We begin with the restoration of the 128128 piecewise corrupted by 13 dB noise. Because of the high noise level,
planar image shown in Fig. 4(a) from the data displayed {Re Wiener filter and the WaRD algorithm perform poorly.
Fig. 4(b). The original distribution has pixel intensity valueﬁigs_ 9(a)—(d) show the restorations achieved wAtfi/(V)) in
in [0,36] and maximum first-order discontinuity amplitudgpe dynamic range [0,255] far = 0.5, A = 128 and\ = \*,
equal to 3.5. The data were generated by blurring with tI)\e/Z A*/4 and \*/8, respectively k* = 1523). Note that,
Gaussian 2% 21 mask and adding 12 dB noise. Fig. 5 ShOWéompared ton = 1, settinge = 0.5 reduces the concavity
the restorations achieved in the dynamic rang&q, 50] when of the ¢-function (i.e., the amplitude of its second derivative)
running A(U'®)) and.A(U”)) for 8000:|9] iterations, together and hence the “patchiness” associated with first-order models.
with the associated convergence rates. The prior was defineddyvever, many discontinuity flaws are observed and increasing
(o, A) = (1,4) and the stabilization paramet&rwas chosen ) to correct these errors removes important details in the image.
according to the Geman and Reynolds’ approach [5]. Becaydgreover, the associated ISNR values show tHat/ (V) is
of the noise, the output of(U(®) has a mottled appearanceoytperformed by the WaRD algorithm in all four situations
Clearly, A(UY") does not suffer from this weakness ang¢though we do not necessarily find the WaRD restoration
produces markedly sharper discontinuities. IndeAde)) visually more attractive). Let us now introduce the wavelet
offers substantial benefits in terms of both ISNR and finamoothing term. Fig. 9(e) displays as a function of\ (recall
energy level [(® ~ 5.28 - 10* for the image in Fig. 5(a) and that \* = 0 for all A > \*). The solutions obtained with
U®) ~ 4.17 - 10* for Fig. 5(b)). Also, we can see from Table LA(V) for X = AM(A\/2) = 16.1, A = A*(\*/4) = 26.1
that 256 000|S| iterations were not enough fod(U®) to andX = A*(A\*/8) = 31.4 are shown in Fig. 9(f)—(h). There
produce a better solution than the one obtained vﬁ(ﬁff)) are noticeable visual improvements: the boundaries are nearly

A. Restoration in a Wavelet Basis
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TABLE |
FINAL ENERGY LEVEL AND ISNR VERSUSLENGTH N OF
THE ANNEALING CHAIN A(U(®)) WHEN APPLIED TO THE
RESTORATION PROBLEM DEPICTED INFIG. 4

N/|S| U® (ISNR)gs

16000 4.92 - 10* 8.58

32000 || 4.74 - 10* 9.57

(a) (b)
64000 || 4.58 - 10* 10.47

Fig. 4. Piecewise planar image: (a) original and (b) degraded observation:
Gaussian 2k 21 blur‘l- 12 dB noise. 128000 4.43 . 104 11.18

256000 || 4.32-10* 11.60

512000 || 4.21-10* 13.06

(a) ISNR=7.72dB (b) ISNR =12.02 dB

3107t

2:10°t

10°}
e ——
0 i . i : ) .
2000 4000 6000 n/|S|
(©) 'y

Fig. 5. Restoration results for the piecewise planar image (see Fig. 4): ( . (c) ISNR =6.20 dB (d) ISNR=7.29dB
annealing on the image space, (b) annealing on the wavelet domain, and (c)

associated convergence rates. Fig. 6. Face image: (a) original; (b) degraded observation: uniform 11

blur + 30 dB noise; (c) restored by iterative Wiener filtering; and (d) restored

. . . . ith the WaRD algorithm.
flawless and the residual “patchiness” is unobtrusive. In addi- 9

tion, the corresponding ISNR values are 0.6 to 2 dB higher than )
for the output of the WaRD algorithm. the one considered here, we may ask ourselves whether further

Similar experiments were conducted on the example show/{AProvements can be achieved by diminishinghis turns out
Fig. 10. Figs. 11(a) and (b) display the restorations producihPe the case, as the results in Figs. 11(e) and (f) show, but the
by AUM) for A = A*/4 andA = A\*/8 (\* = 1113). The resulting benefits remain limited.
results shown in Figs. 11(c) and (d) were obtained wAt/)
for A = A*(\*/4) = 20.8 andX = A\*(\*/8) = 24.7. Again, V1. CoNCLUSION
the additional wavelet smoothing term together with Theorem Concavep-functions stand out for boundary detection as well
1 yield better performance than WaRD. It should not be foas homogeneous region recovery. Still, their practical use is lim-
gotten that our analysis for the selectiomaf directed toward ited by the fact that they generally lead to multimodal cost func-
the formation of truly horizontal and vertical step-edges. Hendégns. Although simulated annealing is the method of choice to
for images with few horizontal and vertical boundaries such &ackle this problem, standard stochastic restoration algorithms
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1400

