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Abstract

Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise
sensitive, and the noise can induce numerous systematic errors in subsequent
parameter calculations. This paper proposes a sparse representation-based
method for denoising cardiac DT-MRI images. The method first generates
a dictionary of multiple bases according to the features of the observed
image. A segmentation algorithm based on nonstationary degree detector
is then introduced to make the selection of atoms in the dictionary adapted to
the image’s features. The denoising is achieved by gradually approximating
the underlying image using the atoms selected from the generated dictionary.
The results on both simulated image and real cardiac DT-MRI images from ex
vivo human hearts show that the proposed denoising method performs better
than conventional denoising techniques by preserving image contrast and fine
structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is at present the only means for
in vivo and nondestructive characterization of the three-dimensional (3D) diffusion and fibre
architecture of human anatomical organs such as brain white matter (Basser et al 1994),
skeletal muscle (Galban et al 2005), spinal cord (Schwartz et al 2005) and myocardium
(Scollan and Holmes 2000). It is well known that myocardial fibre orientation is altered in
various cardiac diseases such as myocardial infarction, ischaemic heart disease and ventricular
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hypertrophy (Wu and Tseng 2006). Therefore, detailed information about 3D fibre structures
of myocardium can provide important cues to the understanding of the heart’s physiological
and functional properties, and to the diagnosis of heart diseases. However, cardiac DT-
MRI is highly susceptible to noise. The noise, primarily at the level of diffusion-weighted
image (DWI), obeys a Rician distribution (Gudbjartsson and Patz 1995, Macovski 1996).
The noise in DT-MRI is the subject of several papers (Basser and Pajevic 2000, Koay
et al 2007). The noise in DWIs produces errors in the subsequent calculations of the tensor,
eigenvalues, eigenvectors, mean diffusivity (MD), diffusion anisotropy indices (DAIs) and
fibre orientations. These errors include, for example, positive bias in fractional anisotropy
(FA), negative eigenvalues, disorder of the eigenvectors and tracked fibres. So improving the
signal-to-noise ratio (SNR) is crucial for practical utility of DT-MRI in human hearts, and
noise removal techniques constitute the most efficient way without additional acquisitions.

Numerous denoising algorithms have been proposed for magnetic resonance (MR) images
in the past decades (Awate and Whitaker 2007, Basu et al 2006, Gerig and Kubler 1992, Gilboa
et al 2004, Hamarneh and Hradsky 2007). At present, the widely used denoising methods are
based on the partial-differential-equation (PDE) filter (Perona and Malik 1990) and wavelet
algorithm. The PDE filter, also known as the anisotropic or nonlinear diffusion filter, uses
different smoothing degrees proportional to local intensity gradient and can preserve image
edges. It has been employed to filter both scalar images (Chen and Edward 2005) and DT-MRI
eigenvector fields (Arsigny et al 2006). However, PDE methods can yield good results only
for low noise levels. For high noise levels, their denoising performance is unsatisfactory
due to the serious degradation in contrast. Wavelet-based denoising has also been applied to
MR images to achieve a general improvement in image quality (Nowak 1999, Wirestam and
Bibic 2006). Denoising based on the wavelet transform, like the Fourier transform and the
discrete cosine transform, operates on all information in the data: the image to be denoised
is firstly transformed by means of predefined basis functions, and then an inverse transform
is performed after thresholding the transform coefficients. In this condition, not only the
useful information but also the noise in the image is involved in the convolution with the
basis functions during the transformation. Moreover, how to determine the threshold is also a
problem that limits the accuracy of the final result.

Recently, sparse representation has appeared as a promising theory for many signal and
image processing problems such as compression, independent component analysis, image
inpainting, regularization and denoising, proposed in Elad and Aharon (2006), Pham and
Smeulders (2006) and Starck et al (2005), respectively. Unlike classical approaches, sparse
representation-based denoising (SPDN) is achieved by selecting underlying information in the
data with the aid of atoms generated from different function bases or database. The selection
of function bases should correspond to the data features. Generally, images in practice are
usually highly structured since their pixels exhibit strong dependences, especially when they
are spatially proximate, and these dependences carry important information about the structure
of the objects. On the other hand, the noise in the image distributes randomly without any
organized structure. So even if an image is deteriorated by noise, its structure features can still
be approximated with suitable atoms.

The performance of SPDN strongly depends on the denoising model and the dictionary.
Indeed, the denoising model is a linear programming problem with two constraints:
approximation stop criterion and sparsity of the representation coefficients. Based on an
estimation of the noise intensity, the approximation stop criterion is set up to control
the approximation procedure. As for the sparsity constraint, it relies on the property of
the dictionary, so it is critical to generate appropriate dictionary according to the structures
in the observed image. Considering that a real image often contains various contents, a
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Figure 1. Principle of sparse representation.

dictionary with multiple bases was proposed in Granai and Vandergheynst (2004), which is a
salient property of SPDN. Starck et al (2005) applied multiple bases to separate the overlapped
textures from underlying image content by employing each basis to represent the whole image
respectively. The method requires that every basis in the dictionary should be very selective,
or it is prone to causing approximation errors. Also note that it is often inefficient to use one
basis to represent the whole image.

In this paper, we develop the current sparse representation to denoise human cardiac
DT-MRI data and to examine its effectiveness in improving the quality of DWI, as well as
the accuracy of fibre orientation computation. We propose a segmentation-guided SPDN
method based on the use of a segmentation mechanism for guiding the choice of suitable
bases in the dictionary, thus making the decomposition process more adaptive and efficient.
The segmentation employs the concept of nonstationarity degree (NSD), which is particularly
robust for dealing with noisy data. The proposed method is evaluated on the simulated heart
image and ten ex vivo human hearts, and compared to the PDE-based method (Catte et al
1992) and the wavelet-based method (Pizurica et al 2003).

2. Theory

2.1. Sparse representation

Sparse representation, also referred to as ‘atom decomposition’ or ‘sparse approximation’,
evolved from non-redundancy orthogonal transformation. It is aimed at representing a given
signal S ∈ �N by a linear combination of a few atoms φg ∈ �N extracted from a dictionary
D ∈ �N×K of K atoms. The sparsity comes from the fact that only a small number of atoms
are used. This corresponds to solving the following optimization problem:

αopt = arg min
α∈�K

‖α‖0 subject to S = Dα + ξ, 0 � ξ < S, (1)

where, as illustrated in figure 1, ‖α‖0 stands for the number of nonzero entries in
representation coefficient vector α ∈ �K , ξ is the approximation error that, in the ideal
case, approximates to zero and D ∈ �N×K is a dictionary of K atoms φg which satisfies
D = {φg ∈ �N | ‖φg‖ = 1, g ∈ K}.

