
2576 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

A Stochastic Continuation Approach
to Piecewise Constant Reconstruction

Marc C. Robini, Member, IEEE, Aimé Lachal, and Isabelle E. Magnin, Member, IEEE

Abstract—We address the problem of reconstructing a piecewise
constant 3-D object from a few noisy 2-D line-integral projections.
More generally, the theory developed here readily applies to the
recovery of an ideal -D signal ( 1) from indirect measure-
ments corrupted by noise. Stabilization of this ill-conditioned in-
verse problem is achieved with the Potts prior model, which leads
to a challenging optimization task. To overcome this difficulty, we
introduce a new class of hybrid algorithms that combines simu-
lated annealing with deterministic continuation. We call this class
of algorithms stochastic continuation (SC). We first prove that,
under mild assumptions, SC inherits the finite-time convergence
properties of generalized simulated annealing. Then, we show that
SC can be successfully applied to our reconstruction problem. In
addition, we look into the concave distortion acceleration method
introduced for standard simulated annealing and we derive an ex-
plicit formula for choosing the free parameter of the cost function.
Numerical experiments using both synthetic data and real radio-
graphic testing data show that SC outperforms standard simulated
annealing.

Index Terms—Continuation methods, inverse problems, signal
reconstruction, simulated annealing.

I. INTRODUCTION

THE 3-D reconstruction problem discussed in this paper is
to recover a piecewise constant distribution

defined over a 3-D voxel lattice from a few 2-D line-inte-
gral projections. Let , ,
be such a set of projections, where denotes a rectangular
pixel lattice. We consider the standard linear image formation
model

(1)

where is a linear map from to and where the
noise process consists of independent
and identically distributed zero-mean Gaussian random vari-
ables with variance . Although this type of ill-conditioned
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inverse problem has been extensively studied for the purpose
of full- and limited-angle tomography, voxel-based reconstruc-
tion from a very small number of projections has been only oc-
casionally considered. The available approaches [1]–[3] lead to
a class of nonconvex, usually multimodal, optimization prob-
lems solved by suboptimal procedures. The central theme of this
work is to provide nearly optimal solutions to such problems in
a stochastic framework. Before going further, let us mention that
an alternative to voxel-based reconstruction is to estimate some
geometric features of the object of interest by means of a de-
formable template model [4]–[6]. The number of unknown pa-
rameters is then drastically reduced, but their relationship with
the data is no longer linear, which does not make the task easier.
Besides, the deformable model approach is limited to the case
of a single, compact homogeneous object.

To find an estimate of the true configuration , we seek
a minimum of a cost function (also called energy function)

, , defined by

(2)

where the stabilizer measures how well its ar-
gument matches our a priori knowledge about , and where
the “smoothing parameter” governs the tradeoff be-
tween stabilization and fidelity to the data. The justification for
this choice lies within the regularization framework [7]–[9] or
its bayesian interpretation [10]–[12]. We adopt the widespread
prior model

(3)

where is a first-order discrete derivative operator and
is even, increasing in and such that . The sum-

mation is over pairs of voxels of the 26-nearest neighbor system:
if and for all

if
otherwise

(4)

where is the set of integer indices labelling voxel
in lattice . There are of course more intricate possibilities to
define (see, e.g., [13] and [14] and references therein), but the
extra computational load is not worth the effort. Indeed, there is
theoretical evidence that the above defined operator is entirely
appropriate for the reconstruction of piecewise constant objects
[15].
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Regularization functionals similar to (3) have been used in a
variety of ill-posed problems (e.g., [1], [16]–[23]). The crucial
choice is the function . A common example is , which
corresponds to standard quadratic regularization. However, this
choice is unsatisfactory because large gradients are unduly pe-
nalized, thus precluding the formation of sharp discontinuities.
Many -functions have been proposed in the literature to over-
come this limitation; they fall into two categories: convex [19],
[24]–[27] and nonconvex [16]–[18], [28], [29]. Convex -func-
tions ensure the convexity of (assuming is an interval) and
reduce smoothing in the vicinity of discontinuities, while non-
convex -functions yield sharper edges at the expense of in-
creased optimization difficulty. We consider the “0–1” function

if
if

(5)

which is particularly suited to piecewise constant reconstruc-
tion [15]. When is finite, this choice of gives the Potts prior
model, also called the multilevel logistic model [30]. The Potts
model also arises in the context of minimum description length
estimation [31], [32]; it measures somehow the length or the
area of the imaginary boundary between regions of different in-
tensities. Other forms of regularization functionals intended to
favor the formation of piecewise constant objects involve the
total variation seminorm [33], [34] and Besov norms [35]. Total
variation regularization tends to smooth out boundaries [36] and
reduces contrast in a way that is inversely proportional to scale
and directly proportional to the smoothing parameter [37]. In
Besov-type regularization, the prior term is a weighted

