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a b s t r a c t

Diffusion tensor MRI (DT-MRI) is an imaging technique that is gaining importance in clinical applications.
However, there is very little work concerning the human heart. When applying DT-MRI to in vivo human
hearts, the data have to be acquired rapidly to minimize artefacts due to cardiac and respiratory motion
and to improve patient comfort, often at the expense of image quality. This results in diffusion weighted
(DW) images corrupted by noise, which can have a significant impact on the shape and orientation of ten-
sors and leads to diffusion tensor (DT) datasets that are not suitable for fibre tracking. This paper com-
pares regularization approaches that operate either on diffusion weighted images or on diffusion
tensors. Experiments on synthetic data show that, for high signal-to-noise ratio (SNR), the methods oper-
ating on DW images produce the best results; they substantially reduce noise error propagation through-
out the diffusion calculations. However, when the SNR is low, Rician Cholesky and Log-Euclidean DT
regularization methods handle the bias introduced by Rician noise and ensure symmetry and positive
definiteness of the tensors. Results based on a set of sixteen ex vivo human hearts show that the different
regularization methods tend to provide equivalent results.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) – which
measures the diffusion of water molecules along various directions
within tissues – provides unique and biologically relevant informa-
tion without invasion. This information includes parameters that
help to characterize physical properties of tissue constituents, tis-
sue microstructure and its architectural organization. The con-
struction of the diffusion tensor distribution requires the
acquisition of a set of diffusion-weighted (DW) images associated
with diffusion sensitization along N non-collinear gradient direc-
tions ðN P 6Þ. More specifically, it is possible to estimate a 3 � 3
symmetric positive definite matrix T (the diffusion tensor) at each
location that characterizes the diffusion process. The diffusion ten-
sor is related to the DW measurements S : Si ði ¼ 1; . . . ;NÞ accord-
ing to the Stejskal-Tanner diffusion equations: Si ¼ S0 expð�cgiTg

t
i Þ,

where gi is the diffusion encoding gradient direction associated to
Si, S0 is the MR measurement without diffusion sensitization, and
the constant c is the diffusion weighting factor.

DT-MRI is particularly subject to noise for two reasons. First,
since multiple DW images are needed, each individual image has
to be acquired relatively quickly, thus reducing the signal-to-noise
ratio (SNR). Second, DT-MRI measures physical properties (water
diffusion) that require careful treatment of the noise. Therefore,

image processing techniques to remove noise in the DW images
or in the estimated tensor field are important, especially to per-
form streamlining tractography. The methods investigated here
apply either to raw data (DW images) or to diffusion tensor fields.
We do not consider the methods that apply to principal direction
fields since we are interested in working as closely as possible to
DW images to prevent noise propagation.

In DW image regularization, the denoising process is either ap-
plied to each DW image independently (e.g. Parker et al., 2000 and
Basu et al., 2006) or takes coupling between the different DW
images into account to synchronize their evolution (e.g. Vemuri
et al., 2001 and McGraw et al., 2004). The common idea is to intro-
duce prior information about the solution in order to smooth the
DW images while preserving relevant details. One generally uses
a non-quadratic regularization term on the intensity gradient mod-
ulus. During this process, large gradients are preserved while small
gradients are smoothed, which allows preservation of both edges
and local coherence of DW-images. A common idea to restore mul-
tivalued images is to use classical scalar anisotropic diffusion on
each Si of the set of DW images S (Parker et al., 2000). However,
this scheme is criticizable since each DW image Si evolves indepen-
dently with different smoothing geometries. To take into account
coupling between the different DW images, Vemuri et al. (2001)
proposed a weighted TV-norm regularization method to smooth
the multivalued image S: the diffusion corresponds to scalar TV-
norm regularization (applied independently on each Si) weighted
by a coupling term, which is the same for all Si in order to ensure
their synchronized evolution.
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Another class of regularization methods operates directly on
tensor fields. However, tensor computing is difficult due to some
limitations of standard Euclidean calculus. Diffusion tensors do
not form a vector space since they are symmetric positive definite
matrices whose space is restricted to a convex half cone (Pennec
et al., 2006). Therefore, special care must be taken in order not to
reach the boundaries of the non-linear tensor space, which leads
to null or negative eigenvalues. To overcome these limitations,
Wang et al. (2004) proposed to parameterize the diffusion tensor
T by its Cholesky factor F; smoothing the tensor’s Cholesky factor
in the Euclidean framework insures that T ¼ FFt is positive, but
definiteness is not insured since null eigenvalues are still possible.
Pennec et al. (2006) recently developed another approach to solve
the definiteness problem: the tensor space is replaced by a
Riemannian manifold where 3 � 3 matrices with null or negative
eigenvalues are at infinite distance from any tensor. It involves a
new metric family, the so-called Log-Euclidean metrics, which
amounts to classical Euclidean computations in the domain of ma-
trix logarithms. This method takes into account prior knowledge
about the diffusion tensor itself – like symmetry and positive def-
initeness – and prevents the tensor swelling effect that is observed
when using the Euclidean framework. Note that there exists other
matrix-valued image smoothing techniques that are not covered in
this work. We refer the interested reader to a survey by Weickert
and Brox (2002).

The aim of this work is to focus on the application of regulariza-
tion methods to human cardiac DT-MRI datasets. This kind of study
has never been conducted before, although it is of great interest to
better comprehend the impact of DT-MRI in cardiological diagno-
sis. In fact, to apply DT-MRI to the in vivo heart, the data have to
be acquired rapidly to minimize artefacts due to cardiac and respi-
ratory motions, often at the expense of image quality. This results
in DT-MRI datasets with very low SNR (much lower than in neurol-
ogy), that are not suitable for fibre tracking or for building a statis-
tical heart model (Peyrat et al., 2007). Therefore, there is a need of
reliable algorithms to improve image and tensor fields. We inves-
tigate the characteristics and limitations of six regularization
methods: three operating on DW images (Basu et al., 2006; Parker
et al., 2000; Vemuri et al., 2001) and three operating on diffusion
tensor fields (Tschumperle et al., 2001; Fillard et al., 2007; Wang
et al., 2004). For each of them, we make two different noise
assumptions: Gaussian and Rician. The real nature of the noise in
MR magnitude images is known to be Rician (Henkelman, 1985).
However, the Rician distribution can be approximated by a
Gaussian distribution when the SNR is sufficiently high (Gudbjarts-
son and Patz, 1995; Sijbers et al., 1998).