Usually, dictionaries are overcomplete with K〉N . Atoms (represented by columns in
figure 1) are the primary elements of a dictionary and their size is the same as that of the signal
in solution. In sparse representation, atoms are generated from parameterized basis functions
such as wavelets, curvelet, ridgelet, contourlet, etc. or adaptive trained database (Aharon et al
2006). The atoms generated from the same basis function constitute a basis. A dictionary can
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include either a single basis or multiple bases that make it possible to better represent complex
signals with different feature structures. The given signal S is approximately represented by
Ŝ = Dαopt.

Therefore, selecting the optimal linear combination of atoms from a dictionary to
approximate the underlying data is an NP-hard problem (nondeterministic polynomial time
hard problem), for which a few algorithms have been proposed: matching pursuit (MP, Mallat
and Zhang 1993), basis pursuit (BP, Chen et al 1998) and focal under determined system solver
(FOCUSS, Gorodnitsky and Rao 1997). The MP is a greedy pursuit algorithm that selects
the best suitable atoms sequentially in iteration, while the BP is a global optimal algorithm
that finds the sparse representation atoms by convex optimization based on minimizing the l1

norm of the representation coefficients. The FOCUSS is similar to the BP by minimizing the
lP norm of the representation coefficients. However, the BP and FOCUSS algorithms have
high computational cost and in some case, compromised convergence. So, for computational
simplicity and robustness, we adopt the MP algorithm in this work.

2.2. Image denoising based on sparse representation

Theoretically, sparse representation of an image is the same as that of a signal except that
it is a dictionary composed of 2D atoms. Generally speaking, image denoising based on
sparse representation attempts to extract underlying structures from the observed image by
representing it with a proper dictionary, whereas the noise is left and is not represented because
it exhibits no structure feature. The process of approximation is controlled by a stop criterion,
determination of which relies on the noise level of the image, the tolerated approximation
error and the constraint on sparsity.

Let y ∈ �N×N be the observed noisy image of the form

y = x + r, (2)

where x denotes the noise-free image, and r is an additive noise with standard deviation σr .
According to the sparse representation, the observed noisy image y can be represented by

a column vector y ∈ �N2
as

y = Dαopt + ξ + r, (3)

where dictionary D ∈ �N2×K and αopt ∈ �K with K > N2.
Actually, each atom in the dictionary is a 2D data as φg ∈ �N×N ; we order it as vector

φg ∈ �N2
in accordance with y ∈ �N2

. If we define η = ξ + r , where the residue η represents
errors due to the approximation ξ and the noise r, then (3) can be rewritten as

y = Dαopt + η. (4)

Taking into account the sparsity constraint on the representation coefficient vector, SPDN
amounts to solving the following optimization problem:

αopt = arg min
α∈�K

‖α‖0 subject to ‖y − Dα‖2
2 = ‖η‖2

2. (5)

In the ideal case, the energy function, which is the difference between the observed noisy
image and the noise-free image, is expressed as ‖y − x‖2

2 = ‖r‖2
2 = N2 · σ 2

r . In practice,
the noise-free image is unknown. Therefore, accounting for the approximation error ξ , the
energy function between the observed image and the reconstructed image (which should be as
close as possible to the noise-free image) can be expressed as ‖y − Dα‖2

2 = ‖ξ + r‖2
2. When

0 � ‖ξ‖2 � ‖r‖2, we have ‖η‖2
2 = C · N2 · σ 2

r , where the constant C � 1 is defined so as
to achieve an optimal denoising result. The value of C will be discussed in section 5. Since



Denoising human cardiac diffusion tensor magnetic resonance images 1439

we usually do not have the ground truth of the observed image, σr should be replaced by its
estimation. Therefore, updating this in (5) gives

αopt = arg min
α∈�K

‖α‖0 subject to ‖y − Dα‖2
2 = C · N2 · σ 2

r . (6)

Then, the estimated noise-free image is obtained using

x̂ = Dαopt. (7)

When denoising a large-size image using an overcomplete dictionary D ∈ �N2×K ,
K > N2, with the size of the dictionary increasing in order O(N4), this considerably raises
the computational burden. To cope with this problem, we choose to process the large image
using a sliding window (as implemented in Guleryuz (2005a), (2005b)). We overlap patches
to reduce blocking artefacts, which contributes to improve the accuracy of the reconstructed
image. If the sliding window size is n × n and its step is s, yN×N contains ((N − n + 1)/s)2

patches of size n × n. For each patch, the coefficient vector αij is obtained by representing
patch yij with dictionary D ∈ �n2×K . In this case, (6) becomes

α
opt
ij = arg min

αij ∈�K
‖αij‖0, subject to ‖�ijy − Dαij‖2

2 = C · n2 · σ 2
r , (8)

where (i, j) designates the locations of patches and �ij is the operator that extracts patches
from the image with yij = �ijy.

Accordingly, the denoised image can be obtained as

x̂ =
⎛
⎝(N−n+1)/s∑

j=1

(N−n+1)/s∑
i=1

� ′
ij xij

⎞
⎠

⎛
⎝(N−n+1)/s∑

j=1

(N−n+1)/s∑
i=1

� ′
ij�ij

⎞
⎠

−1

with x̂ij = Dα
opt
ij , (9)

where x̂ij ∈ �n×n corresponds to the denoised version of each patch, x̂ ∈ �N×N to the final
denoised version of the observed image and � ′

ij to the inverse operation of �ij .
Hence, the image denoising model based on SPDN can be rewritten as

{αopt, x̂} = arg min
{αij ∈�K,x}

∑
ij

‖αij‖0 + λ
∑
ij

‖�ijy − Dαij‖2
2 + γ ‖y − x‖2

2, (10)

where the parameters λ and γ are penalty factors. The denoising model is expressed as
a constrained optimization problem with Lagrange multiplier updating the constraint into
penalty terms. It is based on maximum a posteriori estimation. This optimization solution
means that to find the sparse approximation of the noise-free image through blocking the
observed image into patches, every restored patch should obey ‖xij − yij‖2

2 � C · n2 · σ̂ 2
r . At

the same time, the final reconstructed denoised image satisfies ‖x̂ − y‖2
2 � C · N2 · σ̂ 2

r . We
can solve this model using the matching pursuit algorithm described in the next subsection.