-penalty on the wavelet coefficients of , with ,
which amounts to assuming that the wavelet coefficients are sta-
tistically independent and follow a generalized Gaussian distri-
bution with shape parameter [38], [39]. However, for piece-
wise smooth functions, the histogram distribution of the wavelet
coefficients is very sharply peaked around zero, and, thus, the
generalized Gaussian model is more accurate if is in (0,1) and
is rather close to zero. In this case, the difficulty of the associ-
ated optimization problem is comparable to that observed with
the Potts model.

Faced with the challenge of minimizing the cost function
defined by (2)–(5), a first approach is to resort to deterministic
continuation methods such as mean field annealing [40] or grad-
uated nonconvexity (GNC) [41], which have reasonable com-
putational load but produce suboptimal solutions. A second op-
tion is to use stochastic relaxation with annealing, which has the
remarkable property to be asymptotically optimal when prop-
erly tuned [42]–[44] but is widely reported to have a very slow
convergence rate. In fact, because of this embarrassing aspect,
the stochastic approach is seldom if ever used for 3-D voxel
reconstruction.

The first contribution of this paper is rather theoretical: by ap-
pealing to generalized simulated annealing (GSA) theory [45],
[46] we show that it is possible to incorporate a continuation
sequence into a simulated annealing framework to combine the
best of both worlds. This leads to a class of annealing algorithms
with time-dependent energy function we call stochastic contin-
uation (SC) algorithms. The advantage over deterministic con-

tinuation is that SC inherits the finite-time convergence proper-
ties of GSA established in [46] and the advantage over standard
simulated annealing is that appropriate control of the evolution
of the difficulty of the explored energy landscape leads to faster
practical convergence rates. In addition, we look into the con-
cave distortion acceleration method introduced in [47], [48] for
standard simulated annealing, which also provides an inexpen-
sive potential speed-up for SC.

Our second contribution is more practical: we focus on the
application of SC to 3-D reconstruction by considering the mini-
mization of the cost function defined by (2)–(5). This involves
the construction of a suitable continuation sequence, the defini-
tion of the state space, the selection of the cooling schedule,
and the peripheral issue of choosing a value for the free param-
eter . Regarding the last point, we borrow some ideas from
[18] to prove a lower bound on for the true volume to be
a coordinate-wise minimum of with prescribed probability
when belongs to a certain class of configurations. Experi-
ments about 3-D reconstruction from both synthetic data and
real radiographic testing data show the benefits of SC over stan-
dard annealing and validate the practical utility of the proposed
method for selecting . In connection with other work of ours
[49], some of the results we obtain also demonstrate the feasi-
bility of reconstructing the 3-D shape of a defect from a few
radiographs in the context of nondestructive inspection of thick
metal components.

The paper is organized as follows. In Section II, we briefly
review GSA theory and we provide our results about the con-
vergence of SC. Section III is devoted to the application of SC
to 3-D reconstruction together with the issue of selecting . Ex-
perimental results are presented in Section IV, followed by con-
cluding remarks.

II. ANNEALING WITH TIME-DEPENDENT ENERGY FUNCTION

Throughout this section, we consider the problem of finding
a global minimum of a real-valued function defined on a gen-
eral but finite state space . We denote the ground state energy

by and we let be the set of global
minima of , that is, .

Let us start from standard simulated annealing (SA) algo-
rithms (we refer to [50] for a comprehensive introduction). Stan-
dard SA operates on an “energy landscape” defined by
a symmetric and irreducible Markov matrix
which specifies the allowed moves for generating a new can-
didate solution from the current one. For any , let

be the Markov matrix defined by

if

if

where . Given a nondecreasing positive
real sequence called the cooling schedule, a
(Metropolis-type) SA algorithm on is a discrete-time
nonhomogeneous Markov chain with transitions

. It is well known
[42]–[44] that, for suitably adjusted logarithmic cooling sched-
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ules, this class of algorithms is asymptotically optimal in the
sense that