In order to evaluate the solutions produced by these methods,
we focused on the following three representations of the DT-MRI
processing pipeline: tensors, parametric maps and fibres. Evalua-
tions were performed using different metrics: the Frobenius norm
for tensors, the ‘1-norm for parametric maps and for the helix an-
gle and the sheet angle for fibres, which are standards in cardiology
to characterize the heart architecture.

The paper is organized as follows. Section 2 formulates the
essential aspects of regularization methods and their underlying
assumptions. Section 3 presents our framework for comparing
the methods. The results on synthetic and real data are exposed
in Section 4. Finally, conclusions are given in Section 5.

2. Regularization methods

2.1. Regularization operating on DW images

Our goal here is to denoise the DW volumes obtained by stack-
ing up the DW images. We start from the simple model:

eSi ¼ Si þ g; i 2 f1; . . . ;Ng ð1Þ

where eSi and Si 2 L2ðXÞ, respectively stand for the observed data
and the ideal noiseless DW volume to be reconstructed (X is an
open-bounded set in R3) and where g is the noise component.

2.1.1. Scalar regularization
In the scalar regularization framework, Si is estimated by mini-

mizing a cost functional U : L2ðXÞ ! R of the form:

UðSiÞ ¼ HðSiÞ þ kUðSiÞ ð2Þ

where H measures fidelity to the data, the regularization term U
measures how well its argument matches our a priori knowledge
about Si, and the hyper-parameter k balances the two terms.

We consider the anisotropic diffusion regularization term orig-
inally proposed by Perona and Malik (1990), which has been
shown in You et al. (1996) to be the gradient descent flow for
the following variational integral:

UðSiÞ ¼
Z
X
/ðkrSikÞdX ð3Þ

where krSik is the modulus of the gradient of Si. The function
/ : R ! R is chosen to allow edge-preservation (Charbonnier
et al., 1997). In our experiments, we use

/ðtÞ ¼ 2ð1þ t2=d2Þ1=2 ð4Þ

where d is a fixed gradient threshold.
If the noise g is assumed to follow a Gaussian distribution, max-

imum log-likelihood estimation reduces to least-squares estima-
tion, which amounts to minimize

HGaussðSiÞ ¼
Z
X
kSi � eSik2 dX: ð5Þ

If the noise g is assumed to follow a Rician distribution, the proba-
bility density function of the pointwise observed signal eSiðxÞ know-
ing the pointwise expected signal SiðxÞ is given by:

P eSiðxÞ ¼ a0jSiðxÞ ¼ a
� �

¼ a0

r2 exp �a2
0 þ a2

2r2

� �
I0

aa0

r2

� �
ð6Þ

where I0 is the modified 0th order Bessel function of the first kind
and r2 is the noise variance (Basu et al., 2006).

Using the Rician distribution as the likelihood term and assum-
ing independent noise, the maximum log-likelihood estimation
amounts to minimize:

HRiceðSiÞ ¼ �
Z
X
log PðeSi jSiÞ dX: ð7Þ

2.1.2. Multivalued regularization
In the multivalued regularization framework, the raw vector

valued image S 2 ðL2ðXÞÞN is estimated by minimizing a cost func-
tional U : ðL2ðXÞÞN ! R of the form:

UðSÞ ¼ HðSÞ þ kUðSÞ ð8Þ

where H is the data fidelity term and the smoothing parameter k
balances the effect of H with the prior term U.

In order to regularize the DW images ðN P 6Þ, Vemuri et al.
(2001) consider a weighted TV-norm regularization term. This
variational formulation is the vector-valued matching piece of
the total variation formalism, largely used to regularize scalar
images:

UðSÞ ¼
Z
X
gðkmax; kminÞ

XN
i¼1

krSik dX ð9Þ
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where krSik is the modulus of the gradient of Si. Note that this reg-
ularization term corresponds to the /-functional framework with
/ðtÞ ¼ t.

This term involves a selective smoothness constraint on the
solution achieved by the term gðkmax; kminÞ ¼ 1=½1þ fðkmax � kminÞ
=kmaxg2�, where kmax and kmin respectively stand for the largest
and smallest eigenvalues of the diffusion tensor computed from
the initial data eS. This function has small value as the relative dif-
ference in kmax and kmin becomes large (smoothing is stopped). In-
deed, in DT-MRI, we are interested in the anisotropy of the tensors
which translates the reliability for the fibre tract mapping.

Vemuri et al. (2001) only consider the case where the noise g is
assumed to follow a Gaussian distribution, so that the data fidelity
term corresponds to:

HGaussðSÞ ¼
Z
X

XN
i¼1

kSi � eSik2 dX: ð10Þ

2.1.3. PDE methods for minimization
Finding the functions Si and S that minimize cost functionals (2)

and (8) is not an easy task. Nevertheless, the Euler-Lagrange equa-
tions (with Neumann boundary conditions) associated to them
give necessary conditions that must be verified by Si and S to be
a local minimum of their associated cost functional.

2.1.3.1. Scalar regularization. The unique solution of (2) satisifies
the following Euler-Lagrange equation:

@HðSiÞ
@Si

þ k
@UðSiÞ
@Si

¼ 0 ð11Þ

where

@HGaussðSiÞ
@Si

¼ rHGaussðSiÞ ¼ 2ðSi � eSiÞ
@HRiceðSiÞ

@Si
¼ rHRiceðSiÞ ¼ � Si

r2 þ
eSi
r2

I1
I0

Si eSi
r2

 !
@UðSiÞ
@Si

¼ rUðSiÞ ¼ �divð/0ðkrSikÞ krSikÞ

ð12Þ

with /0ðtÞ ¼ ð1þ t2=d2Þ�1=2 and I1 being the modified 1st order Bes-
sel function of the first kind.

To avoid the direct and difficult resolution of these PDE, we use
the standard gradient descent technique (Rudin et al., 1992;
Deriche and Faugeras, 1996). Starting from an initial function S0i
and following the opposite direction of the gradient of U leads to
a local minimizer of U. If the l-th iterate is Sli, the evolution of
gradient descent is simply:

Slþ1
i ¼ Sli � alrUðSiÞ ð13Þ

where rUðSiÞ ¼ rHðSiÞ þ krUðSiÞ is the gradient of U, al is the gra-
dient descent step associated with the l-th iterate that satisfies
Wolfe’s conditions (Wolfe, 1969; Wolfe, 1971). We take the initial
function S0i to be the noisy DW volume.