' 200 800 A

(b) ISNR=8.24 dB (a) ISNR = 1.66 dB (e)

™ »

f f

(c) ISNR=7.62 dB (d) ISNR =835 dB () TENR=2.18d0 1) IsNRe=Zlddld

Fig. 7. Restoration results for the face image (see Fig. 6). (a) Annealing
the image space withh = 4. Note that the outlier intensity values are at leas
two pixels wide because of the locally bounded description. (b) Annealing q
the image space with = 8. (c)—(d) Annealing on the wavelet domain with
A = 4 andA = 8, respectively.

(d) ISNR=2.29 dB (h) ISNR =4.57 dB

Fig. 9. Restoration results for the office image (see Fig. 8).
(a)—(d) Minimization ofU(M: @) A = A*; () A = A*/2; (C) A = A*/4;
(d A = A*/8. (e) A*(\) curve (21). ()-(h) Minimization ofV:

O X=X (A/2); (@ A = A*(A*/4);and (h)A = A*(A*/8).

(c) ISNR=1.89dB (d) ISNR=2.50dB Second, the incorporation of the local geometry of edges via
Fig. 8. Office image: (a) original; (b) degraded observation: Gaussia® 9 an gxplicit line f_ield drastically increases Compu@‘tional com-
blur + 30 dB noise; (c) restored by iterative Wiener filtering; and (d) restoreBl€Xity and requires ad hoc extra parameter specification. It has
with the WaRD algorithm. been shown that both difficulties can be overcome by resorting
to the DWT.
have two weaknesses. First, single-site updating on the digWe first demonstrated that the convergence toward global
ital image space gets on badly with second-order modelsnrinima can be substantially improved by single-site updating
the sense that it is very easy to be stuck in poor local miniman a suitably restricted wavelet space. Other “practical” versions
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(b) (a) ISNR=2.13dB

(c) ISNR=3.83dB (d) ISNR =3.54 dB

» »

(c) ISNR =1.47 dB (d) ISNR=2.20dB

Fig.10. Peppersimage: (a) original; (b) degraded observation: Gaussién 9
blur + 13 dB noise; (c) restored by iterative Wiener filtering; and (d) restore
with the WaRD algorithm.

of the proposed algorithm can be designed, but the merit of
approach is that the associated communication mechanism d
not alter the theoretical convergence properties of anneali
We agree that our algorithm may seem complex in terms of t
number of parameters defining the state space. However, it
not sensitive to moderate parameter variations and the sugges (¢) ISNR=3.97 dB (f) ISNR =4.03 dB
values produce good scene descriptions. Moreover, increasing
the numbers of quantization bins together with the LB levels isg. 11. Restoration results for the peppers image (see Fig. 10). (a)—(b)
usually useless because of the accuracy limitations imposed\igimization of U(V): (a) A = A*/4; (b) A = \*/8. (c)—(f) Minimization of
the sensing environment. VA = A (A/4); (d) A = A (A+/8); () A = 1/2A*(A*/4); and (f)

- i L . . X = 1/23%(A*/8).
We also introduced the idea of “implicitly interacting discon-
tinuities” by means of an additional penalty term defined on the
horizontal and vertical HF channels. In comparison with exfor n =1 to N do
plicit line processes, the associated increase in problem comPropose a new state Zz' by drawing a
plexity is small. Furthermore, we provided an explicit formul@ample from the distribution q(2n-1,-) on
for choosing the extra parameteas a function of the stabiliza- £.
tion parameten\, the blur coefficients, and the noise standard if U(z') < U(zn,—1) then Set z, =2
deviation. Using this result, our experiments show that boundaryelse ~ Set z, = 2z’ with probability
sharpness is preserved while the contour lines are smoother and:xp (=5, (U(2') — U(zn-1))).
hence more faithful to natural scenes. Such a behavior is highgndfor
desirable for subsequent feature extraction and segmentation
tasks.