However, these results are not of much practical interest since
logarithmic schedules yield extremely slow convergence. More
interestingly, the convergence measure

cannot decrease faster than an upper bounded power of .
Indeed, from [51]

(6)

where the constant , called the difficulty of the energy land-
scape, is the maximum ratio of the depth of nonglobal local
minima to their energy level above the ground state energy.
More specifically

where the “communication height function”
is defined as follows:

where is the set of -admissible paths from to , that
is, the set of paths such that , , and

for all .
The close relationship between the convergence rate and the

difficulty of the energy landscape suggests to speed up SA by
replacing by a sequence of functions converging
pointwise to and such that increases with . Intuitively,
this should favor exploration of the state space and thus should
reduce the influence of deep local basins of attraction. We have
found that generalized simulated annealing (GSA) theory per-
mits to derive useful convergence results for this variant of SA
we call stochastic continuation (SC). Introduction to GSA is the
subject of Section II-A and its application to SC is discussed in
Section II-B.

A. Generalized Simulated Annealing

GSA theory was initially developed for studying paralleliza-
tion of SA [52] but covers many stochastic optimization algo-
rithms, as well. The processes of concern are each associated
with a family of Markov matrices
satisfying a large deviation principle with speed and rate func-
tion , namely

(7)

with the convention that . The rate function is
assumed to be irreducible in the sense that for any ,
there exists a -admissible path from to , that is, a path

such that , , and
for all .

Given such a family and a cooling schedule ,
a GSA algorithm is a Markov chain with transitions

. To see how this type
of algorithm can be used to minimize , we need
to introduce the (generalized) communication height function

defined by

where denotes the set of -admissible paths from to .
Let be the invariant probability measure of . Assuming
further that is such that is symmetric, [46, Lemma 2.1]
gives

Consequently, as goes to infinity, tends to a limit distribu-
tion which gives positive mass to every element of and is
zero elsewhere. It follows that, for sufficiently slowly increasing
cooling schedules, we can expect the law of to be close
enough to to achieve asymptotic optimality. As a matter
of fact, it is proved in [52] that (6) holds with replaced with

and a theorem by Cot and Catoni [46, Th. 6.3] shows that there
exists finite cooling schedules such that

(8)

These schedules are piecewise constant exponential sequences
of the form

(9)

where denotes the initial inverse temperature value and
where the final inverse temperature value and the number

of temperature steps are both functions of the horizon .

B. Stochastic Continuation

Given a cooling schedule , we call an SC algorithm a
Markov chain with transitions

defined by

if

if
(10)

where is a symmetric and irreducible Markov matrix on and
is a family of real valued functions on —we use the
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notation for short. Intuitively, a condition for
this definition to make sense is that for
all . Indeed, we have the following proposition whose
proof is given in Appendix I.

Proposition 1: If is finite and if
for all , then there exists such that for any

, the global minima of belong to the set of
global minima of .

SC is a particular case of SA with time-dependent energy
function, the behavior of which is studied in [53] and [54]. How-
ever, the results therein involve logarithmic schedules that are
unusable in practice. The following theorem, whose proof is
given in Appendix II, is more useful.

Theorem 1: Assume that is finite and that

(11)

is a continuous map (12)

(13)

Then, the SC algorithm is a GSA algorithm
with rate function

if
otherwise

and the associated communication height function is equal
to , which is symmetric.

This result shows that, under mild assumptions, SC algo-
rithms are GSA algorithms for which there exists cooling
schedules of the form (9) such that is asymptotically
equivalent to in the logarithmic scale (recall that,
according to (6), is the optimal convergence speed
exponent). Hence, the lower the value of , the faster the
convergence rate, and one can legitimately ask whether there
are convenient ways to reduce the difficulty of the energy land-
scape without changing the set of solutions of the underlying
minimization problem. To this end, the concave distortion idea
proposed by Azencott [47], [48] for standard SA is potentially
interesting, as Theorem 2 makes clear (see [23] for proof).

Theorem 2: Assume that is finite and let be an open in-
terval covering the range of . Then for any increasing, strictly
concave, differentiable function , the set of global
minima of is the same as the set of global minima of
and . Furthermore, if and
are increasing, twice-differentiable functions such that

for all

then .
It follows that for any suitable concave transform , SC algo-

rithms of the form are expected to con-
verge faster than those of type . Moreover,
larger values of should be encouraged. Different trans-
forms are compared in [23] within the framework of image re-
construction by standard SA. In our experiments here, we will
use the function

(14)

which can be implemented without difficulty and whose free
parameter is easy to set.