2.1.3.2. Multivalued regularization. The unique solution of (8) satisi-
fies the following Euler-Lagrange equations:

@HðSÞ
@Si

þ k
@UðSÞ
@Si

¼ 0 i ¼ f1; . . . ;Ng ð14Þ

where

@HGaussðSÞ
@Si

¼ rHGaussðSÞ ¼ 2ðSi � eSiÞ i ¼ f1; . . . ;Ng

@UðSÞ
@Si

¼ rUðSÞ ¼ �div
gðkmax; kminÞrSi

krSik

� �
i ¼ f1; . . . ;Ng

ð15Þ

The gradient descent associated to the above minimization is given
by:

Slþ1
i ¼ Sli � alrUðSÞ i ¼ f1; . . . ;Ng ð16Þ

whererUðSÞ ¼ rHðSÞ þ krUðSÞ is the gradient of U. As for the sca-
lar case, the initial function S0i is the noisy DW volume.

2.2. Tensor field regularization

According to the Stejskal-Tanner diffusion equations, the DW
measurements can be modeled as:eSi ¼ SiðTÞ þ g; i 2 f1; . . . ;Ng ð17Þ

where

SiðTÞ :¼ S0 expð�cgiTg
t
i Þ; ð18Þ

T : X � R3 ! M3ðRÞ is the diffusion tensor field to be reconstructed,
g models the noise and M3ðRÞ is the set of real 3� 3 matrices
(again, X is an open-bounded subset of R3).

The joint estimation and regularization of diffusion tensor fields
can be tackled by minimizing a cost functional V similar to the one
used for DW volumes:

VðGÞ ¼ HðGÞ þ kUðGÞ ð19Þ

where H is the data fidelity term,U is the regularization term, and k
is a normalization factor between the two terms. G stands for the
tensor field distribution or the distribution of a particular feature
that parametrizes the tensor (matrix logarithm, Cholesky factor,
etc).

The regularization term is similar to the anisotropic diffusion
term applied on DW images:

UðGÞ ¼
Z
X
/ðkrGkÞ dX ð20Þ

where krGðxÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jkrGi;jk2
q

is the Frobenius norm of the
Jacobian matrix. The function / has the same characteristics as
those required for DW volume regularization. We shall use the
same /-function as in (4).

2.2.1. Euclidean regularization
The classical approach works on tensor fields in the Euclidean

framework (e.g. Tschumperle et al., 2001). Let T1 and T2 be two
tensors. An example of Euclidean structure is given by the so-called
Frobenius metric: dEðT1; T2Þ ¼ ðTraceððT1 � T2Þ2ÞÞ1=2. So G in (19)
and (20) can be substituted by T.

In this situation, the data fidelity terms for Gaussian and Rician
noise models are respectively defined by:

HGaussðTÞ ¼
XN
i¼1

Z
X
ðSiðTÞ � ŜiÞ2 dX: ð21Þ

HRiceðTÞ ¼ �
XN
i¼1

Z
X
log PðŜijSiðTÞÞ dX: ð22Þ

2.2.2. Cholesky regularization
Wang et al. (2004) based their regularization method on

Cholesky factor that parameterize the tensor and belong to a vector
space. In this case, positivity and symmetry are ensured by
Cholesky factorization: 8x 2 X, TðxÞ ¼ FðxÞFðxÞt where F(x) is a
lower triangular matrix. Therefore G in (20)–(22) is substituted
by F (the distribution of Cholesky factors) and
SiðFÞ ¼ S0 expð�cgiFF

tgt
i Þ. Here, the diffusion tensor field T to be

reconstructed is a mapping from X � R3 to the set of 3� 3 sym-
metric positive semi-definite matrices.

C. Frindel et al. /Medical Image Analysis 13 (2009) 405–418 407



2.2.3. Log-Euclidean regularization
Pennec et al. (2006) decribe a framework for performing aniso-

tropic diffusion on tensors while preserving symmetry and positive
definiteness. They prove that there exists a one-to-one correspon-
dence between symmetric matrices and tensors: the logarithm of a
tensor is a symmetric matrix and the exponential of any symmetric
matrix yields a tensor. Based on these specific properties, a novel
Riemannian structure can be defined. Let L1 and L2 be the loga-
rithm associated with two tensors T1 and T2, the novel Riemannian
structure is given by the so-called Log-Euclidean metric:
dLðT1; T2Þ ¼ ðTraceððL1 � L2Þ2ÞÞ1=2. The processing of tensors in the
Log-Euclidean framework is simply Euclidean in the logarithmic
domain. After carrying out the computations on the tensor loga-
rithms, the results are mapped back to the tensor space with the
matrix exponential. Therefore, G in (20)–(22) is substituted by L
(the distribution of tensor logarithms) and SiðLÞ ¼ S0 exp
ð�cgi expðLÞgt

i Þ. Here, the diffusion tensor field T to be recon-
structed is a mapping from X � R3 to the set of 3� 3 symmetric
positive definite matrices.

2.2.4. PDE methods for minimization
Likewise for DW image denoising, the minima of (19) satisfy the

Euler-Lagrange equation associated to the cost functional V with
Neumann boundary conditions:

@HðGÞ
@G

þ k
@UðGÞ
@G

¼ 0 ð23Þ

where

@HGaussðGÞ
@G

¼ rHGaussðGÞ ¼ �2b
XN
i¼1

ðSiðGÞ � ŜiÞ �
@SiðGÞ
@G

� �
;

@HRiceðGÞ
@G

¼ rHRiceðGÞ ¼ � 1
r2

XN
i¼1

SiðGÞ � Ŝi
I1
I0

SiŜi
r2

 ! !
� @SiðGÞ

@G

" #
;

@UðGÞ
@G

¼ rUðGÞ ¼ �divð/0ðkrGkÞkrGkÞ:

ð24Þ

Note that G ¼ T for Euclidean regularization, G ¼ F for Cholesky reg-
ularization and G ¼ L for Log-Euclidean regularization. The deriva-
tive @SiðLÞ=@L uses the directional derivative of the exponential
@gigti

expðLÞ that is detailed in Fillard et al. (2007).
Again, to avoid the difficult direct resolution of these PDE, we

use the standard gradient descent technique. Starting from an ini-
tial function G0, the iterative evolution of gradient descent is given
by

Glþ1 ¼ Gl � alrVðGÞ ð25Þ

where rVðGÞ ¼ rHðGÞ þ krUðGÞ is the gradient of V, al is the gra-
dient descent step associated with the l-th iterate that satisfies
Wolfe’s conditions and the initial function G0 is the classical least-
squares estimation (where non-positive tensors are replaced by
the mean of positive neighbours in the case of Log-Euclidean and
Cholesky regularization).