In image restoration applications, the computational com-
plexity is governed by the evaluation of the energy difference

APPENDIX | U(z') — U(z,—1) that takes place at each iteration. The fol-
IMPLEMENTATION AND COMPLEXITY OF THE lowing subsections provide some insights into the implemen-
PROPOSEDALGORITHMS tation of this critical task for annealing on the wavelet domain

(see Section 111-B) and for annealing on the image space with

Recall that given an initial state, € F, a realization wavelet domain edge continuation (see Section 1V). We drop
(#n)1<n< v Of @n annealing chaidM(E, U, ¢, (6n)1<n<n) IS the subscriph to simplify the notation and we denote iy a
generated as follows. configuration that is zero everywhere except at sjterhere it
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assumes the valué. Consequently;’ is of the formz + £5 image space), which is equal:i()Q2 + 39). Hence, for images

with £ in the section of the state space:af. of M2 samples, bottd(U/®) and A(U <2)) have computational
complexity ofO(vM?2Q?), wherev = N/M? can be under-
A. Annealing on the Wavelet Domain stood as the number of cycles through the pixels, or “sweeps”.
The energy difference Note that the storage requirements are high in the general case
where the point spread function is space-variant. Still, in such a
(752) (z+ L) — ﬁ§2)(z) —. 5[753 situation, the memory needs f&(ﬁf ) remain comparable to

those forA(U?)): using compressed row storage format with 4
associated witm(ﬁ!,s‘7(7§2),a77(/3n)) —. X(ﬁf)) can be DPytes floating point numbers and 4 bytes integer indek&s,;
and D@ & ; together occupy less tha8V2(Q? + 4c;Q +
24cy + 16 + 12) bytes of memory, whilé{ requires about
2Q? [ apé?) for annealing on
12 HS 12 +or HES HES —_d 8M*Q* bytes (there is no need to st g
> S, > MG, ((HS ],z — di) the image space).

written as

l

+ )\Z ((/m ([ )GJ} 24+ L|D [ (Z)GJL ) B. Wavelet Domain Edge Continuation
’ The energy differenc¥ (z + £*) — V() to be computed at
3 @) each iteration oM(Q!5, V, ¢, (8,)) =: A(V) is of the form
o2 ([p®e], Z)) SUM + X - 56 with

where [A]; and [A], s respectively denote théh row and sUM —p2 Z[H]fs 120 Z[H]l’s (H]iz — dy)
the (,s) entry of a matrixA and ¢a(-) = ¢(-/A). This 7 ’ 7

suggests to precompufg, [H&,]7, =: 6, for all s and

to store the vectoré{S,;z — d =: b, DA &,z =: ¥/, and + /\Z (¢A <[D(1 } z+ L [D(l)]l S)

[pa(b)), ..., ¢a(by,)]" =: b" into buffers. Thus, '
~ _ )

sUP = £20, +2L 3 [H&5], b éa ([D Lz)>

[P, A

(27)

l
Ay <¢A (b; +c[p®e,] ) - b;'> () nde= El: <‘ [P2s] =+ £ [P »
7 ;

and, in the event that the proposed move is accepiédands”
have to be updated accordingto— b;+L[HS 5, 5, b; «— b+ Where the matrixD is any vertical concatenation of the'’s.
LIDP &), andb) — $a (b)) for all . The number of flops Assuming that the analysis filters have the same numberoftaps
involved in the computation of (26) or in the buffer updatingay p, it is easy to check that the number of nonzero entries
procedure is linear in the numbers(H& ;) andn, (D DIONG 7) in any column ofDQ[; does not exceed.J?. The treatment
of nonzero entries in columnsof HS ; andD? & ;. Assume  of 6U (1) is similar to the treatment QTU< described in the
for simplicity that the synthesis filters have the same number pfevious subsection (simply sét= 0 and replaceD® with
taps, denoted by. For a blurring kernel with discrete supportDV). Also, (27) suggests to store the veclf ;z =: b into a

of sizeQ x @, we have buffer to be updated accord|ngltp<— bl-i-,C[DQIJ]l s forall [ if
the proposed move is accepted. It follows that the mean number
s (HS,) = (Q F (29 — 1) — 29 1)2 of f_Iop_s per iteration ofA(V) is less thar8Q2_+ 14.J p* +48,
while in the absence of the wavelet smoothing term (i.e\,#f
andn,(D®6&,) =3 (p(zj(s) 1) 29 4 3)2 _9 0), the mean number of flops per iteration is ab®Qf + 48.
wherej(s) stands for the decomposition level of the subband APPENDIX ||
containing sites. Using these expressions, straightforward but PROOF OF THEOREM 1
tedious calgulgggc))ng show that the mean number of flops pergyr proof is divided into two parts: we first compute a lower
iteration of A(U;™) is bound foré, .V (1) (18) (see proposition below) from which we
then show that (21) is a sufficient condition to guarantee that the
3(Q% + 4csQ + 88¢cy + 48¢; + 39) , event€(19) has probability greater than— e.
where c; =(p — 1)(1 - 277) Proposition: Let Z(n) = {Zs(n); s € S} be the zero-mean,
. , (3 Gaussian random process defined Ly(n) = >, Hi—sn:.
and c; =(p—1) (I +277 - 1) : Then, for anys € S and for anyl € R*