III. APPLICATION TO 3-D RECONSTRUCTION

Recall from the introduction that 3-D reconstruction is for-
mulated in terms of finding a global minimum of the energy
function defined by (2)–(5). For this purpose, the theory pre-
sented in Section II assumes a finite state space. Therefore, we
take the domain of to be the set (or a subset of it) with

(15)

Let us stress that this does not mean that the voxel values in the
true configuration are known beforehand. In fact, minimizing

over amounts to search for the best approximation of
in with a level of accuracy determined by the step size pa-
rameter . Also note that when considering line-integral projec-
tion data such as in our experiments, is naturally set to zero
and it is easy to ensure that since we
know at least the order of magnitude of the maximum possible
voxel value.

Because the chief trouble comes from our choice of , it is
natural to focus on SC algorithms in which the family is
obtained by replacing in with some function parameterized
by . More specifically, ,

(16)

where is continuous, increasing, and such that
, and where is a family

of continuous functions satisfying for
all .

Roughly speaking, the difficulty of the task of minimizing
should increase monotonically with , which amounts to saying
that the “concavity” of (i.e., if is twice
differentiable) should increase monotonically with . It is also
desirable that for any , the relaxed energy remains close to
the target energy . Hence, we propose to consider functions of
the form

(17)

where the scale parameter is determined so as to satisfy
for some constant independent of , that

is, where is the unique fixed point of the con-
traction map . Examples of such
functions are given in Fig. 1 (in our experiments in Section IV,
the constant is set to the amplitude of the voxel value range,
that is, ).

To achieve the objective of minimizing , the first step is to
check whether the resulting family of relaxed energies defines
appropriate SC algorithms. The following proposition, whose
proof is given in Appendix III, shows that this is indeed the case.
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Fig. 1. Examples of functions in the family (� ) defined by (17).

Proposition 2: Let be defined by (16) and (17) and let
be the target energy defined by (2)–(5). Then for any ,

we have .
The second step is to be able to guarantee that these SC algo-

rithms belong to the class of GSA algorithms. From Theorem 1,
it is sufficient to ensure that (11), (12) and (13) hold. Assump-
tion (11) does not pose any problem; hence, Proposition 3 does
the job (see Appendix IV for proof).

Proposition 3: Let be defined by (16) and (17). Then
(12) holds unconditionally and (13) is satisfied if

(18)

From now on, we only consider SC algorithms of the form
, where , is defined

by (16) and (17), or (14), and is irreducible,
symmetric, and such that for all . Considering
Theorems 1 and 2 together with Propositions 2 and 3, condition
(18) ensures that these algorithms are GSA algorithms that are
“log-optimal” [in the sense of (8)] for properly tuned cooling
schedule of the form (9). Nevertheless, efficient implementa-
tion requires wise choices regarding the communication graph

, the function , the parameters of the cooling schedule,
and the parameter in . This is the subject of Section III-A,
where we will see in particular that condition (18) can be relaxed
somewhat. Section III-B is devoted to the remaining problem of
finding a suitable value for the smoothing parameter .

A. Implementation of the Proposed Class of SC Algorithms

1) Communication Graph: If we set , a natural
communication mechanism consists in generating a new candi-
date by assigning a random value to a randomly selected voxel
in the current configuration , that is

if
otherwise.

(19)

Since we consider the reconstruction of piecewise homogeneous
objects, we expect that each voxel in the computed solution
has a neighboring voxel whose value is close to that of . Ob-
viously, the communication process defined by (19) does not
take this characteristic into account, which makes it less and
less appropriate as the current configuration gets smoother (or
equivalently, as increases). As suggested in [55] in the con-
text of 2-D reconstruction, this limitation can be overcome by

restricting to a locally bounded space, that is, a set
which consists of the elements of such that

where and is a predefined neighbor-
hood system on . For example, taking the six-nearest neighbor
system together with a reasonably small level (e.g., )
is in full accordance with the formation of piecewise homoge-
neous solutions. The key point is that the Markov matrix on

defined by

if
otherwise

is symmetric and irreducible (we refer to [55] for proof and for
implementation details). So, we set .