2.3. Approximation with matching pursuit

The approximation of xij in the subsection 2.2 can be calculated with the MP algorithm (Mallat
and Zhang 1993). The MP algorithm selects the useful atoms in a sequence, depending on
the inner product of atom and the image patch. We begin the search with R0yij = yij , after
a number of f atoms are selected, there exists residue that we denote by Rf yij . Afterwards,
the MP algorithm continues to choose the next atom φgf , which is most correlated with Rf yij

compared to other unused atoms. More precisely, the patch yij can be decomposed into a sum
of atoms with residue Rpyij as follows:

yij =
p−1∑
f =0

〈Rf yij , φgf 〉φgf +Rpyij . (11)
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Originally, the residue ‖Rpyij‖2 converges in an exponential rate in finite-dimensional
Hilbert spaces. Since the MP algorithm is applied for SPDN here, we set the stop criterion of
(11) with our approximation constraint defined above,

‖Rpyij‖2 = C · n2 · σ̂ 2
r . (12)

As a consequence, the noise-free patch xij is approximated as

x̂ij =
p−1∑
f =0

〈Rf yij , φgf 〉φgf . (13)

As can be seen in the above formulations, the main aspect of the SPDN approach consists
in recovering the noise-free image by means of setting up the denoising model and atom
decomposition. The denoising model, based on the energy function estimation, assures the
fidelity of the denoised result. The sliding window method introduced in the model also
increases the efficiency of implementation. With an appropriate dictionary, the underlying
information in the observed image can be represented with a limited number of atoms and
consequently the noise-free image is approximated.

2.4. The design of dictionary

The design of a dictionary reflects prior information about the features of the image. A
dictionary can be composed of a single basis or multiple bases depending on the complexity
of the contents in the image. The general idea for constructing an appropriate dictionary is to
find bases which match comfortably to the smooth regions in the image and can also represent
the regions with sharp changes.

In the present study, 2D bases are generated by the Kronecker tensor product of 1D
bases. Since it is easier to find an optimal coefficient vector among a large number of possible
solutions, the bases are made to be overcomplete. We choose to construct two overcomplete
bases: 
Haar

2D and 
cos
2D as


Haar
2D = 
Haar

1D ⊗ 
Haar
1D ; 
cos

2D = 
cos
1D ⊗ 
cos

1D , (14)

where the 1D basis 
Haar
1D and 
cos

1D are designed from pre-defined Haar functions and cosine
functions by sampling finely their frequencies and locations.

The atoms of the 1D Haar basis are indexed by a scale variable v and location variable
w. We let variables run through the discrete collection of Haar wavelets with dyadic scales
v = 2j /n, locations w = 0, 1, . . . , n − n/2j and j = 0, 1, . . . , log2 n − 1, where n is the
length of the atoms. As an illustration, we define the atom of the 1D Haar basis at scale v and
location w by

φHaar
g (i) = ϕ(v(i − w)) =

⎧⎨
⎩

1, 0 < v(i − w) � 1/2
−1, 1/2 < v(i − w) � 1, i = 1, 2, . . . , n

0, others
(15)

In the basis, denoted as 
Haar
1D = {

φHaar
g ∈ �n

∣∣g ∈ K
}
, the atom φHaar

g only includes one
period and is zero padded, so that the atoms constitute a tight frame to decrease approximation
errors during linear combination. Likewise, we construct the following 1D cosine basis with
a collection of cosinoidal waveforms indexed by a, an angular frequency variable. More
precisely

φcos
g (i) = cos(ai), i = 1, 2, . . . , n. (16)

Let q be an integer and the set of all cosine atoms is generated with a = 2πg/(qn),g =
0, . . . , qn/2 − 1, an overcomplete cosine basis, denoted as 
cos

1D = {
φcos

g ∈ �n
∣∣g ∈ K

}
, is
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(a) (b)

Figure 2. Illustration of the generation of 2D bases. (a) 2D Haar basis constructed from 1D Haar
basis, (b) 2D cosine basis constructed from 1D cosine basis.

obtained. This is a q-fold overcomplete basis in which atoms are signals of consecutive
cosinoidal waveforms.

Actually, the 2D bases are large arrays formed by taking all possible products between the
elements of 1D bases. For instance, with the 1D basis 
Haar

1D of size n × √
K , we can obtain


Haar
2D of size n2 × K. Figure 2 depicts the generation of 2D bases. As shown in figure 2(a),

the atoms of 
Haar
1D are of size n × 1 and they are a set of Haar waveforms with various scales

and locations. After implementing the Kronecker tensor product with other atoms, 2D atoms
of size n × n are generated. For an image patch of size n × n, the 2D basis of size n2 × K is
necessary.

By comparing the Haar basis with the cosine basis in figure 2, it is observed that the
intensity distributions of different atoms exhibit different geometrical structures. Atoms of
the Haar basis are much sparser; as each atom has no more than three grey levels and its
energy is just located in a local region of the atom. In contrast, the structure features of
cosine atoms are more complicated, as pixels in each atom include a wide range of grey levels
changing gradually in neighbourhood. Because of that, the Haar basis could perform well
in reconstructing images with piecewise constant contents or sharp changes while the cosine
basis has an advantage of representing images with piecewise smooth contents. The dictionary
constructed in the present study consists of both 2D Haar basis and 2D cosine basis.

2.5. Segmentation as a prior

How to project an image on appropriate multiple-bases directly determines approximation
accuracy. One basis in the dictionary is generally efficient to represent one content while
ineffective for representing the other contents. An image is usually composed of several
regions corresponding to different contents, so it is not useful to scan over the whole image
with every basis in the dictionary. For that reason, we propose to use segmentation as a
guide to locate the edges of regions with a given content and then choose appropriate basis to
approximate every contents. To segment an image, we use a detector based on the notion of
NSD (Liu et al 1995), which detects edges by measuring local NSDs.

As shown in figure 3, for an input signal S(i), a filter h1(i) operates on it, and then the
variation of the S(i) ∗ h1(i) is calculated:

δ2(i) = [S(i) ∗ h1(i)]
2 ∗ h2(i) − [S(i) ∗ h1(i) ∗ h2(i)]

2, (17)

where h1(i) and h2(i) are linear normalized mean (i.e. rectangular) filters defined by
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Figure 3. Diagram of the nonstationary degree detector.

h1(i) = h2(i) = 1

L
rect

(
i

L

)
, (18)

where L is the length of the filters.
When the input signal is stationary at order 2, the output of such a detector is null.

Otherwise, the detector outputs higher values, indicating the presence of discontinuities
between two stationary segments in the input signal.

For a 2D image, filters of size L × L are applied to calculate its NSD. Accordingly, the
NSD of the input image is given by

δ2(i)[S(i) ∗ h1(i)]
2 ∗ h2(i) − [S(i) ∗ h1(i) ∗ h2(i)]

2, (19)

where h1(i, j) and h2(i, j) are convolutions of two linear normalized mean filters

h(i, j) = h(i) ∗ h(j), with h(i) = 1

L
rect

(
i

L

)
, h(j) = 1

L
rect

(
j

L

)
. (20)

The output image δ2(i) gives prominence to the edges of the input image y, since the edges
between different regions represent nonstationary pixels. Therefore, it is easier to extract the
edges of image y from image δ2(i) by the threshold method. For a volume data, to account
for the spatial correlation in the neighbouring slices, the NSD detector can be extended to 3D
to achieve more efficient edge detection.