SettingJ = 0 gives the mean number of flops per iteration

2 L NVirs
of M(QISL,U® ¢/, (8,)) = AU®) (i.e., annealing on the 8s.cV(n) =71L% —2LZs(n) + 2/\¢<Z +2) L)
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Proof: Letuspuipa(-) := ¢(-/A). The energy difference where the integerk and! are fixed by the position of site
at sites writes s. Therefore,
— @ LS. ~D . )
65 ,CV( ) 65 ,CH( )+)\65’L¢) ) +)\6S,L(I) ) Z‘ D Q[]l ‘ _ Ajl (23m+k12]n+l)
where 8, (H(n) = ||H (2 + £5) —d||, — ||H2" - d]|, et
bucat =3 (m ([p9 (" + 9] ) AL (@ (m— 1) + k20 1)
— ¢a ([D“)z"}l)), =3 (Bt (2P k) =y (2 m—1) + k)’
and 8, 0 = Z Z(‘ [Diw (24 (° + £7)]], ‘ 3 |gi-t (2P + 1))
,1 2 - 2 ghgg
_ ‘[D;w; [Qlja:o]]lD. N ~] !
so thatd, @ > 2|L|¢;. []
It has been demonstrated in [5] that LetF, v :R* — R be defined by
8s,cH(n) = TL* = 2LZ(n). L ApA(L) <~

We shall complete the proof by showing that

_ B ~ - for all £ € R*. From the above proposition, we have
(i) 65,c0") > 26(L) and (i) 6., > 2|LIE;.

EDn|(Vse S)(VLeRY) |F, ~(L) > |Zs(n
i) Recall that®®) (and hences, »®(1)) is a summation { i ) +) [ AX(E) > 12:( )q}

over two-sites cliques associated with the eight-nearesid, hence,
neighbor system and that is assumed to be a vertical or

horizontal step-edge of siZé. If s is not adjacent to the P(E) > P 7 <RrR(r3
edge, then ©=P( {1z <r(xX)}
8, ®M) =4 (Pa(L) + ppy5(L)) > 2¢a(L) where R(\,\) = inf{F, z(£);£ € R%}. Since any zero-
and we do not have to go any further.slis adjacent to Mmean, Gaussian random procégs, i=1,...,n} satisfies
the edge, then .
P Zi| < a; P(|Z;
50 ®V) =3pA (L) + pa(K + L) — $a(K) (Q {1Zi }> 1;[1 (1Z:] <

+2 (hayz(L) + ¢ayz(K £ L) = pp5(K)) - forall (as,...,a,) € (R%)" (see, e.g., [53]), it follows that

Since¢ is even, increasing iR, and strictly concave in H P ('Z I<R (/\ )‘))
R,, we have, for al(a, b) € R2, s€9
BOS IS]
2 (A) 1 _,02
$a-+8) =p(1a-+bD) > 6 (lal — 4] - (> o (5 ) do
¢ (max{|al. ]} — min{al, o)) ol
> ¢ (max{lal, [o]}) - ¢ (min{]a, |o]}) [E0D)
> $(b) - ¢la). “\\ e )
. . . . . (1) >
ngl(ﬁr)]g this inequality to (28) givesd, P ~ Consequently, according to the definitiony{20)
ii) Since z° is a vertical or horizontal step-edge, we have R(xX B 29
Diw'[A;2°] = 0forall (4,5) € {1,2} x {1,...,.J} and ( ) ) V2roy (29)

it follows that implies RE) > 1 — e. For the functionp in (3), the derivative

S£¢>_2|c| Z Z’ w! [2A;17]] ’ of F\5is
..... )\0[
F' ()=~ _ . LER~
Let A} be the 2-D impulse response defined by (8). We A«\( ) 2 A2 (14 £l 4o’
have A
w} 1] (m,n) = (1° @, A]1) (27m, 27n) CIearIy,F;X is increasing iR’ so that ifF; X<0+) > 0, then

= A (2 + k, 200 + 1) R(X,X) = F, 5(0%), whereas iiFh(Oﬂ < 0,thenR(X,\) =
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FA.X(EO)' whereL, is the (unique) zero oF;X in R%_. More

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

specifically, see (30) at the bottom of the page. By substitutinqz 4]
(30) into (29) we obtain (21), which completes the proof of the
theorem.
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