2) Choice of the Function : According to proposition 3, the
function should satisfy . Still, it may be
preferable to let increase more slowly. As a matter of fact, con-
dition (18) can be relaxed by imposing
with , which amounts to consider a new target en-
ergy, namely as defined by (16). There are two arguments
in support of this alteration. First, practical cooling schedules
have finite horizon , and, thus, computer simulations stop at

, where . Second, since we consider a finite
state space, we have the following result which is an imme-
diate consequence of Proposition 1 (it suffices to take

).
Proposition 4: If is small enough, then the global

minima of belong to the set of global minima of .
Proposition 5 below gives a condition on for SC algorithms

with target energy to be GSA algorithms (see Appendix V
for proof). It basically states that the rate at which approaches
its limit can be .

Proposition 5: Let and let be defined by
(16) and (17) with . If

then (13) holds for replaced by .
This leads us naturally to choose of the form

(20)

with , , and . In practice, given
, we will require that at the end of

the simulation of the annealing chain. Starting with ,
this gives

(21)

3) Selection of the Cooling Schedule: We consider cooling
sequences of type (9) which stem from the theory
developed in [46]. Yet, this theory does not give any information
regarding the choice of the cooling parameters. Typically, the
horizon is fixed by the amount of computing resources that
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can be allocated. Also, experimental evidence suggests that the
performance of the proposed class of GSA algorithms is not
sensitive to the choice of the number of steps (we take

). In fact, the issue at stake here is to find suitable
values for the initial and final inverse temperatures
and . We select these parameters in accordance with
the following standard criteria.

1) Most candidate moves should be accepted at the begin-
ning of the simulation of the annealing chain, that is,
should be chosen so that is close
to one for all .

2) By the end of the simulation of the annealing chain,
most candidate moves that lead to an increase in energy
should be rejected. More formally, should be deter-
mined so that is close
to zero for any .

We refer to [23] for information about how to perform these
tasks.

4) Choice of the Parameter : For the concave transform
(14) to be well defined, the parameter must be less than

. Of course, we can always set ,
but Theorem 2 indicates that the closer is to the ground state
energy , the less difficult the target energy land-
scape. To account for this, we emphasize that if the true configu-
ration represents a piecewise constant object, then we should
have

The right-hand side of this inequality is the data fidelity term
evaluated at . According to (1) and by the law of large num-
bers, we have

for all . Hence, we propose to set

(22)

B. Selection of the Smoothing Parameter

The parameter , which balances stabilization and fidelity to
the data, is the only free parameter of the target energy (the
projection operator and the noise standard deviation are
given for all ). Two well-known approaches to selecting an ap-
propriate value for are generalized cross-validation [56] and
the L-curve method [57]. In our case, however, these methods
cannot be clearly justified and would lead to serious compu-
tational difficulties. Other possibilities include the Chi-square
choice [58] and maximum likelihood estimation [12], [16], and
we could also imagine to define a prior distribution for and
estimate the pair using a maximum a posteriori crite-
rion. Yet, owing to the recalcitrant nature of , these approaches
would also have heavy computational requirements. Alterna-
tively, following [18], we look for a condition on to ensure
with a given probability that the true volume is a coordi-
nate-wise minimum of when it belongs to a relevant class

of configurations; this approach does not require the finite state
space assumption, so we consider that is defined on .

Let be the configuration that is zero everywhere
except at voxel , where it assumes the value . We say that

is a coordinate-wise minimum of if there exists a finite
set such that , , . In
this case, the probability to obtain a lower energy state from
by assigning a random value in a closed interval to some voxel
is zero; hence, the approach is particularly suited to single-site
updating algorithms such as those considered here. Let be
the event that is a coordinate-wise minimum of the random
variable , that is

and

(23)

Then, our goal is to find a condition on such that ,
, when belongs to a certain prototype configuration

class. More precisely, we study the case where is made up
of two constant media separated by a plane interface, which
amounts to assume that for all

if
otherwise

(24)

where is a fixed integer. It is important to be clear that sub-
stantial discrepancies with the situation considered in [18] com-
pels us to revisit a portion of this work, though we follow the
same line of reasoning. These differences include the fact that
projection operators are not translation-invariant and the fact
that the prior model (3), (4) involves a 3-D neighborhood system
together with a different -function. For our part, we have the
following simple result whose proof is sketched in Appendix VI.

Proposition 6: Let and assume that is of the
form (24). Then, provided that ,
where is defined by

Remarks:
1) The only purpose of the configuration class defined by

(24) is to derive a theoretical lower bound on that is
easy to use in practice (note in passing that this bound
depends neither on nor on ). We emphasize again
that our application of SC to 3-D reconstruction does
not make any assumption about the voxel values in the
true configuration.

