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A Graph-Based Approach for Automatic Cardiac
Tractography

Carole Frindel,* Marc Robini, Joël Schaerer, Pierre Croisille, and Yue-Min Zhu

A new automatic algorithm for assessing fiber-bundle orga-
nization in the human heart using diffusion-tensor magnetic
resonance imaging is presented. The proposed approach dis-
tinguishes from the locally “greedy” paradigm, which uses
voxel-wise seed initialization intrinsic to conventional track-
ing algorithms. It formulates the fiber tracking problem as the
global problem of computing paths in a boolean-weighted undi-
rected graph, where each voxel is a vertex and each pair of
neighboring voxels is connected with an edge. This leads to
a global optimization task that can be solved by iterated con-
ditional modes-like algorithms or Metropolis-type annealing. A
new deterministic optimization strategy, namely iterated con-
ditional modes with α-relaxation using (t2)- and (t4)-moves,
is also proposed; it has similar performance to annealing but
offers a substantial computational gain. This approach offers
some important benefits. The global nature of our tractography
method reduces sensitivity to noise and modeling errors. The
discrete framework allows an optimal balance between the den-
sity of fiber bundles and the amount of available data. Besides,
seed points are no longer needed; fibers are predicted in one
shot for the whole diffusion-tensor magnetic resonance imag-
ing volume, in a completely automatic way. Magn Reson Med
64:1215–1229, 2010. © 2010 Wiley-Liss, Inc.
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Using the properties of water diffusion in the tissues, it
is possible to estimate the cardiac muscular organization
from diffusion-tensor magnetic resonance imaging (DT-
MRI). Water molecules diffuse more easily along the fiber
tracts than across them; this anisotropy is captured by the
diffusion-weighted MR signal. Tractography methods use
the information of directionality contained in diffusion
data to infer the fibrous architecture of the human heart.
Despite advances in tracking algorithms in DT-MRI, reliable
and robust tracking of fibers remains a challenge because
of the coarsely sampled and noisy nature of the data.

Streamline tracking algorithms reconstruct fibers incre-
mentally by adding a line segment of a few millimeters
in length to the end of the previously added line seg-
ment. The direction of the line segment is chosen based
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on some local function of the data such as the eigenvec-
tor with largest eigenvalue of the diffusion tensor (1–3)
or the direction maximizing an appropriately constructed
Bayesian posterior distribution (4).

Even if perturbations attributable to noise are usually
minor at a local scale, the error summation resulting from
the incremental and local nature of streamline tracking
algorithms may tend to disappointing results. For example,
at a voxel scale, an estimate of the eigenvector with largest
eigenvalue may differ from the true diffusion direction by
perhaps only a few degrees; however, the cumulative effect
of a few degrees of error at each of possible thousands of
increments can result in a reconstructed trajectory gradu-
ally meandering away from the trajectory of the true fiber
bundle.

Different methods have been proposed to overcome the
limitations of streamline tractography. Probabilistic track-
ing algorithms (5–7) treat the fiber orientation as a random
variable and define a distribution for it. In Ref. 6, the dis-
tribution is predicted using simulations, in Ref. 5, it is
estimated using Monte Carlo Markov Chain methods, and
direct Bayesian inference is used in Ref. 7 to character-
ize the fiber orientation uncertainty. Trajectories are then
generated using Monte Carlo sampling, which results in a
set of reconstructed trajectories that do not always reflect
reality. In fact, such approaches give an overview of the
uncertainty associated with a fiber path seeded in a spe-
cific point by producing a map of connection probabilities
between each discrete spatial location and the seed. Prob-
abilist tracking algorithms have shortcomings: first, Monte
Carlo sampling is computationally expensive, and second,
final outputs are spatial distributions rather than single
well-defined trajectories, which makes it difficult to further
decompose fibers into morphological descriptors for shape
analysis.