3. Materials and methods

3.1. Acquisition of human cardiac DT-MRI

The DT-MRI acquisitions on ex vivo human hearts were performed on the Hospital of Neuro-
Cardiology of Lyon. We used a Siemens Avanto 1.5 T MR Scanner with a maximum gradient
strength of 40 mT m−1 and a slew rate of 200 T m−1 s−1. The sequence used is a Diffusion
Spin Echo EPI, with a Stejskal-Tanner scheme and a b-value of 1000 s mm−2. Ten human
hearts were acquired including six healthy ones and four severely diseased ones (ischaemic
cardiomyopathy). Each heart was located in a plastic container and fixed by hydrophilic gel to
maintain a diastolic shape. This setup has a low dielectric effect and also eliminates unwanted
susceptibility artefacts near the boundaries of the heart. In this paper, the LV (left ventricle)
long axis, aligning with the axis of the magnet bore, is determined as the intersecting line of
the two planes that divide the LV equally into four quadrants from base to apex. The short
axis is defined perpendicular to the long axis.

We exercised DT-MRI acquisition protocols defined with different number of diffusion
gradient directions ‘N’ and number of excitations ‘NEX’ as follows: (N, NEX) = (6, 1) and
(30, 1). We used configurations of cuboctahedron and rhombicuboctahedron for the protocols
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with 6 and 30 directions, respectively. Since DT-MRI acquisition for in vivo human heart is
a great challenge because of cardiac and breathing motions, six gradient directions are more
appropriated in clinical application due to short acquisition time. However, high numbers
of diffusion gradient directions are more immune to systematic artefacts and noise, with
significantly increasing the precision of diffusion tensor and DAIs calculations and reducing
rotational variance due to noise propagation (Landman et al 2007 Papadakis et al 2000).
Jones (2004) demonstrated that at least 30 unique sampling orientations are required for a
robust estimation of tensor orientation and MD. Therefore, we use ex vivo cardiac DT-MRI
data acquired with 6 diffusion directions and 30 diffusion directions to evaluate the proposed
method.

The diffusion un-weighted image, a reference image, was acquired using the same DTI
sequence with the diffusion gradient with b-value = 0 s mm−2. We perform the zone
segmentation of the heart with diffusion un-weighted images for their higher SNR and contrast
compared to DWIs. The other acquisition parameters were TE = 86 ms, TR = 8000 ms, slice
thickness = 2 mm, slice spacing = 2 mm, slice duration = 130 ms, number of slices = 52.
The volume data in each direction was arranged in a 128 × 128 × 52 array where spatial
resolution of each voxel is 2 × 2 × 2 mm3.

3.2. Implementation of DT-MRI denoising

The acquired ex vivo human cardiac DT-MRI images mainly consist of two regions: the
cardiac region of interest and the region outside the heart including black background and
hydrophilic gel. The background corresponds to the air outside the organ and the variation
represents noise. The intensity of the region with hydrophilic gel should be homogeneous in a
noise-free image since the water molecules have the same diffusion character in such a region.
Concerning the cardiac region, the information is more complex with anisotropic diffusion in
myocardium. Therefore, we choose to apply the Haar basis to the piecewise constant content
in the region outside the heart while using the cosine basis for the piecewise smooth content
in the heart region. We construct a dictionary composed of a Haar basis of size 64 × 196
and a cosine basis of size 64 × 289. The images in each region, divided into overlapped
patches of size 8×8, are reconstructed after denoising using the denoising model presented in
section 2.2.

Before that, the edges in the diffusion un-weighted image are detected by the NSD
algorithm. To take advantage of the spatial correlation in the neighbouring slices, two cubic
filters of size 3 × 3 × 3 are applied to the diffusion un-weighted image (figure 4(a)) and its
two neighbouring slices. As described in section 2.5, the output of the first stage y ∗ h1 is
simply the local mean value of the input image y while the output of the second stage δ2 is the
variance of this mean value. This method detects the edges in the diffusion un-weighted image
as shown in figure 4(b). Then, the edge between the two regions can be extracted by boundary
tracking in MATLAB. Before that, we convert the image into a binary image based on a global
threshold (14595 for figure 4(b)), estimated from the histogram of the image δ2(i, j) using
two-dimensional entropic thresholding (Abutaleb 1987). Thus, the obtained edge partitions
the cardiac DWI into two regions: cardiac region of interest and the region outside the heart
(figure 4(c)).

It is well known that the edge detection by thresholding is strongly affected by the
criterion for the selection of the threshold value. In the paper, we implement two-dimensional
entropic thresholding, which is based on the entropies of the grey level of the pixel and the
average grey level of its neighbourhood. Since the NSD detector has enhanced the edges,
the image δ2(i, j) presents high edge contrast. Therefore, it is feasible to detect the edge
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(b) (c) 

Background 

Gel 

Myocardium 

Ventricle cavity 

Region 1 

Region 2 

Detected edge 

Figure 4. Edge detection of cardiac DWI using the nonstationary degree detector. (a) The input
image of the NSD: diffusion un-weighted image, (b) the output image of the NSD, (c) the DWI is
segmented into two regions with the edge obtained from (b).

between the two regions using a global threshold. In experiments, two-dimensional entropic
thresholding performs well on selecting a proper threshold and detects the edge without breaks
or undesirable edge fragments. However, the double thresholding method, local thresholding
and also multi-stage thresholding may give more adaptive and robust results but they will
increase computation complexity and be more time consuming. Anyway, segmentation is an
open question and there are quite a number of segmentation methods. Among them, edge
detection by thresholding as we used is just a simple one and this is not our major topic.

It has been demonstrated that the noise in DWI presents a Rician distribution in which
random variable square is a non-central chi-square distribution. The means of two independent
Gaussian noises come from the real and imaginary channels of DT-MRI. Typical DWI contains
a non-signal region in the background corresponding to the air outside the organ. In such a
region, it is assumed that x2 = 0 and the variances are all caused by noise. The Rician noise
level σr used in (6) can be estimated by the square root of half expectation of the squared

intensity values in the non-signal regions of the corrupted image as σ̂r =
√

1
2E(y2) (Nowak

1999). For all the experiments in the cardiac DWIs, the same parameter setting has been used
for factor C = 1.13, patch size 8 × 8 and filters size 3 × 3 × 3.

The effectiveness of the proposed method in denoising cardiac DT-MRI is compared with
two conventional methods: PDE-based nonlinear diffusion denoising (Catte et al 1992) and
a wavelet-based prior model from Pizurica et al (2003). The parameters of all the methods
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have been experimentally optimized to produce the best denoising results with high SNR
and contrast in profile. For PDE-based denoising, its parameters includes diffusion function
g(∇I ) = exp((‖∇I‖/k)−2), variance of Gaussian to convolve gradient and iteration number,
while the parameters for the wavelet-based denoising are the threshold multiplication factor
and window size (parameter definitions can be found in the above references).