2) The proof of Proposition 6 is based on the worst-case
scenario in which all voxels are assumed to be adjacent
to some interface. Besides, estimating with great accu-
racy is unnecessary since values with the same order of
magnitude give roughly similar reconstruction results.
Therefore, can be defined by a much smaller number
than and our experiments below confirm that setting

is sufficient.
3) Proposition 6 can be generalized to operators other than

(4). Indeed, it is readily seen from the proof that if



2582 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

Fig. 2. Experimental data acquisition geometry (radiographic inspection of
thick metal components).

is positive, then provided .
4) It may be disturbing that the proposed parameter se-

lection rule does not depend on noise characteristics.
In fact, the regularization strength depends implicitly
on the noise level since the data fidelity term in (2)
is a quadratic distance weighted by the inverse of the
noise variance. This dependence is particularly clear
when each noise process has the same standard
deviation . In this case, minimizing (2) is equivalent
to minimizing

The actual smoothing parameter is, therefore, , and,
hence, the regularization strength vanishes as goes to
zero.

IV. EXPERIMENTAL RESULTS

Two sets of experiments are presented here. The first set con-
cerns simulated projection data while the second set deals with
the real radiographic testing data examined in [49]. Put very
briefly (we refer to [49] for details), the radiographic testing data
consists of noisy 2-D projections of some defects embedded in
thick ferrous specimens. The associated raw radiographs were
obtained in accordance with the geometry depicted in Fig. 2:
the source positions are in a plane parallel to the
detector plane and lie on a circle whose center

Fig. 3. Three-dimensional test object: isosurface representation and jk cross-
section at i = 24.

and whose diameter are fixed by control requirements (in par-
ticular, the angle of incidence cannot exceed 25 ).

In any situation, the objective is to minimize the target cost
function defined by (2)–(5), where is chosen to be equal
to the lower bound given in proposition 6 with (i.e.,

). We investigate the behavior of the subclass of GSA
algorithms introduced in Section III. More specifically, we con-
sider SC algorithms of type

(25)

with either or (14), (22) and where the com-
munication graph is defined by quantization
levels together with the six-nearest neighbor system and .
The cooling schedule is an exponential sequence of type
(9) with and the function that defines
the family (16), (17) is of the form (20) and (21) with

and unless otherwise stated. The
reconstruction results associated with are systematically
compared with those produced by the standard1 SA algorithm

(26)

where is a conventional exponential cooling schedule,
that is, a sequence of type (9) with . Both algorithms
start from random configurations and their initial and final in-
verse temperature values are selected by means of the proce-
dures proposed in [23].

A. Reconstruction From Synthetic Data

We consider the synthetic test object consisting of two half-
tori whose discrete representation is shown in Fig. 3. The corre-
sponding true configuration is defined over a lattice

and for each voxel in , if belongs to
either half-torus, 0 otherwise. In this set of experiments, the set

(15) of admissible voxel values is defined by ;
so, and . Five 128 128 pro-
jections of this numerical phantom were simulated according to
model (1) using the same data acquisition geometry as in Fig. 2,
where was placed vertically above the center of the object.

1A is not truly “standard”: Standard SA algorithms operate on the full state
space, use logarithmic cooling schedules, and perform significantly worse than
A [23].
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Fig. 4. Simulated line-integral projection data associated with the object shown
in Fig. 3.

These projections are shown in Fig. 4. The variance of the
Gaussian white noise component in projection number was
determined by specifying the decibel level of the signal-to-noise
ratio: , where is the variance of
the exact data . We added 10-dB noise to projections
number 2 and 4, 8-dB noise to projections number 3 and 5, and
projection number 1 was corrupted by 6-dB noise. Note that the
2-D regions of support of each half-torus always overlap, and,
thus, the existence of two separate connected 3-D regions cannot
be predicted a priori.

Two error measures are used to assess reconstruction quality,
namely the root mean square error (RMSE) and the percentage
of misclassified voxels (MVP). Given an estimate of , the
latter is defined as follows:

Fig. 5(a) shows the reconstruction achieved when running
the standard SA algorithm (26): a poor local minimum.
The associated energy level is approximately and
the distance to the true configuration is emphasized by large
error values: , . It should be
stressed that increasing the length of the annealing chain

Fig. 5. Reconstruction from the data shown in Fig. 4: (a) optimization by stan-
dard SA; (b) optimization by SC; (c) optimization by SC with concave transform
of the energy function.

does not yield any significant improvement. For example, set-
ting (i.e., allowing fifty times more iterations)
produces an estimate with energy value of about ,

and . The fact is that the energy
landscape is “perverse” in the sense that it contains
local minima with deep basins of attraction.