More recently, global approaches to fiber tracking were
proposed. They identify the optimal path between two vox-
els of interest, according to some global criterion, rather
than identifying paths arising from a single voxel. These
global approaches are less sensitive to noise. Front propa-
gation techniques (8–11) identify the best paths from a seed
to all other voxels by evolving a surface from this seed.
The surface front evolves faster along the fiber direction
estimates of the underlying tissue. Graph-based tracking
algorithms (12,13) formulate fiber tracking as the problem
of computing the shortest paths in a weighted digraph,
where each voxel is a vertex and edges are pairs of neigh-
boring voxels. These methods exhaustively search for the
best path connecting two given voxels of interest. Finally,
spin glass models (14,15) parameterize fibers using small
segments called spins, which are endowed with several
criteria gathered in a global energy.

© 2010 Wiley-Liss, Inc. 1215
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FIG. 1. Left: Representation of the DT volume as a boolean-weighted
undirected graph. Fibres to be predicted are displayed in red. Right:
Fibre approximation after minimization of the functional. The edges
that are parts of fibers have a weight equal to 1 (plain edges) and the
others have zero weight (dashed edges). [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

The above described approaches were proposed in the
context of neurology, where the goal is to find connections
between different anatomical brain regions. By contrast, in
the context of cardiology, the goal is to segment the whole
DT-MRI volume into fiber bundles to estimate the car-
diac muscle organization in one shot. Indeed, the motion
of the human heart is characterized by the contraction
and the relaxation of its intertwining constitutive fibers
(16); the spatial organization of cardiac fibers is a funda-
mental aspect of the overall and segmental heart contractile
function.

In this article, we readdress the tractography problem in
a global and automatic way that is especially designed for
cardiac imaging. Our approach is graph based; vertices are
voxels of the diffusion tensor (DT) volume and edges rep-
resent the possible connection of two neighboring voxels
by a fiber bundle. Starting from a given segmentation of
the myocardium, the problem is to select the edges that
best correspond to the available data and remove all oth-
ers by minimizing a global cost functional. Compared with
other graph-based tracking algorithms (12,13) (which give
the most probable trajectories connecting a seed to a given
set of target voxels) our approach is automatic: it produces
all the fiber bundles representing a DT-MRI volume, in one
shot, with uniform density (one fiber bundle per voxel) and
without any seed initialization. Optimization is performed
by iterated conditional modes (ICM)-like algorithms and
Metropolis-type annealing. A new deterministic optimiza-
tion strategy, namely ICM with α-relaxation using (t2)- and
(t4)-moves, is also proposed; it has similar performance to
annealing but offers a substantial computational gain.

This article is organized as follows. The next section
presents the essential aspects of our graph modeling
approach, and we discuss the considered optimization
techniques in Section “Optimization”. Section “Experi-
mental Setup” describes the elaboration of our synthetic
data and the acquisition of our real cardiac data. Our exper-
imental results on synthetic and real data are exposed in
Section “Results” and conclusions and perspectives are
given in the last section.

GRAPH MODEL

We represent a diffusion tensor volume as a boolean-
weighted undirected graph, starting from a given

segmentation of the myocardium in the case of real data.
Vertices are voxels of the diffusion tensor volume and edges
connect every pair of voxels with respect to a given neigh-
borhood system on the set of vertices of the graph (e.g., the
26-nearest neighbors system). As depicted in Fig. 1, our
method selects the edges that best fit the available data by
minimizing a cost functional describing the tractography
problem in a global way. Let us, respectively, denote by V
and E the set of vertices and the set of edges of the graph.
The weight of an edge e is denoted by we and is either 0 or
1, we = 1 meaning that e is part of a fiber bundle.

To select the set of edges in the graph that best matches
the true fiber bundles, we minimize a cost functional J :
{0, 1}|E | → R whose argument is the set of weights w =
{we; e ∈ E} assigned to the edges. This functional is made of
two terms: a data-fidelity term and a topological criterion.

Data-Fidelity Term: Compatibility of Edges and Tensors

The role of the data-fidelity term is to favor edges connect-
ing two voxels that are likely to be connected by a fiber
bundle. There are two ways to define this term: edge-wise
(an edge is compared to two tensors) and vertex-wise (a
tensor is compared to two edges). The edge-wise model
restricts fiber orientations to edges, which is not always
satisfactory as edge orientation possibilities are limited.
Therefore, we propose a data-fidelity term based on the
vertex-wise model.