Note that specific attention must be paid to the positive defi-
niteness of the tensors. For Euclidean regularization, there is a risk
of stepping out from the tensor space for each displacement
alrVðGÞ. An idea is to project, after each iteration, the tensor Glþ1

on the underlying tensor space (this process is only used for
Euclidean regularization, since positivity is ensured for Cholesky
and Log-Euclidean regularization). More sophisticated approaches
have been proposed in order to avoid this post-processing
projection step. For instance, Chefd’hotel et al. (2004) propose a
differential-geometric framework to deal with PDE flows lying
directly on tensor space.

3. Experimental setup

3.1. Synthetic data

A diffusion tensor, T, is a 3� 3 symmetric, positive definite ma-
trix which can be decomposed as follows:

T ¼
Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

0B@
1CA ¼ R

k1 0 0
0 k2 0
0 0 k3

0B@
1CARt; ð26Þ

where k1; k2; k3 are the eigenvalues of T and R is an orthogonal
matrix.

We generated a 20� 20� 20 artificial tensor field with 10 dif-
ferent homogeneous regions separated by discontinuities of differ-
ent amplitudes (see Fig. 1).

Each z-slice of the tensor field is defined by the following
matrix:

R0 R1 R0 R2

R0 R3 R0 R4

R0 R5 R0 R6

R0 R7 R0 R8

0BBB@
1CCCA; ð27Þ

where each Ri represents a 5� 5 homogeneous tensor region,
whose tensor coefficients are given in Table 1.

We used the Stejskal-Tanner diffusion equations to compute
the DW images from this artificial tensor field. The associated S0
image was chosen to be constant and we considered the
cuboctahedron encoding scheme (six directions) to simulate the
gradient sequence. Rician noise was added to the ideal DW images

Fig. 1. Tensor field associated with synthetic data.

Table 1
Tensor coefficients defining the synthetic dataset.

T Txx Tyy Tzz Txy Txz Tyz

R0 1 2 1 0 0 0
R1 1.04 1.96 1 0.19 0 0
R2 1.14 1.86 1 0.35 0 0
R3 1.3 1.70 1 0.46 0 0
R4 1.48 1.52 1 0.5 0 0
R5 1.67 1.33 1 0.47 0 0
R6 1.83 1.17 1 0.37 0 0
R7 1.95 1.05 1 0.22 0 0
R8 1.99 1.001 1 0 0 0
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(Gudbjartsson and Patz, 1995) for different standard deviation val-
ues: r ¼ 0:02 (PSNR ’ 22 dB), r ¼ 0:05 (PSNR ’ 9 dB) and r ¼ 0:1
(PSNR ’ 4 dB). Given a discrete volume f and its noisy representa-
tion d, the PSNR (peak signal-to-noise ratio) is defined by

PSNR ¼ 10 � log10
Df 2

1
NV

kd� fk22

 !
; ð28Þ

where Df is the voxel value range, k � k2 is the standard Euclidean
norm and NV is the number of voxels.

The resulting series of noisy DW images were used to estimate a
discrete DT field using a standard least-squares estimation. Fig. 2
shows example of simulated DW images together with the corre-
sponding synthetic DT fields. Regularization methods operate
either on synthetic noisy DW images or synthetic noisy DT field,
depending on the class they belong to.

3.2. Real data acquisition

In vivo heart acquisitions are very experimental and quite diffi-
cult to obtain. Our real data comes from a set of sixteen ex vivo hu-
man hearts. Ex vivo hearts have the benefit to be static, enabling
large acquisition time without suffering from artefacts due to car-
diac and respiratory motions. Nevertheless, since these hearts are
processed a few hours after death our data is similar to data ac-
quired in the in vivo context (in the case ðNd;NeÞ ¼ ð12;1Þ). For
the most part, the cardiac fibre architecture is preserved.

The hearts were not perfused with any fixing agent in order not
to change their diffusion properties. Care was taken to fix hearts in
the same cardiac phase so that their fibre orientations would be
similar. However, small variations in cardiac phase during fixation
are not problematic since fibre angles do not change significantly
between diastole and systole. Each heart was placed in a plastic
container filled with the perfluoropolyether Fomblin (the low
dielectric effect and minimal MR signal of Fomblin increases con-
trast and eliminates unwanted susceptibility artifacts near the
boundaries of the heart).

The data were acquired with a Siemens Avanto 1.5T MR Scan-
ner, using echo planar acquisitions. Each DW volume consists of
52 contiguous axial slices of size 128 � 128 (the spatial resolution
is 2 � 2 � 2 mm3). We considered four different acquisition proto-
cols defined by the number Nd of diffusion sensitizing directions

and the number Ne of excitations used for signal averaging:
ðNd;NeÞ ¼ ð12; 1Þ; ð12; 4Þ; ð12; 8Þ and (12,32) as illustrated in
Fig. 3. Note that the truncated octahedron configuration was used
for these protocols.

A large panel of acquisition protocols were analysed and com-
pared in Frindel et al. (2007). The protocol ðNd;NeÞ ¼ ð12; 4Þ was
chosen as the reference, because it gave the best results in terms
of fibre direction coherence. The reference protocol used here for
the evaluation of the regularization methods was acquired with
the same number of directions but a much higher number of exci-
tations (i.e. Ne ¼ 32). In fact, scanning the ex vivo hearts for a long
time enables the SNR to get really high, so that one can assume
that almost no noise remains. The acquisition time and PSNR value
(the DW volume of the protocol (12,32) plays the role of f) associ-
ated with each protocol are given in Table 2.

3.3. Evaluation methods

For suitable comparison, each regularization method is run with
the values of the hyper-parameters k and d that produce the best
solution in terms of the mean Frobenius distance to the ‘‘ideal” ten-
sor field (i.e. the standard least-squares estimation computed from
the noiseless DW images in the case of synthetic data, and the
standard least-squares estimation computed from the DW images
of the reference protocol in the case of real data). The optimal sets
of hyper-parameters were estimated from the solutions given by
the different regularization methods at each point of a regular 2-
D grid in the hyper-parameter space. The comparison of the best
solutions from the different regularizationmethods was performed
at each major step of the DT-MRI processing pipeline: tensor field
representation, parametric maps and fibre tracking.

3.3.1. Tensor field
In the case of tensor field representation, we compared the

mean Frobenius distance between the regularized DT field and:

� the original noiseless DT field in the case of synthetic data,
� the reference protocol DT field in the case of real data.