3.3. Denoising performance evaluation

We generate a simulated heart-like-shaped image as shown in figure 5(a) to evaluate the
behaviour of the SPDN algorithm with the dictionary of multiple bases and the NSD detector.
The simulated heart-like-shaped image presents two structures: the central part of the image
exhibits a heart shape akin to left and right ventricles while the rest of the image represents
the gel and air regions in cardiac DWI. The intensity of the left ventricular region is made to
change gradually from inside to outside to simulate the diffusion difference of the fibres
from the endocardium to the epicardium. We corrupt the simulated image with Rician
noise of different levels σr ∈ {5, 10, 15, 20, 25, 30} with respect that the intensity of the
noise-free image ranges from 0 to 221. As the noise-free image is known in advance for
a simulated image, the SNR is defined as (Pizurica et al 2003, Awate and Whitaker 2007)
10 · log10(Var(x)/Var(x̃−x)), where Var(·) denotes the variance of the intensities of the image,
x the noise-free image and x̃ either the noisy image y or the denoised image x̂ as defined in
section 2.2.

To assess the performance of the proposed denoising method on cardiac DWIs, the SNR
calculated on DWIs is the most intuitive measurement. Since we do not know the ground truth
of cardiac DWIs, the SNRs of the cardiac DWIs are computed over two regions of interest
(ROI). The conventional MR image SNR criterion is SNR = 10 · log10

(
x̃2

mean

/
σ 2

r

)
(Nowak

1999), where x̃mean designates the mean of the intensity in the ROI of the myocardium, and
σr denotes the standard deviation of the noise calculated from the air region in the image. In
addition, we also propose to apply another definition SNR 2 = 10 · log10

(
σ 2

M

/
σ 2

G

)
in order

to account for the very granular aspect of our DWIs and blurring effects in different regions
eventually produced by denoising algorithms. In this definition, we measure a signal variance
to noise variance ratio, where σ 2

M denotes the variance of the signal in the ROI of myocardium
and σ 2

G denotes the variance of the noise in the ROI of the gel region. Because the intensity of
the gel region in DWI is homogeneous in principle as discussed in section 3.2, this leads us to
calculate the noise from the intensity variance of the gel in this definition.

To further get insights into the denoising performance of the proposed method, a set of
slices are selected around the equatorial slice of each heart to measure the DT-MRI indices
before and after denoising. In the paper, the FA map, MD map, directionality map and
fibre architecture are employed to qualitatively illustrate the different performance of the three
denoising methods. Furthermore, we apply the quantitative statistics on the negative eigenvalue
count, mean and variance (Var) of FA, MD, CI and fibre length to give a comprehensive
analysis. These maps and their corresponding statistical analyses are implemented with
software Bioimagesuite (Papademetris et al http://www.bioimagesuite.org).

In the presence of noise and artefacts, the tensors at some voxels may yield negative
eigenvalues that are not physically possible and we should exclude these voxels from the
diffusion maps and statistics. Denoising allows decreasing the number of voxels with negative
eigenvalues. FA and MD are two parameters derived from the non-negative eigenvalues of
diffusion tensors, which describe the anisotropy and the diffusivity of diffusion, respectively.
FA measures the variability of water mobility in different directions and is defined as
FA ={ 3[(λ1−λ̄)2+(λ2−λ̄)2+(λ3−λ̄)2]

2(λ2
1+λ2

2+λ2
3)

}1/2
, where λ̄ is quantified as the mean of the three eigenvalues
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Figure 5. Denoising results on the simulated image with the Rician noise level σr = 20.
(a) Noise-free image. (b) Noisy image, SNR = 13.8 dB. Images denoised using (c) SPDN,
SNR = 17.9 dB, (d) PDE-based nonlinear diffusion denoising, SNR = 17.7 dB and (e) wavelet-
based denoising, SNR = 16.7 dB. The line profiles corresponding to images (a) and (c)–(e) are
shown in (f). Pixels around the arrow heads in images (d) and (e) exhibit obvious fine structure
losses and artefacts, and pixels in the circles in (f) are differences to be noted in denoising results.

of the diffusion tensor λ1, λ2, λ3. It ranges from 0 for isotropic diffusion to 1 for completely
anisotropic diffusion. MD, denoted as λ̄, indicates the mean diffusivity of water molecules,
which reflects the redistribution of intracellular and extracellular space volumes.

Directionality map, CI and fibre reconstruction all reflect the orientation distribution of
diffusion tensors defined by the principal eigenvectors. Directionality map, also called the
colour tensor, represents the principal eigenvector by means of a colour representation: the x
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Figure 6. Comparison of denoising results obtained with the three methods in terms of SNR in
the case of the simulated image with different noise levels σr ranging from 5 to 30.

(left–right) component as red, the y (anterior–posterior) component as green and the z (apex–
base) component as blue, and the brightness is modulated by FA in the paper. CI estimates
the orientation coherence of fibres and is defined as the mean dot product CI = 1

26

∑
ij v · vij

of the eigenvectors v and its 26 neighbouring voxels vij . A high CI value reflects directional
coherence of fibres in neighbouring voxels. It is well known that the heart fibre represents a
helix structure with the transmural gradient of fibre inclination angles. Fibre regularity, fibre
count and also fibre lengths and angles are important information in DT-MRI applications.

4. Results

4.1. Application to simulated images

Figures 5(a) and (b) show the simulated noise-free and noisy (σr = 20) images. In
figure 5(a), the contour in green represents the edge obtained with the NSD detector. The
results of denoising using the different methods are illustrated in figures 5(c)–(e) and their
profiles’ comparison are shown in figure 5(f). The SNR of the denoised image in figure 5(c) is
improved by 4.1 dB compared to the corrupted image, while the PDE-based denoising increases
the SNR by 3.9 dB and the wavelet-based filter increases the SNR by 2.9 dB as represented in
figures 5(d) and (e).