Orientation Cost Function

A set of two adjacent edges with common end vertex v
defines the tangent of a possible fiber bundle going through
v . Given an edge e with end vertices v and w , we denote
the vectors −→vw and −→wv by εv (e) and εw (e), respectively. The
fidelity of a possible diffusion direction at some voxel v
is compared to the associated vertex tensor Tv using the
following cost function, which favors the case where the
mean orientation of two adjacent edges is aligned with the
vertex tensor:

M (Tv , e1, e2) = 1 − ‖Tv ē‖2

‖ē‖2 |‖Tv |‖2
, [1]

where ē = εv (e1) − εv (e2) represents the mean orientation
defined by edges e1 and e2 adjacent to vertex v (see Fig. 2),
and |‖.|‖2 is the spectral norm induced by the Euclidean
norm (|‖A|‖2 = supx �=0

‖Ax‖2
‖x‖2

, which reduces to the largest
eigenvalue in modulus when A is symmetric).

FIG. 2. Tangent-based data-fidelity term. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 3. Data-fidelity term: specific cases considered for the choice
of F1 and F0 in (3). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Data Fidelity Term

Let E(v ) be the set of edges adjacent to vertex v and let
d(v ) = ∑

e∈E(v ) we. Using the orientation cost function
(Eq. [1]), the data-fidelity term Fdata has the following form:

Fdata(w ) =
∑
v∈V

Fv (w ), [2]

with

Fv (w ) =




1
�v

∑
{e1,e2}⊂E(v )

〈εv (e1),εv (e2)〉<0

×we1 we2 M (Tv , e1, e2) if d(v ) ≥ 2
F1 if d(v ) = 1
F0 otherwise,

[3]

where the normalization constant �v is given by

�v =
∑

{e1,e2}⊂E(v )
〈εv (e1),εv (e2)〉<0

we1 we2 , [4]

and F0 and F1 are positive constants whose choice is
discussed in Section “Choice of F0 and F1.”

The constraint 〈εv (e1), εv (e2)〉 < 0 in the summation is
meant to enforce cardiac geometrical constraints. When
dealing with cardiac data, it is naturally assumed that the
centers of connected neighboring voxels are joined by fiber
bundles forming circular arcs. Simple geometrical consid-
erations can be used to discriminate arcs whose radius
of curvature are not compatible with the human heart
architecture (bends). In particular, it is natural to ignore
combinations of edges with angle smaller than π/2.

Topological Criterion and Global Cost

There exist many configurations in the graph that cannot
correspond to true fiber bundles. In particular, histologi-
cal studies have shown that crossings do not occur in the
human left ventricle (17). We can therefore add a crite-
rion to specify that the graph is composed of lineic objects.
An efficient way to introduce such prior information at a

local level is to encourage each vertex to be connected to at
most two neighbors. This is done by means of the following
topological cost function:

Ftopo(w ) =
∑
v∈V

�v (w ), [5]

where

�v (w ) =
{

d(v ) − 2 if d(v ) > 2
0 otherwise.

[6]

Then, the global cost functional characterizing our prob-
lem is given by

J : w ∈ {0, 1}|E | 	→ Fdata(w ) + αFtopo(w ), [7]

where, depending on the optimization technique, the
parameter α is either set to 1 [classical ICM and simu-
lated annealing (SA)], or gradually increased during the
minimization process [ICM with α-relaxation].

Choice of F0 and F1

The specific values F0 and F1 taken by Fv (w ) (Eq. [3]) when
the vertex degree d(v ) is equal to 0 or 1 are meant to deal
with the two cases depicted in Fig. 3: (a) “cutting inside the
fiber” and (b) “cutting off a fiber extremity.” More specif-
ically, a fiber should not be cut into two parts because
one tensor on the fiber trajectory is inaccurate, while fiber
extremities have to be cut off when the tensor is too noisy
in order to prevent erroneous fiber terminations and bor-
der effects. This is particularly true for real cardiac data.
Indeed, because we apply a mask to our graph to segment
the myocardium from the background, it may happen that
some voxels of the background are not removed, which
leads to unrealistic fiber terminations as shown in Fig. 4.