Also note that in the case of real data a mask was applied to the
DT field in order to compare only the tensors related to the myo-
cardium. The segmentation was performed by selecting the voxels

Fig. 2. Simulated DW image examples and associated DT fields (standard least-squares estimation) with: (a) no noise, (b) r ¼ 0:02, (c) r ¼ 0:05 and (d) r ¼ 0:1. The encoding
gradient related to the DW image is G ¼ 1=

ffiffiffi
2

p
ð1; 0; 1Þ.
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in the reference DW volume whose intensity belongs to the char-
acteristic intensity range of muscles in T2 weighted MRI, as exem-
plified by Fig. 4.

3.3.2. Parametric maps
When considering parametric maps, we compared the sum of

the ‘1-norm of the difference between the parametric maps com-
puted from the regularized DT field and:

� the parametric maps associated with the noiseless DT field in
the case of synthetic data,

� the parametric maps associated with the reference protocol in
the case of real data (using the myocardium mask described
above).

The parametric indices used in this study are mean diffusivity
(MD), fractional anisotropy (FA) and coherence index (CI). Each of

Fig. 3. Real cardiac DW images and corresponding DT fields (standard least-squares estimation) associated with ðNd;NeÞ: (a) (12,32), (b) (12,8), (c) (12,4) and (d) (12,1). The
encoding gradient associated with the DW image is G ¼ ð1:0; 0; 0:5Þ. It allows observation of the swelling effect caused by noise on tensors and how these phenomena lead to
an overestimation of fractional anisotropy.

Table 2
Acquisition time and PSNR value associated with each protocol.

Protocol ðNd;NeÞ Time (min:sec) PSNR (dB)

(12,1) 2:02 10.02
(12,4) 7:37 16.44
(12,8) 15:09 20.09
(12,32) 63:93 Ref.

Fig. 4. Human heart segmentation. Left: T2 weighted MRI slices. Right: Mask after thresholding on the corresponding T2 weighted images.
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them gives a different piece of information about local water diffu-
sion: FA (Kingsley, 2006) measures deviation from isotropy and re-
flects the degree of alignment of cellular structures within fibre
tracts, MD (Kingsley, 2006) measures average molecular motion,
and CI (Basser and Pierpaoli, 1996) estimates the smoothness of
the principal diffusion direction field.

For real datasets, we also considered the fibre helix angle a
(Scollan et al., 1998) and the heart sheet angle b (Tseng et al.,
2003). These indices are commonly used to analyze the heart archi-
tecture; they enable comparison of DT-MRI measurements with
the structure known from histological studies.

4. Results

4.1. Synthetic data

We applied the methods described in Section 2 on a synthetic
dataset, which was corrupted by three different levels of noise
(r ¼ 0:02, r ¼ 0:05 and r ¼ 0:1). In order to compare the methods
quantitatively, we computed themean Frobenius, FA, CI andMD er-
rors (per voxel). Results are summarized in Table 3.

Let us first focus on themetric operating on tensors (the first col-
umn of Table 3): we find out that the method giving the best solu-
tion depends on the noise level. For r ¼ 0:02, the methods
operating on DW images perform significant better than those
working on tensors in terms of Frobenius error. Gaussian and Rician
noise models do not make much difference on estimation quality.
Therefore, in this situation, the SNR is high enough to approximate
the effective Rician noise distribution by a Gaussian distribution
(Sijbers et al., 1998). For r ¼ 0:05, the difference between regular-
ization methods working on DW images and DT fields is less signif-
icant. However, the mean Frobenius error indicates that Rician
regularization methods provide better estimations than Gaussian
ones. Because of this significant difference, we conclude that above
this value of r, the SNR becomes too low to approximate the effec-
tive Rician noise distribution by a Gaussian distribution. Finally for
r ¼ 0:1, Rician Log-Euclidean and Cholesky regularizationmethods
perform significantly better than others in terms of Frobenius error.
This suggests that when the SNR is too low, constraints to preserve
tensor properties and coupling between tensor components im-
prove the estimation of tensor fields.

The effects of regularization on parametric maps are detailed in
the last three columns of Table 3. It is necessary to look at these

Fig. 5. DT field estimations mapped with mean diffusivity values ðr ¼ 0:1Þ. The arrow indicates the MD value of the noiseless synthetic dataset. (a) Weighted TV-norm
regularization ðk ¼ 0:017Þ. (b) Gaussian anisotropic diffusion (k ¼ 3e� 4, d ¼ 0:01). (c) Rician anisotropic regularization ðk ¼ 3e� 4; d ¼ 0:01Þ. (d) Gaussian euclidian
regularization ðk ¼ 0:7; d ¼ 0:05Þ. (e) Rician euclidian regularization ðk ¼ 0:7; d ¼ 0:05Þ. (f) Gaussian cholesky regularization ðk ¼ 0:65; d ¼ 0:05Þ. (g) Gaussian Log-Euclidean
regularization ðk ¼ 0:21; d ¼ 0:05Þ. (h) Rician Log-Euclidean regularization ðk ¼ 0:21; d ¼ 0:05Þ. (i): Rician cholesky regularization ðk ¼ 0:65; d ¼ 0:05Þ.
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maps in order to characterize the different regularization methods
in terms of diffusion properties recovery. We notice that FA in-
creases with noise for standard least-squares estimations as re-
ported in previous work (Basu et al., 2006; Skare et al., 2000).
Concerning the regularization methods, we notice that if the SNR
is low, the Log-Euclidean DT-regularization method is less sensi-
tive to noise in terms of FA. It preserves the anisotropic shape of
the tensor while the other methods tend to produce more isotropic
tensors. As pointed out in (Arsigny et al., 2005), the Log-Euclidean
metric preserves tensor volumes more accurately than the
Euclidean metric does (the latter often leading to overestimation
of the diffusion). Fig. 6 illustrates this contrast between Log-Euclid-
ean and the other regularization methods.

Conversely, MD is underestimated when noise increases, which
is a direct consequence of approximating the Rician noise distribu-
tion by a Gaussian distribution. In fact, when the SNR is high
ðr ¼ 0:02Þ, the different regularization methods have almost the
same characteristics in terms of MD. But when the SNR is low
ðr ¼ 0:1Þ, the Rician noise model inhibit the tensor shrinking effect
observed with the Gaussian noise model. This phenomenon has
been mentioned in Fillard et al. (2007) and lies in the fact that
the magnitude of DW signal appears to be greater than it really
is, resulting in the estimations of tensors whose diffusivity tends
to be smaller then it actually is (a higher signal magnitude means
a lower diffusion). This phenomenon is particularly visible in Fig. 5.