By contrast, the SC algorithm (25) does not get stuck
in the non relevant cycle where ends up. The estimate pro-
duced by is shown in Fig. 5(b). It has only a slightly
lower energy level than does the output of ,
but is much closer to the true configuration, both qualitatively
and quantitatively ( , ). Using SC
with logarithmic transform of the energy function (i.e., algo-
rithm ), we obtain the reconstruction shown in Fig. 5(c)
which is even more faithful to the original object. As a matter of
fact, offers substantial benefits over , and, hence, a
fortiori over : the final energy level is ,
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Fig. 6. Radiographs of an open notch of size 20� 0:3� 20 mm embedded in
a 7-cm-thick steel specimen.

Fig. 7. Radiographs of a 2-mm-diameter hole drilled into an 8-cm-thick steel
specimen.

and . Let us conclude this subsection with two re-
marks about the choice of the parameters of the function (20),
(21).

1) The results obtained by choosing greater than 1 are less
spectacular, which justifies the additional effort to prove
Propositions 4 and 5. As an example, setting ,

gives a solution with an energy level of ,
and .

2) The quality of the reconstructions can be further im-
proved by adjusting the parameter . For instance, by
running with and , we obtain an
energy value of , and

. However, the performance may deteriorate if
is chosen too large and it is doubtful whether any theo-
retically sound selection rule could be drawn.

B. Reconstruction From Experimental Data

We now consider the reconstruction of real defects from the
data sets depicted in Figs. 6 and 7. The radiographs in Fig. 6
show a vertically oriented electro-eroded notch of size

mm embedded in a 7-cm-thick austenitic stainless steel
casting. The defect revealed by the data in Fig. 7 is a 2-mm-
diameter hole drilled into a similar steel specimen and whose

Fig. 8. Reconstruction from the data shown in Fig. 6 (isosurface representa-
tion and jk cross-section at i = 32): (a) standard SA with 10 j j iterations;
(b) standard SA with 5 � 10 j j iterations; (c) SC with 10 j j iterations.

axis is located at a depth of 10 mm on the source side. In both
figures, the upper left projection corresponds to source position

in Fig. 2. All projections are of size 222 215 and have
spatial resolution of 0.2 mm.

1) Reconstruction of the Notch: We take the lattice to
be of size with each voxel representing a

mm rectangular parallelepiped (the use of anisotropic
voxels is dictated by the dimensions of the 3-D region of sup-
port computed from the smallest rectangles encompassing the
defect signals in each projection). Fig. 8(a) displays the recon-
struction obtained using the standard SA algorithm . This
estimate has an energy level of and does not ade-
quately capture the shape of the real defect. Again, increasing
the length of the annealing chain does not help much: allowing



ROBINI et al.: STOCHASTIC CONTINUATION APPROACH TO PIECEWISE CONSTANT RECONSTRUCTION 2585

Fig. 9. Reconstruction from the data shown in Fig. 7 (isosurface representation
and jk cross-section at i = 25): (a) optimization by standard SA; (b) optimiza-
tion by SC.

fifty times more iterations leads to the result in Fig. 8(b) whose
energy value is . The solution produced by the SC algo-
rithm appears in Fig. 8(c). It has a markedly lower energy
level than does the output of SA and it is also much
closer to the notch geometry. The larger dimensions are accu-
rately estimated, but the thickness of the reconstructed notch is
0.8 mm instead of 0.3 mm. This overestimation is essentially
due to source positioning errors which can be up to 3 mm in
each direction.

2) Reconstruction of the Hole: Here, the lattice is and
each voxel is of size mm. The reconstructions
achieved by running and are respectively shown in
Fig. 9(a) and (b). The associated energy levels ( and

) confirm the superiority of SC over SA, although not
as strikingly as in the previous example. It turns out that neither
solution is entirely satisfactory: the radial section of the recon-
structed hole is either compressed or stretched along the vertical
direction. In fact, the 25 limit placed on the angle of incidence
translates into increased unstability along the source-film direc-
tion, which is undeniably the main limitation attached to the par-
ticular acquisition geometry of the considered radiographic in-
spection problem.