Let �(e) be the energy variation observed when setting
the weight of an edge e to zero. We have

�(e) = Fu(w0) − Fu(w1) + Fv (w0) − Fv (w1), [8]

FIG. 4. Unrealistic fiber terminations from real cardiac data (region
encircled by dashed lines). LV stands for left ventricle. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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FIG. 5. Error angle between the fiber tangent and the tensor. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

where u and v are the end vertices of e, w1 is the set of
weights before setting we to zero, and w0 is the set of weights
after setting we to zero. For cases A and B depicted in Fig. 3,
this writes

�(eA) = 2F1 − (Fu(w1) + Fv (w1)),
�(eB) = F0 − Fv (w1).

[9]

For case A, the nonconnected case w (eA) = 0 should
never be preferred to the connected case w (eA) = 1, that is,
we should have �(eA) ≥ 0, which suggests to set F1 = 1
(the maximal value of Fv (w )).

For case B, we should favor the nonconnected case when
the orientation cost M (Tv , eB, e) exceeds a certain thresh-
old F0. In this situation, we should have Fv (w1) ≥ F0. The
orientation cost M (Tv , eB, e) can be associated to an error
angle θ between the fiber tangent and the tensor. Let us
assume that the tensor Tv is highly anisotropic so that Tv ē
corresponds approximatively to the projection of ē on the
principal direction of the tensor Tv (see Fig. 5). In this case,

cos θ ≈ ‖Tv ē‖2

‖ē‖2|‖Tv |‖2
. [10]

From definitions (1) and (3), it follows that

Fv (w1) ≈ 1 − cos θ [11]

and hence we should have

F0 ≤ 1 − cos θ . [12]

Therefore, the constant F0 can be interpreted as a cutting
angle. To select an appropriate value for F0, we simply have
to fix the maximal error angle to be tolerated at a fiber ter-
mination. Because our graph is supported by a 3D regular
voxel lattice with at least 26-nearest neighbor connectivity,
π
4 is a fair compromise, so that we finally set F0 = 1 − 1√

2
.

The above choices for the values of the thresholds F0 and
F1 are adapted to cardiomyopathies and cardiac tumors
because a fibrous structure subsists in these cases. [The
myocardial fibers are disarrayed in orientation in the case
of cardiomyopathies (18) and often run through the tumoral
mass in the case of cardiac tumors (e.g., fibromas (19)).]

OPTIMIZATION

Minimizing the cost function J (Eq. [7]) is a challenging
optimization task, as J typically exhibits numerous local
minima. In this context, stochastic optimization techniques
like SA have shown good performance for many computer
vision applications [see, e.g., (20)]. Annealing is a dynamic
Monte Carlo method controlled by a temperature param-
eter inspired by physical annealing processes (21). In the
zero temperature limit, Metropolis-type SA boils down to
the popular deterministic optimization algorithm known
as ICM (22). In practice, SA is generally much slower than
deterministic approaches and it is thus important to assess
the benefits associated with SA. In this section, we propose
an improved ICM-like algorithm, and we discuss the imple-
mentation of SA to minimize J . The relative performance of
the two methods is compared in the experimental section.

Optimization by ICM

A straightforward application of ICM to the minimization
of the cost function J is to update one edge at each iteration.
This simple updating strategy is repeatedly iterated over all
edges of the graph in a quasi-random manner, and the visit
of all the edges of the graph is called a sweep. The algo-
rithm is run until convergence, that is, until no edge weight
is changed during one sweep. Indeed, at each iteration,
the current edge weight is assigned to the value that gives
the smallest cost; therefore, the cost function decreases at
each iteration and, because the state space {0, 1}|E | is finite,
it is guaranteed that ICM converges in a finite number of
iterations.

Updating Strategies

The energy landscape defined by a single-edge flip strategy
has many poor local minima that are likely to trap the ICM
algorithm. Consequently, it is interesting to introduce larger
moves in the configuration space to reduce the number of
irrelevant minima and hence to increase the chance of ICM
to produce good solutions. We consider the three updating
schemes described below.