These experiments revealed two important facts about the two
classes of regularization methods studied here. On the one hand,
when the SNR is high, the methods giving the best results in terms
of estimation are those operating directly on DW images. This im-
plies that working at the early stage of DW images has the benefit

of reducing the magnitude of noise-based errors propagated
through diffusion calculations. On the other hand, when the SNR
is low, the Rician regularization methods preserving the tensor’s
properties (Log-Euclidean framework) and respecting the noise
characteristics (Rician model), give the best results in terms of esti-
mation and tensor direction alignment.

4.2. Real data

We applied the methods described in Section 2 on real datasets
acquired with acquisition protocols of various quality:
ðNd;NeÞ ¼ ð12; 32Þ; ð12; 8Þ; ð12; 4Þ and (12,1). The acquisition pro-
tocol (12,32) served as a reference and enabled us to validate the
estimations obtained from the data associated with the other pro-
tocols. To evaluate estimations quality, we compute the mean error
(per voxel) associated to the Frobenius norm on the tensor field and
to the ‘1-norm for CI, FA, MD, a and b maps. This evaluation is only
performed within the myocardium region, which is segmented
with a mask (Section 3.3.1). Results are summarized in Table 4.

First, we noticed that the results obtained from real datasets are
coherent with those associated with synthetic datasets. However,
the difference between the regularization methods tends to be
globally less significant, which can be explained by the relatively
high PNSR of the protocols ðNd;NeÞ ¼ ð12; 8Þ; ð12; 4Þ and (12,1)
w.r.t. the reference protocol (12,32). The regularization methods
giving the best estimations for the data acquired from the protocol
(Nd, Ne) = (12,8) (PSNR ’ 20.09 dB) are the ones working on DW
images and there is no significant difference between the Rician
and Gaussian noise models. By contrast, in the case of data ac-
quired from the protocol (Nd, Ne) = (12,1) (PSNR ’ 10.02 dB), the

Table 3
Mean errors associated with estimations from synthetic datasets.

Method Frobenius distance CI FA MD

r ¼ 0:02
DWI regularization Least-squares estimation 0.201 0.008 0.035 0.032

Weighted TV-norm regularization 0.087 0.007 0.018 0.008
Gauss anisotropic diffusion 0.088 0.008 0.018 0.010
Rice anisotropic diffusion 0.086 0.008 0.016 0.008

DT regularization Gauss euclidian regularization 0.102 0.008 0.019 0.013
Rice euclidian regularization 0.101 0.008 0.019 0.013
Gauss Log-Euclidean regularization 0.110 0.010 0.020 0.015
Rice Log-Euclidean regularization 0.108 0.010 0.020 0.015
Gauss cholesky regularization 0.113 0.009 0.021 0.017
Rice cholesky regularization 0.112 0.009 0.021 0.017

r ¼ 0:05
DWI regularization Least-squares estimation 0.506 0.057 0.081 0.081

Weighted TV-norm regularization 0.166 0.014 0.031 0.020
Gauss anisotropic diffusion 0.191 0.016 0.038 0.019
Rice anisotropic diffusion 0.162 0.009 0.029 0.014

DT regularization Gauss euclidian regularization 0.189 0.014 0.031 0.033
Rice euclidian regularization 0.173 0.013 0.030 0.021
Gauss Log-Euclidean regularization 0.173 0.014 0.030 0.030
Rice Log-Euclidean regularization 0.160 0.013 0.028 0.019
Gauss cholesky regularization 0.183 0.016 0.030 0.034
Rician cholesky regularization 0.168 0.015 0.029 0.022

r ¼ 0:1
DWI regularization Least-squares estimation 1.127 0.253 0.184 0.183

Weighted TV-norm regularization 0.270 0.020 0.060 0.042
Gauss anisotropic diffusion 0.294 0.024 0.072 0.053
Rice anisotropic diffusion 0.285 0.022 0.061 0.020

DT regularization Gauss euclidian regularization 0.300 0.022 0.068 0.052
Rice euclidian regularization 0.267 0.018 0.059 0.034
Gauss Log-Euclidean regularization 0.272 0.021 0.063 0.055
Rice Log-Euclidean regularization 0.247 0.016 0.052 0.038
Gauss cholesky regularization 0.293 0.025 0.067 0.061
Rice cholesky regularization 0.256 0.019 0.056 0.043
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regularization methods operating on tensor fields with constraints
on tensor symmetry and positive definiteness produced the best
results. In addition, the difference between the Rician and the

Gaussian noise models is significant, which emphasizes that the
approximation of the Rician noise distribution by a Gaussian distri-
bution leads to errors that cannot be tolerated.

Fig. 6. DT field estimations mapped with fractional anisotropy values ðr ¼ 0:1Þ. The arrow indicates FA of the noiseless synthetic dataset. (a) Weighted TV-norm
regularization. (b) Gaussian anisotropic diffusion. (c) Rician anisotropic regularization. (d) Rician euclidian regularization. (e) Rician Log-Euclidean regularization. (f) Rician
cholesky regularization.

Table 4
Mean errors associated with estimations from a real cardiac dataset.

Method Frobenius distance CI FA MD a (�) b (�)

ðNd;NeÞ ¼ ð12; 8Þ
DWI regularization Least-squares estimation 0.293 0.221 0.079 0.126 27.86 15.64

Weighted TV-norm regularization 0.101 0.047 0.004 0.062 11.75 9.01
Gauss anisotropic diffusion 0.102 0.047 0.004 0.065 11.81 9.10
Rice anisotropic diffusion 0.099 0.046 0.003 0.062 11.61 8.91

DT regularization Gauss euclidian regularization 0.116 0.054 0.007 0.068 12.97 9.38
Rice euclidian regularization 0.114 0.053 0.007 0.068 11.64 9.19
Gauss Log-Euclidean regularization 0.124 0.056 0.009 0.069 12.06 9.47
Rice Log-Euclidean regularization 0.122 0.054 0.009 0.068 11.69 9.25
Gauss cholesky regularization 0.125 0.057 0.010 0.070 12.18 9.67
Rice cholesky regularization 0.122 0.055 0.009 0.069 11.83 9.38

ðNd;NeÞ ¼ ð12;4Þ
DWI regularization Least-squares estimation 0.341 0.291 0.099 0.129 31.56 19.22

W. TV-norm regularization 0.121 0.064 0.013 0.089 15.84 11.14
Gauss anisotropic diffusion 0.128 0.071 0.017 0.091 15.86 11.46
Rice anisotropic diffusion 0.119 0.068 0.015 0.085 15.12 9.84