V. CONCLUSION

Three-dimensional reconstruction with a Potts prior leads to
a challenging optimization task. The two main approaches to
tackle this problem, namely deterministic continuation methods
and SA, have complementary advantages and disadvantages:
continuation methods are computationally attractive but pro-
duce suboptimal solutions, whereas SA is asymptotically op-
timal but converges very slowly.

We devised a class of hybrid algorithms, SC algorithms,
that are interesting in two respects. First, we showed that
SC inherits the convergence properties of GSA and is thus
more theoretically grounded than deterministic continuation
methods. Second, controlling the evolution of the difficulty of

the energy landscape by a GNC-like continuation sequence
can lead substantially better performance than SA. This makes
SC potentially attractive for a wide range of signal processing
applications.

In our application to piecewise constant 3-D reconstruction,
we designed a specific SC algorithm that outperforms SA
without requiring more computational efforts. We also pro-
vided a rigorously justified, yet simple and efficient, selection
scheme for the stabilization parameter involved in the target
cost function. The reconstruction results obtained from real
data ultimately validate the image formation model as well
as the processing protocol proposed in [49] in the context of
radiographic inspection of thick metal components.

APPENDIX I
PROOF OF PROPOSITION 1

Let . For any , we have

and, thus, there exists such that
for all . Since is assumed to be finite, we have

Consequently, for any , the set is disjoint from
the set of global minima of .

APPENDIX II
PROOF OF THEOREM 1

We first have to prove (7) for (note that
and thus is irreducible). Recalling

that is a finite set, it suffices to show that for any ,
if and

(27)

if . The case when is straightforward:
we have by (11), and, hence, by (10).
Assume that . If , then and

so that (27) is satisfied. If , the function
is continuous [by (12)] and positive; therefore, we

simply need to verify that

or equivalently that
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with .
If , then for sufficiently large ,
and thus . If , we have

where by (13). Fi-
nally, if , then for sufficiently large ,

and consequently . This com-
pletes the proof that is a GSA algorithm.

Let and let be a -admissible path from
to . For any , we have

Therefore

Since , we have ,
and, hence, . The symmetry of follows directly
from the symmetry of .

APPENDIX III
PROOF OF PROPOSITION 2

We need to show that for any ,
or equivalently

if
if .

The case when is trivial. Let and let . The
derivative of , , is nonnegative
and decreasing. Therefore

(28)

In particular, and, thus

APPENDIX IV
PROOF OF PROPOSITION 3

Let . To prove that the map is
continuous, it suffices to show that for any ,

is continuous. This amounts to establishing the continuity
of , where denotes the unique fixed point
of . It is easy to check that for any

, is contractive with contraction factor . Let
. For all , we have

and, hence, . The
right-hand side of this last inequality tends to zero as tends to

, which shows that is continuous at .
Now let us prove that (18) implies (13). For any and

any

Consequently, since is finite, a sufficient condition for (13) is
that

(29)

Set and . As [see (28)], we
have

Using (28) again

and it follows that

Hence, (18) implies (29).

APPENDIX V
PROOF OF PROPOSITION 5

A sufficient condition for (13) is that

Therefore, setting and , it suffices to show
that
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For any , we have

where and is defined by

Let . We have and it easy to show
that is increasing. Consequently, if , then

(30)

and if , then

(31)

As the derivative of is nonnegative and decreasing, we have
for any

and thus, since

Using this last result in (30) and (31) gives
for all , which ends the proof.

APPENDIX VI
PROOF OF PROPOSITION 6

The following lemma provides a lower bound for the energy
difference . We then use this result to show
that is a sufficient condition for the event (23) to
have probability at least .

Lemma 1: Let be the zero-mean,
Gaussian random process defined by

where denotes the contribution of voxel to pixel in the
th projection. Then for any and any

where .
Proof: Let and let . We have

with

and

where denotes the 26-nearest neighbor system on . If is
not adjacent to the interface, then for all
and thus . If is adjacent to the interface, then there
are 17 voxels such that

and 9 voxels such that
, and it follows that . This

completes the proof of the lemma.
Set and note that

if , then for all
. Therefore, from Lemma 1

and, hence, .
Then, since for any , is a normal random variable

with zero mean and variance

It is easy to check that . Consequently

which shows that is a sufficient condition to ensure
that .
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