Single-edge Moves (t1). This is the simplest updating
scheme: it flips the value of one edge weight at a time under
the condition that the cost function does not increase.

Edge-pair Moves (t2). This scheme operates on pairs of
edges sharing an end vertex. Given such a pair of edges,
it selects the weighting configuration that leads to the
smaller value of the cost function. Examples of such flips
are depicted in Fig. 6. (Note that (t1)-moves belong to the
set of (t2)-moves).

Crossing Scheme (t4). This updating scheme is meant to
avoid the fiber crossings that are observed in the local
minima obtained with single-edge flips. The correspond-
ing moves are illustrated in Fig. 7: a fiber crossing (i.e., two
intersecting edges with weight 1) is replaced by parallel
fibers (i.e., two parallel edges with weight 1) whenever it
leads to a smaller value of the cost function.

Optimization by SA

At each iteration of SA, a new candidate solution y is
generated from the current solution x by drawing from a
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FIG. 6. a: Possible transitions from connected to nonconnected ver-
tices with a t2 updating scheme; (b) corresponding flip possibilities.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

probability distribution q(x, .) defined by a Markov matrix
q on E . Then, y becomes the current solution if its energy
is smaller than the energy of x. Otherwise, if the energy of
y is greater than the energy of x, then y becomes the cur-
rent solution with a probability, which decreases with the
energy difference and increases with temperature. The tem-
perature is gradually decreased so that nearly any move is
accepted during the first iterations, whereas most “uphill”
moves are discarded by the end of the annealing process.
Roughly speaking, the possibility to move “uphill” pre-
vents SA from being stuck in poor local minima and SA
behaves similar to ICM at low temperatures.

Let � denote the configuration space {0, 1}|E | and let
q : �2 → [0, 1] be a symmetric and irreducible Markov
kernel on � called the communication kernel. The commu-
nication kernel specifies how to generate a new candidate
solution from the current one. It is usually defined by
selecting a neighborhood system N (�) = {Nw (�) : w ∈ �}
and setting

q(w , x) =
{|Nw (�)|−1 if x ∈ Nw (�),

0 otherwise.
[13]

For any β ∈ R
*+, define the transition probability matrix Pβ

on � by

Pβ (w , x) =
{

q(w , x) exp(−β(J (x) − J (w ))+) if x �= w ,
1 − ∑

z∈�\{w} Pβ (w , z) otherwise,
[14]

where a+ := max{a, 0}, and let (βn)n∈N* be a nondecreasing
positive real sequence called the cooling schedule [(βn)n

is a sequence of inverse temperatures]. A Metropolis-type
annealing algorithm to minimize J is a discrete-time nonho-
mogeneous Markov chain (Xn)n∈N* with transitions P(Xn =
x|Xn−1 = w ) = Pβn (w , x). Under our assumptions, Pβ is
irreducible and aperiodic. Its unique equilibrium proba-
bility measure is the Gibbs distribution πβ with energy J
and temperature β−1: πβ (w ) = Z−1 exp(−βJ (w )), where Z
is a normalizing constant. One can check that πβ tends to

the uniform distribution on the set �min of global minima
of J as β goes to infinity. Hence, the key idea of annealing is
that, for sufficiently slowly increasing cooling schedules,
the law of Xn should be close to πβn and, consequently, one
can expect that

lim
n→∞ inf

w∈�
P(Xn ∈ �min|X0 = w ) = 1. [15]

Early results show that this desirable property holds for
suitably adjusted logarithmic schedules (23–25). However,
it is demonstrated in (26) that exponential cooling must
be preferred as soon as one deals with a finite amount of
computing time. We use exponential cooling schedules of
the form

βn = βmin

(
βmax

βmin

) n
N

, [16]

where βmin and βmax, respectively, denote the initial and
final inverse temperature values, and N is the length of
the annealing chain. The selection of βmin and βmax is per-
formed according to the methods proposed in (27) in the
context of image reconstruction.

Communication Kernels

In our experiments, we will consider two different commu-
nication mechanisms q1 and q2 of the form (Eq. [13]) corre-
sponding, respectively, to single-edge moves and edge-pair
moves. Let ζ (x, w ) = {e ∈ E | xe �= we} denote the set of
edges, where x and w differ. The associated neighborhood
systems N1,w (�) and N2,w (�) are defined as follows.