DT regularization Gauss euclidian regularization 0.132 0.071 0.018 0.091 16.12 11.70
Rice euclidian regularization 0.128 0.066 0.016 0.084 15.56 10.83
Gauss Log-Euclidean regularization 0.127 0.065 0.015 0.087 15.95 11.72
Rice Log-Euclidean regularization 0.120 0.059 0.012 0.079 15.44 10.98
Gauss cholesky regularization 0.129 0.069 0.017 0.089 15.99 11.63
Rician cholesky regularization 0.122 0.063 0.014 0.083 15.62 10.95

ðNd;NeÞ ¼ ð12;1Þ
DWI regularization Least-squares estimation 0.559 0.373 0.248 0.142 34.52 17.41

Weighted TV-norm regularization 0.215 0.101 0.043 0.092 18.65 11.47
Gauss anisotropic diffusion 0.233 0.134 0.055 0.095 19.36 12.41
Rice anisotropic diffusion 0.210 0.114 0.051 0.074 16.55 10.62

DT regularization Gauss euclidian regularization 0.216 0.121 0.057 0.072 20.20 12.64
Rice euclidian regularization 0.198 0.107 0.053 0.054 19.45 11.29
Gauss Log-Euclidean regularization 0.171 0.102 0.036 0.068 20.47 12.48
Rice Log-Euclidean regularization 0.149 0.099 0.032 0.042 19.86 11.22
Gauss cholesky regularization 0.179 0.108 0.038 0.069 19.86 13.37
Rice cholesky regularization 0.152 0.103 0.033 0.046 18.68 12.15
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Second, the effects of regularization on the parametric maps FA,
MD and CI lead to the same conclusions as those obtained with
synthetic datasets. When the SNR is low, i.e. ðNd;NeÞ ¼ ð12; 1Þ,
Cholesky and Log-Euclidean regularization methods give the best
results in terms of the degree of alignment within the fibre tracts
(FA). However, in isotropic regions like the ones containing the
gel, the nearby anisotropic regions have an influence on the regu-
larization process: tensors located on the boundaries are corrupted
by small anisotropic ones (Fig. 8). Now, considering average molec-
ular motion (MD), in the low SNR case, the use of the Rician noise
model produces better results than the Gaussian model: it leads to

estimated tensors that are not squeezed and that are closer to the
reference tensors computed from the data associated with the ref-
erence protocol (Fig. 7).

Third, the effects of regularization on structural index maps (he-
lix and sheet angles, a and b) are detailed in the last two columns
of Table 4. When ðNd;NeÞ ¼ ð12;8Þ, the mean Frobenius, FA and MD
errors are consistent with the fact that the regularization methods
working on DW images provide better estimations. They allow
more likely measurement of global diffusion than methods work-
ing on tensor fields. The helix and sheet angles agree with these
observations. On the other hand, when ðNd;NeÞ ¼ ð12; 1Þ, Rician

Fig. 7. Regularization results on a real dataset acquired with the protocol ðNd;NeÞ ¼ ð12; 1Þ. The figures are a close up of the region delimited by the red square and are
mapped using the helix angle a. (a) (12,32) reference dataset. (b) (12,1) dataset. (c) Weighted TV-norm regularization ðk ¼ 13Þ. (d) Gaussian anisotropic diffusion
ðk ¼ 22; d ¼ 1Þ. (e) Rician anisotropic diffusion ðk ¼ 22; d ¼ 1;r ¼ 4Þ. (f) Gaussian euclidian regularization ðk ¼ 0:6; d ¼ 0:05Þ. (g) Rician euclidian regularization
ðk ¼ 0:6; d ¼ 0:05;r ¼ 4Þ. (h) Gaussian Log-Euclidean regularization ðk ¼ 0:15; d ¼ 0:05Þ. (i) Gaussian cholesky regularization ðk ¼ 0:54; d ¼ 0:05Þ. (j) Rician cholesky
regularization ðk ¼ 0:54; d ¼ 0:05;r ¼ 4Þ. (k) Rician Log-Euclidean regularization ðk ¼ 0:15; d ¼ 0:05;r ¼ 4Þ.
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regularization methods provide the best results in terms of the
structural angles a and b. Preventing the tensor shrinking phenom-
enon improves the diffusivity measurement, which has a direct im-
pact on the estimation of the human heart architecture. Finally,
note that regularization methods preserving tensor properties
(Log-Euclidean and Cholesky frameworks) do not present better re-
sults than the methods that work on DW images.

4.3. Tractography

Tractography or fibre extraction, is a process that takes place at
the very end of the DT-MRI processing pipeline and requires a
smooth principal diffusion direction field to ensure the reliability
of fibre extraction. Among the methods for tracking fibres, we
chose streamlining tractography (Basser et al., 2000) and show

Fig. 8. Regularization results on a real dataset acquired with the protocol ðNd;NeÞ ¼ ð12; 1Þ. The figures are a close up of the region delimited by the red square and are
mapped using fractional anisotropy. (a) (12,32) reference dataset. (b) (12,1) dataset. (c) Weighted TV-norm regularization. (d) Gaussian anisotropic diffusion. (e) Rician
anisotropic diffusion. (f) Gaussian euclidian regularization. (g) Rician euclidian regularization. (h) Gaussian Log-Euclidean regularization. (i) Gaussian cholesky regularization.
(j) Rician cholesky regularization. (k) Rician Log-Euclidean regularization.
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Fig. 9. Improvement of tractography by regularization. The figures were performed with streamlining tractography initiated within the region delimited by the gray square.
(a) Seed region. (b) (12,32) reference dataset. (c) (12,1) dataset. (d) Weighted TV-norm regularization. (e) Gaussian anisotropic diffusion. (f) Rician anisotropic diffusion. (g)
Gaussian euclidian regularization. (h) Rician euclidian regularization. (i) Gaussian Log-Euclidean regularization. (j) Gaussian cholesky regularization. (k) Rician cholesky
regularization. (l) Rician Log-Euclidean regularization.
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how the tracking can be improved by the regularization methods
under investigation. The criteria for stopping the tracking are: a
threshold on FA (tracking is stopped when FA is too small) and
on the curvature (to forbid highly bended fibres that do not match
the cardiac architecture). We tracked the fibres from the tensor
fields obtained by standard least-squares estimation from the reg-
ularized DW images or by the DT regularization estimations. The
parameters used for tracking are, 0.05 for the FA threshold and
20� for the maximum angle of deviation threshold.