The proposed SPDN method (figure 5(c)) almost suppresses the noise while keeping a
very good spatial resolution (sharper edges are preserved) and high contrast (the denoised
image almost has the same dynamic range as the original image). In contrast, PDE-based
denoising leads to more fine structure losses (see the region indicated by the arrow in
figure 5(d)) and its contrast preservation is also worse than SPDN as can be observed in
the peaks and valleys of the profile shown in figure 5(f). On the other hand, wavelet-based
denoising introduces obvious artefacts, especially in the high intensity region as indicated by
the two arrows in figure 5(e). SPDN leads to less contrast loss and fewer artefacts than the
other two methods. This is particularly clear when comparing their profiles in figure 5(f).
More quantitatively, figure 6 gives the comparison between the three methods in terms of SNR
for different noise levels. It is seen that the proposed method and PDE-based method always
yield better results than the wavelet-based method except for the noise level σr = 30, to which
the obtained SNRs are close.
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(a)     (b) 

(c) (d) 

ROI

Figure 7. Denoising results on a DWI of ex vivo human cardiac DT-MRI datasets with (N, NEX) =
(6, 1) (a) Noisy DWI with SNR = 18.2 dB, SNR 2 = 4.5 dB. Image denoised using (b) SPDN,
SNR = 25.4 dB, SNR 2 = 10.4 dB; (c) PDE-based smoothing, SNR = 24.3 dB, SNR 2 =
8.2 dB; and (d) wavelet-based filter, SNR = 23.2 dB, SNR 2 = 6.6 dB. The line profiles in (e)–(h)
correspond to the images in (a)–(d).

4.2. Application to human cardiac DT-MRI

The results of denoising the real DWIs using the proposed method and PDE- and wavelet-
based denoising techniques are demonstrated in figure 7. Figure 7(a) represents a DWI of
ex vivo diseased human cardiac DT-MRI data with (N, NEX) = (6, 1). The proposed
method (figure 7(b)) produces the best performance with the highest SNRs (SNR = 25.4 dB,
SNR 2 = 10.4 dB) as the ROI marked in figure 7(a). This ROI corresponds to the myocardial
region of the left ventricle. In contrast, the PDE-based method presents some ‘washing effect’
by drastically modifying the grey level aspect of the original image and details and its SNRs
of the result are SNR = 24.3 dB, SNR 2 = 8.2 dB. Concerning the wavelet-based method,
it gives results visually similar to those of the proposed method, but with smaller SNRs
(SNR = 23.2 dB, SNR 2 = 6.6 dB). The performance difference between the three methods
can be further assessed with the profiles in figures 7(e)–(h). Using a PC with Intel Pentium
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Figure 7. (Continued.)

Dual E2140 1.60 GHz, 2.00 GB memory, windows XP platform, it takes about 4 min and 20 s
for denoising a 3D DT-MRI dataset of size 128 × 128 × 52 using the proposed method.

Figures 8 and 9 show the FA maps, MD maps and directionality maps of a slice of the
heart in figure 7 with (N, NEX) = (6, 1) and (30, 1), respectively, calculated before and
after denoising with the three methods. Their quantitative analyses are given in table 1. In
figure 8(a), the FA map before denoising exhibits noticeable noise-induced granular aspects
and even black stains because of negative eigenvalue, which are also present in the MD
maps (figure 8(b)) and directionality maps (figure 8(c)). With PDE-based and wavelet-based
denoising, many graininess artefacts remain with high FA and the negative eigenvalues are
almost not removed. In contrast, SPDN removes most of the negative eigenvalues and artefacts
in the maps. The directionality maps indicate that the principle eigenvectors are more regularly
oriented as the colour of neighbouring voxels changes gradually with less discontinuity after
denoising the DWIs using the proposed method. Note that the maps with (N, NEX) = (30, 1)
exhibit the same problems, but that granular aspects and negative eigenvalues are less severe
than in the maps derived from (6, 1), as can be observed in figure 9. It is found that SPDN
denoising yields the visually best maps than the other two methods, by removing more negative
eigenvalues and regularizing the direction distribution of diffusion tensors.

The above visual analyses are confirmed by the quantitative results in table 1. We observe
that denoising decreases the number of negative eigenvalues (the number of voxels with
positive eigenvalue is denoted by ‘Available voxels’ in the tables) and the FA mean and its
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Figure 8. DT-MRI index maps of a diseased heart of scheme (6, 1). (a) FA maps, (b) MD
(10−3 mm2 s−1) maps and (c) directionality maps. From left to right, the maps correspond to noisy
DT-MRI, and denoised DT-MRIs obtained with SPDN, PDE-based and wavelet-based denoising,
respectively.

variance while increasing the CI mean. Moreover, the indices of scheme (6, 1) after denoising
approximate to the values of (30, 1). For instance, after denoising the data of scheme (6, 1)
with SPDN, its FA mean decreases from 0.443 to 0.350, compared with the value of 0.429
and 0.414 for the other methods, 0.350 being the closest to the FA mean (0.300) of (30, 1).
Generally, among the three methods, the SPDN produces the most significant improvements
on indices: −21% for FA mean, −3% for MD mean and 52% for CI mean for data of scheme
(6, 1). The denoising effect on the data of scheme (30, 1) are −13% for FA mean, −1% for
MD mean and 28% for CI mean. Meanwhile, the decrease of MD is tiny compared with the
other indices.
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Figure 9. DT-MRI index maps of the same diseased heart in figure 8, but of scheme (30, 1).
(a) FA maps, (b) MD (10−3 mm2 s−1) maps and (c) directionality maps. From left to right, the
maps correspond to noisy DT-MRI, and denoised DT-MRIs obtained with SPDN, PDE-based and
wavelet-based denoising, respectively.

Figure 10 renders the fibres (in directionality colour map) of the heart with ten slices
around the slice in figure 7. Table 2 gives the indices of the fibres. The following thresholds
are used in fibre tracking: FA 0.05 (this FA threshold was chosen empirically in order to track
more fibres), minimum fibre length 5 mm and maximum fibre angle 60◦. We observe that
without denoising, the tracked fibres are in disorder and intermittent, while after denoising,
fibre tracking can smoothly construct the curvature of the trajectories, especially for the
data of scheme (6, 1) in figure 10(a). Compared with original 2851 fibres before denoising
(figure 10(a) left), a number of 3123 fibres are tracked from cardiac DT-MRI denoised with
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Figure 10. Myocardium fibre tracking before and after denoising the heart shown in figures 8
and 9, with (a) the DT-MRI of scheme (6, 1) and (b) of scheme (30, 1). Left column: with noisy
DT-MRIs. Right column: with DT-MRIs denoised using SPDN.

SPDN (figure 10(a) right) and the mean of fibre length increases from 6.6 mm to 7.6 mm.
The fibres also run more regularly with the mean of fibre angle decreased from 16.2◦ to 12.2◦

and are more consistent with fibre organization reconstructed from the data of scheme (30, 1)
(figure 10(b)). As for DT-MRI data of scheme (30, 1), denoising with the proposed method
makes the fibre architecture more delicate and precise, providing more structure details with
more tracked fibres as listed in table 2.