Single-edge Moves (q1). N1,w (�) is the set of configurations
x ∈ � that differ from w only at one edge:

N1,w (�) = {x ∈ � | |ζ (x, w )| = 1}. [17]

Edge-pair Moves (q2). N2,w (�) is the set of configurations
x ∈ � that differ from w at most two edges sharing an end-
vertex. In other words, N2,w (�) is the set of configurations
x ∈ � such that


|ζ (x, w )| ≤ 2
If ζ (x, w ) = {e1, e2} with e1 �= e2, then e1 and

e2 share an end vertex.

[18]

FIG. 7. a: Possible transitions from connected to nonconnected ver-
tices with a t4 updating scheme; (b) corresponding flip possibilities.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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FIG. 8. Left: Principal direction field associated with the synthetic cylindrical dataset. Right: DT field associated with the synthetic cylindrical
dataset.

EXPERIMENTAL SETUP

Synthetic Data

Computer-generated data allow accurate error analysis and
targeted testing of specific fiber characteristics, as the pre-
cise trajectory of the fibers to be tracked is known in
advance. We generated an artificial principal direction field
φ with cylindrical shape and size 15 × 15 × 5. The field
is depicted in Fig. 8, and the corresponding expression in
polar coordinates is

φ(ρ, θ , z) =
{

(sin θ , − cos θ , 0) if ρ ≥ ρmin

(0, 0, 0) otherwise.
[19]

The associated DT field is given by

T (x, y , z) = v1vT
1 + κ

(
v2vT

2 + v3vT
3

)
[20]

with v1 = φ(x, y , z), v2 = (0, 0, 1), v3 = v1∧v2, and κ ∈ (0, 1).
Putting it another way,

T (x, y , z) = R � RT , [21]

where � is the 3 × 3 diagonal matrix with coefficients
(0, κ, κ) and R is the 3×3 orthogonal matrix whose columns
are the coordinates of v1, v2, and v3.

We used the Stejskal-Tanner diffusion equations to com-
pute the DW images associated with T . The corresponding
MR measurement without diffusion sensitization was cho-
sen to be constant, and we considered the cuboctahedron
encoding scheme (six directions) to simulate the gradi-
ent sequence. Several rician noises with different standard
deviation values were added to the “ideal” DW volumes.
The resulting sequences of noisy DW volumes were used
to estimate a discrete DT field using least-squares estima-
tion. Figure 9 shows examples of simulated DW volumes
together with the corresponding synthetic DT fields.

FIG. 9. Slices of the simulated DW volumes and associated DT fields with increasing noise standard deviation (from σ = 0 to σ = 1.2 with
a constant step of 0.3). The encoding gradient related to the DW image is G = 1/

√
2 (1, 0, 1).
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FIG. 10. Fibre tract estimations from the synthetic dataset using the streamlining approach. The displayed fibers have length greater than
50 mm. Left to right: Increasing noise level from σ = 0 (PSNR = +∞) to σ = 1.2 (PSNR = 4.4 dB) with a constant step of 0.3. Top to bottom:
Integration steps (0.1 and 1) for the Runge-Kutta integration scheme. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Real Data

We studied 16 ex vivo human hearts from healthy to
severely diseased. Each heart was placed in a plastic con-
tainer filled with hydrophilic gel to maintain diastolic
shape. The data were acquired with a Siemens Avanto 1.5 T
MR Scanner. Diffusion images were obtained using an echo
planar imaging pulse sequence with the following parame-
ters: 128×128 image size, 2×2×2 mm3 resolution, and 52
contiguous axial slices. The DT-MRI acquisition protocol is
generally defined by the number Nd of diffusion-sensitizing
directions and the number Ne of excitations used for sig-
nal averaging. In this work, (Nd, Ne) = (12, 4) was selected
among other combinations in agreement with the compar-
ison of the acquisition protocols conducted in (28). The
acquisition time for a 3D dataset is about 7–8 min.