Tracking results corresponding to the protocol ðNd;NeÞ ¼ ð12; 1Þ
across the left ventricular wall are shown in Fig. 9. The figure is ob-
tained by launching trajectories from a multislice region of interest
(ROI) of 10 � 3 � 3 voxels in the body of the left ventricle. We re-
quire the fractional anisotropy index of all voxels within the ROI to
be greater than 0.35 to ensure that the fibre tracts are launched
from regions of coherently organized cardiac bundles with no par-
tial volume effect. On one hand, the reference protocol (12,32)
emphasizes the helical structure within the left ventricle: it shows
that the extracted fibres rotate clockwise from the apex to the base
in the epicardium, have circular geometry in the midwall, and ro-
tate counterclockwise in the endocardium. On the other hand, the
protocol (12,1) presents fuzzy and very short fibres, which can be
explained by the high noise level. Using regularization, the tracking
is qualitatively much smoother than the one performed on the ten-
sor field estimated from protocol (12,1) raw data. Smoothing the
tensor field or the DW images leads to more regular and longer fi-
bres, that are closer to those computed directly from the reference
protocol (12,32).

We performed one final analysis to compare the different regu-
larization methods w.r.t. the helical structure characterizing the
heart architecture. As summarized in Table 5, we computed the fol-
lowing criteria for each tractography result: (i) the number Nf of
fibres which length ranges between 20 and 100 mm, (ii) the vol-
ume V f defined by the voxels crossed by the predicted fibres, (ii)
the mean fibre length lfl, (iv) the coefficient of fibre length varia-
tion (CV), which is defined as the ratio of the fibre length standard
deviation rfl to the mean lfl and (v) the percentage of matching
points in the regularized fibres trajectories and the fibre trajecto-
ries estimated from the reference protocol. Globally, the shape of
the fibre tracts does not differ much from one regularization meth-
od to another. However, the Rician noise model leads to larger val-
ues of Vf and Nf and to a better matching score: tracts that were
stopped or dispersed due to noise error propagation are now fully
reconstructed. Note that best matching score is attributed to DW
images regularization methods. Nevertheless, the difference with
DT-regularization methods is not significant, which can be ex-
plained by the relative high PSNR of our real data.

Finally, let us make some qualitative observations about the re-
sults depicted in Fig. 9. First, one can observe a difference between
weighted TV-norm regularization and classical anisotropic diffu-

sion. The emphasized regions for Rician and Gaussian anisotropic
diffusion (Fig. 9e and f) are artefactual (in the sense that they do
not appear in the reference fibre bundle). Conversely, the weighted
TV-norm regularization method – allowing synchronization of the
evolution of the DW images (based on anisotropy) – helps to better
distinguish which information is reliable for fibre tracking. Second,
one can observe a difference between the Log-Euclidean regulari-
zation method and the other DT-regularization methods. The
emphasized regions for Euclidean and Cholesky regularization
methods (Fig. 9g–k) are also artefactual. As discussed in Sections
4.1 and 4.2, the Log-Euclidean metric preserves tensor volumes
more accurately than does the Euclidean metric (the latter often
leads to overestimation of the diffusion). The Euclidean metric,
by it swelling effect, increases fractional anisotropy and thus leads
to longer fibres. However this does not mean that fibres are correct,
as shown in Fig. 9.

5. Conclusions

In this paper, we presented an comprehensive comparison of
DW images and DT field regularization methods, in the context
of DT-MR imaging of the human ex vivo heart. We considered
two noise models for each approach: either we assume that the
data are corrupted by Rician noise and estimation is achieved by
means of a maximum likelihood technique adapted to the nature
of noise, or we assume that the noise is Gaussian and estimation
is achieved by means of standard least-squares estimation. These
estimators are combined with an anisotropic regularization term
operating on the DW images or on the DT field. These computing
frameworks are substantially different from one another, and thus
there is a need to establish which is more adapted to a particular
situation.

Results on synthetic data show that, below a PSNR value of 9 dB,
the Rician maximum likelihood estimator limits the shrinking ef-
fect, while the Gaussian noise model leads to a loss of tensor vol-
umes (mean diffusivity is underestimated). Concerning the
contrast between DW image and DT field based regularization ap-
proaches, we notice that above a PNSR value of approximately 9 dB
the methods operating on DW images produce cleaner data and
thus prevent noise error propagation through the diffusion calcula-
tions. Conversely, below a PSNR value of 9 dB, the Cholesky and the
Log-Euclidean frameworks overcome the limitations of standard
Euclidean calculus: in that they guarantee the symmetry and posi-
tive definiteness of the tensors.

In order to evaluate the results from the real data quantita-
tively, we used the reference protocol studied in Frindel et al.
(2007). Results from real data of reasonable quality (PSNR ranging
between 10 and 20 dB w.r.t. the reference protocol, depending on
Ne and Nd) are consistent with those obtained with synthetic data,
though less significant. For protocols (12,8) and (12,4), the meth-

Table 5
Quantification on fibre tracts.

Method Nf V f lfl CVfl % Match

ðNd;NeÞ ¼ ð12;32Þ Least-squares estimation 84 1113 21.91 0.56 100
ðNd;NeÞ ¼ ð12;1Þ Least-squares estimation 21 275 15.75 0.61 9.88

DWI regularization Weighted TV-norm regularization 80 1192 19.93 0.49 49.51
Gauss anisotropic diffusion 77 1173 18.63 0.46 44.77
Rice anisotropic diffusion 82 1240 20.60 0.44 47.99

DT regularization Gauss euclidian regularization 65 854 18.34 0.63 39.11
Rice euclidian regularization 67 890 19.90 0.61 42.86
Gauss Log-Euclidean regularization 62 800 18.13 0.62 40.98
Rice Log-Euclidean regularization 68 849 19.63 0.59 44.81
Gauss cholesky regularization 70 928 18.26 0.62 39.98
Rice cholesky regularization 73 945 19.88 0.59 43.51
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ods operating on DW images provide better estimation of the
water diffusion. By contrast, with the low quality protocol (12,1),
we notice that the choice of the noise model is important to pre-
vent underestimation of tensor volumes and that Cholesky and
Log-Euclidean regularization methods better preserve tensor
geometry (FA, MD and CI). From a qualitative point of view, the
choice of the Rician noise model can be justified by the fact that
it leads to fibre tracts that are smoother and more focused (w.r.t.
the reference fibre bundle) than with the Gaussian noise model.
It is however difficult to establish a qualitative difference between
DW images and DT field regularization methods. Some fibre termi-
nation artefacts suggest that multivalued regularization ap-
proaches with specific constraints on tensor geometry are
preferable (weighted TV-norm and Log-Euclidean regularization).
Yet the differences are small enough to conclude that the quality
of our DT-MRI data is sufficient to consider all regularization meth-
ods as equivalent.
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