Finally, denoising results on the other nine hearts of scheme (30, 1) (three slices of each
heart) with the proposed method are reported in table 3. The results are consistent with those
in table 1: the decrease of FA mean and MD mean range from −3% to −21% and 0 to −4%
while the increase of CI mean ranges from 5 to 39%. It is interesting to note that, in table 3,
the MD means of the diseased heart are higher than the normal hearts.
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Table 1. Comparison of the denoising methods in terms of available voxels, fractional anisotropy,
mean diffusivity and fibre coherent index, for the images shown in figures 8 and 9.

FA MD (10−3 mm2 s−1) CI
Voxels Available

Samples in mask voxels Mean Var Mean Var Mean Var

(6, 1) Noisy 668 613 0.443 0.027 0.983 0.094 0.653 0.091
SPDN 656 0.350 0.023 0.957 0.092 0.992 0.123
PDE-based 621 0.429 0.027 0.976 0.097 0.701 0.097
Wavelet-based 656 0.414 0.026 0.974 0.082 0.743 0.106

(30, 1) Noisy 677 670 0.300 0.021 0.827 0.089 0.938 0.129
SPDN 674 0.261 0.018 0.818 0.090 1.198 0.118
PDE-based 670 0.292 0.020 0.826 0.090 0.944 0.133
Wavelet-based 670 0.283 0.020 0.826 0.089 1.003 0.131

Table 2. Quantitative analysis of the fibre architectures shown in figure 10. For each scheme, the
first line corresponds to the DT-MRI data before denoising and the second line to the data after
denoising using SPDN.

FA MD (10−3 mm2 s−1) Fibre length (mm) Fibre angle (◦)
Fibre Volume

Samples count (mm3) Mean Var Mean Var Mean Var Mean Var

(6, 1) 2851 8551 0.360 0.010 0.769 0.028 6.615 30.734 16.210 16.421
3123 8987 0.296 0.009 0.750 0.026 7.593 31.222 12.262 16.171

(30, 1) 3069 8885 0.271 0.008 0.635 0.024 6.236 22.305 10.416 16.685
3155 8956 0.245 0.007 0.627 0.024 6.202 19.875 8.170 13.755

5. Discussion and conclusion

As observed in the preceding section, after denoising the DT-MRI, the FA mean and its variance
decrease and the CI mean increases obviously. It also alters fibre tracking by increasing the
number of tracked fibres and fibre lengths. These are in agreement with the observations
reported in previous studies (Basser and Pajevic 2000, Koay et al 2007) that the presence
of noise induce negative eigenvalues, positive error in FA, disorder of the eigenvectors and
tracked fibres. These errors in DT-MRI indices are all because of the bias in the principal
eigenvalues and principal eigenvectors calculated from the noisy DT-MRI.

However, as two diffusion indices are computed from eigenvalues, it is observed that MD
means vary a little before and after denoising while FA means change a lot. This is due to the
definition of the two indices. So FA is intrinsically more susceptible to noise contamination
than MD, as reflected by its larger bias and error variance for the same SNR levels (Basser
and Pierpaoli 1998). We can also find that the denoising effects on the indices of scheme
(6, 1) are more obvious than those of (30, 1) and denoising makes the indices of scheme (6, 1)
approximate to those of (30, 1). This is because a high number of diffusion gradient directions
and longer acquisition time are more immune to systematic artefacts and noise. Therefore,
DT-MRI indices generated from data of scheme (30, 1) provide references for evaluating the
denoising performance on data of scheme (6, 1).

As indicated in table 3, the MD means for a diseased heart are higher than the normal
hearts. This finding is consistent with the findings of the DT-MRI study of Wu and Tseng
(2006). They report that FA will decrease if the organization of tissue structure is destroyed and
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Table 3. Results of denoising using SPDN on the other nine hearts of scheme (30, 1). For each
heart, the first line corresponds to the DT-MRI data before denoising and the second line to the
data after denoising using SPDN.

MD (10−3

FA mm2 s−1) CI
Voxel Available

Heart in mask voxel Mean Var Mean Var Mean Var

Normal 1 3057 2923 0.326 0.024 0.654 0.113 1.000 0.101
3057 0.303 0.025 0.624 0.118 1.195 0.115

Normal 2 2375 2314 0.338 0.023 0.633 0.174 0.951 0.147
2344 0.293 0.019 0.624 0.172 1.233 0.141

Normal 3 2373 2370 0.223 0.008 0.596 0.041 1.123 0.146
2372 0.216 0.007 0.598 0.040 1.173 0.146

Normal 4 2827 2820 0.302 0.013 0.587 0.089 0.823 0.211
2826 0.252 0.007 0.578 0.085 1.141 0.316

Normal 5 2056 2039 0.270 0.015 0.699 0.058 1.010 0.126
2046 0.244 0.012 0.696 0.055 1.197 0.125

Normal 6 3086 3059 0.253 0.017 0.800 0.118 0.831 0.159
3075 0.209 0.013 0.789 0.118 1.137 0.202

Diseased 1 2683 2668 0.312 0.018 0.836 0.073 0.987 0.123
2679 0.259 0.016 0.832 0.067 1.118 0.124

Diseased 2 2666 2659 0.270 0.012 0.760 0.038 1.097 0.111
2664 0.213 0.008 0.770 0.037 1.418 0.068

Diseased 3 2059 2002 0.303 0.022 0.821 0.090 0.919 0.109
2020 0.263 0.018 0.811 0.091 1.148 0.106

MD is significantly increased in the infarct (ischaemia) zone in the human heart. Endocardial
area is most susceptible to ischaemia. Therefore, positive angles had the most severe loss in
the infarct zone. Since the exact ischaemia zones are unknown for us now, more researches
are necessary for demonstrating that.

We compare the proposed method with two common filters for denoising DT-MRI.
According to the results, our proposed method consistently outperforms the PDE- and wavelet-
based filters in both qualitative and quantitative analyses. The method we have proposed
for denoising human cardiac DT-MRI is based on combining sparse representation with a
segmentation scheme using the NSD detector. The sparse representation exploits the unique
property of atom decomposition to reconstruct the underlying noise-free image. The use of
the NSD detector allows the different contents of the image to be segmented, which makes
the generation of the dictionary more adaptive and also improves the denoising result. The
obtained results show that the proposed method effectively reduces the noise in human cardiac
DT-MRI while preserving image details and contrast and improving the calculation accuracy
of diffusion tensors as well as the principal eigenvector field of the heart. That would allow a
more precise and robust fibre tracking of the myocardium. In the future work, the proposed
denoising method can be further optimized by designing more specific dictionaries with respect
to the particular features of human cardiac DWIs, or by extending the SPDN method to 3D
data.

In the proposed denoising method, there are three adjustable parameters: factor C in (8),
patch size and filter window size L. The parameter C influences the denoising results, but
rather slightly. C should be greater than 1. However, when C is too great, over-filtering can
occur. In practice, the values of C between 1.05 and 1.15 yield similar denoising results,
as the SNR difference between the denoised results obtained with C = 1.15 and 1.05 is less
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than 0.05 dB for the simulated images while the differences of SNR and SNR 2 are less than
0.3 dB and 0.2 dB separately for real cardiac images. In our experiments, setting C = 1.13
achieves the near optimal results for real cardiac images with a tradeoff between SNR and
SNR 2. Concerning the patch size, it is, in the field of image processing, well known that
spatial correlation in an image does not exceed 16 × 16. Therefore, one often simply chooses
a patch size among 8 × 8, 16 × 16 and 32 × 32. In our present study, 8 × 8 is a good choice in
terms of denoising effects (SNR and contrast in profile) and computation time (a larger patch
size will be more time-consuming with rather close results). As for the filter window size L,
it is generally chosen as 3, 5 or 7 according to the image in question. Here we use filters of
size 3 × 3 × 3 for cardiac DT-MRI and 3 × 3 for a simulated image since they produced the
best edge enhancement for the images studied.

The objective of the proposed segmentation is to obtain the myocardium region. The
proposed segmentation process is based on using the notion of NSD, which is particularly
powerful for detecting the presence of discontinuities between two regions in the input
image. For the ex vivo cardiac DT-MRI data investigated in the present study, the proposed
segmentation always works well on the diffusion un-weighted image. In principle, it could
still work in case greater contrast variations are present throughout the image. This aspect
should be further investigated for in vivo human cardiac DT-MRI. However, no matter for
in vivo and ex vivo cardiac image, it is better to apply segmentation as a guide to the choice of
the basis when denoising cardiac DT-MRI using the SPDN method. It also supplies an idea
for using SPDN to general image processing.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (60777004)
and International S&T Cooperation Project of China (2007DFB30320). The authors thank
Stanislas Rapacchi for his help in acquiring the data, and many other researchers in CREATIS-
LRMN for their helpful discussions and comments in this investigation.

References

Abutaleb A S 1987 Automatic thresholding of gray-level pictures using two dimensional entropy Comput. Vis. Graph.
Image Process. 47 22–32

Aharon M, Elad M and Bruckstein A 2006 K-SVD: an algorithm for designing overcomplete dictionaries for sparse
representation IEEE Trans. Signal Process. 54 4311–22

Alexander M E, Baumgartner1 R, Summers A R, Windischberger C, Klarhoefer M, Moser E and Somorjai R L
2000 A wavelet-based method for improving signal-to-noise ratio and contrast in MR images Magn. Reson.
Imaging 18 169–80

Arsigny V, Fillard P, Pennec X and Ayache N 2006 Log-Euclidean metrics for fast and simple calculus on diffusion
tensors Magn. Reson. Med. 56 411–21

Awate S P and Whitaker R T 2007 Feature-preserving MRI denoising: a nonparametric empirical Bayes approach
IEEE Trans. Med. Imaging 26 1242–55

Basser P J, Mattiello J and LeBihan D 1994 MR diffusion tensor spectroscopy and imaging Biophys. J. 66 259–67
Basser P J and Pajevic S 2000 Statistical artifacts in diffusion tensor MRI (DTMRI) caused by background noise

Magn. Reson. Med. 44 41–50
Basser P J and Pierpaoli C 1998 A simplified method to measure the diffusion tensor from seven MR images Magn.

Reson. Med. 39 928–34
Basu S, Fletcher T and Whitaker R 2006 Rician noise removal in diffusion tensor MRI MICCAI LNCS 4190 117–25
Catte F, Lions P L, Morel J M and Coll T 1992 Image selective smoothing and edge detection by nonlinear diffusion

SIAM J. Numer. Anal. 29 182–93
Chen B and Edward W 2005 Noise removal in magnetic resonance diffusion tensor imaging Magn. Reson. Med.

54 393–407

http://dx.doi.org/10.1016/0734-189X(89)90051-0
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1016/S0730-725X(99)00128-9
http://dx.doi.org/10.1002/mrm.20965
http://dx.doi.org/10.1109/TMI.2007.900319
http://dx.doi.org/10.1016/S0006-3495(94)80775-1
http://dx.doi.org/10.1002/1522-2594(200007)44:1elax <41::AID-MRM8elax
>3.0.CO;2-O
http://dx.doi.org/10.1002/mrm.1910390610
http://dx.doi.org/10.1137/0729012
http://dx.doi.org/10.1002/mrm.20582


1456 L J Bao et al

Chen S S, Donoho D L and Saunders M A 1998 Atomic decomposition by basis pursuit SIAM J Sci. Comput. 20 33–61
Elad M and Aharon M 2006 Denoising via sparse and redundant representations over learned dictionaries IEEE Trans.

Image Process. 15 3736–45
Galban C J, Maderwald S, Uffmann K and Ladd M E 2005 A diffusion tensor imaging analysis of gender differences

in water diffusivity within human skeletal muscle NMR Biomed. 18 489–98
Gerig G and Kubler O 1992 Nonlinear anisotropic filtering MRI data IEEE Trans. Med. Imaging 11 221–33
Gilboa G, Sochen N and Zeevi Y Y 2004 Image enhancement and denoising by complex diffusion processes IEEE

Trans. Pattern Anal. Mach. Intell. 26 1020–36
Gorodnitsky I F and Rao B D 1997 Sparse signal reconstruction from limited data using FOCUSS: a re-weighted

minimum norm algorithm IEEE Trans. Signal Process. 45 600–16
Granai L and Vandergheynst P 2004 Sparse decomposition over multi-component redundant dictionaries IEEE Proc

of Multimedia Signal Processing, Workshop on MMSP
Gudbjartsson H and Patz S 1995 The Rician distribution of noisy MRI data Magn. Reson. Med. 34 910–4
Guleryuz O G 2005a Nonlinear approximation based image recovery using adaptive sparse reconstructions and

iterated denoising: part I. Theory IEEE Trans. Image Process. 15 539–53
Guleryuz O G 2005b Nonlinear approximation based image recovery using adaptive sparse reconstructions and

iterated denoising: part II. Adaptive algorithms IEEE Trans. Image Process. 15 554–71
Hamarneh G and Hradsky J 2007 Bilateral filtering of diffusion tensor magnetic resonance images IEEE Trans. Image

Process. 16 2463–75
Jones D K 2004 The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte

Carlo study Magn. Reson. Med. 51 807–15
Koay C G, Chang L C, Pierpaoli C and Basser J P 2007 Error propagation framework for diffusion tensor imaging

via diffusion tensor representations IEEE Trans. Med. Imaging 26 1017–34
Landman B A, Farrell J D, Jones C K, Smith S A, Prince J L and Moria S 2007 Effects of diffusion weighting

schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector
measurements at 1.5 T NeuroImage 36 1123–38
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