RESULTS

Synthetic Data

We applied our global tractography approach and the
streamlining approach on the synthetic dataset corrupted
by Rician noise with peak signal-to-noise ratio (PSNR) rang-
ing from +∞ to 1 dB (which corresponds to σ ∈ [0, 1.5]);
the PSNR is defined by

PSNR = 10 · log10

( |V | �f 2

‖d − f ‖2
2

)
, [22]

where �f is the voxel value range, ‖.‖2 is the standard
Euclidean norm, and |V | is the number of vertices (each
vertex is associated to a voxel). The methods are com-
pared quantitatively by means of specific measures, namely
mean fiber length, fiber-length dispersion, fiber number,
and fiber error, the precise definition of which is given in
Section Quantitative Analysis. Note that both approaches
are implemented in C and were run on a standard (2.66
GHz, 2 Gb RAM) PC.

In the case of our approach, we consider the sets of edges
defined by the 26- and the 124-nearest neighbor systems.
More specifically

E = {{v , v ′} ⊂ V | v ′ ∈ Nv (V )}
with Nv (V ) = {v ′ ∈ V | ‖v ′ − v‖2 ≤ √

3} (26-connectivity)

or Nv (V ) = {v ′ ∈ V | ‖v ′ − v‖∞ ≤ 2} (124-connectivity),

where ‖.‖2 and ‖.‖∞, respectively, stand for the �2- and the
�∞ norm.

Qualitative Analysis

Figures 10–12 show the estimation of fiber tracts from
the synthetic cylindrical dataset using our graph-based
approach with 26 and 124 connectivities and using
the streamlining approach. The streamlining approach
(Fig. 10) was run with integration steps of 0.1 and 1. The cri-
teria for stopping the tracking are thresholds on fractional
anisotropy (FA ≤ 0.08) and on curvature (to avoid highly
bended fibers, the angle between two successive principal
directions is kept smaller than 20◦.). The results associ-
ated with the graph-based approach (Figs. 11 and 12) were
obtained using (a) ICM with a fixed value of the parameter α

in (Eq. [7]) [α = 1] and edge-pair moves, (b) ICM with grad-
ual increase of α and both edge-pair moves and “crossing
scheme” moves, and (c,d) SA with edge-pair moves. The
results associated with single-edge moves are not as good;
they are not displayed here.

When using the proposed graph-based approach, some
fibers may deviate from the expected trajectory even for
low noise levels; this effect is less pronounced in the case
of streamlining. However, the fiber density obtained with
our approach is more robust to noise.

Quantitative Analysis

Graph Energy. Tables 1 and 2 give the mean energy per ver-
tex J/|V | obtained with our approach using different opti-
mization strategies in the case of 26- and 124-connectivity.

Compared to standard ICM, the Metropolis-type anneal-
ing algorithm produces configurations with substantially
lower energies and hence better approximations of the
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FIG. 11. Fibre tract estimations from the synthetic dataset using our approach with 26-connectivity (6523 edges). The displayed fibers have
length greater than 50 mm. Left to right: Increasing noise level from σ = 0 (PSNR = +∞) to σ = 1.2 (PSNR = 4.4 dB) with a constant step
of 0.3. Top to bottom: Optimization techniques: (a) ICM with α = 1 using (t2)-moves, (b) ICM with α-relaxation using (t2)- and (t4)-moves, (c)
SA with communication q2 and 8000|E| iterations, and (d) SA with communication q2 and 64, 000|E| iterations. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

global fibrous structure according to our model. Note that
increasing the number of iterations for Metropolis-type
annealing gives better estimates but is obviously more time
consuming. We also observe that the use of larger moves in
the minimization process (i.e., (t2)-moves rather than (t1)-
moves in the case of ICM and communication of type q2

rather than q1 in the case of annealing) produces deeper
minima. In other words, changing the weights of several
edges simultaneously improves the convergence rate.

ICM with α-relaxation outperforms standard ICM and
sometimes SA; this is particularly true when using both
(t2)- and (t4)-moves. Indeed, α-relaxation allows gradual
increase of the complexity of the minimization problem,
which avoids being trapped in poor local minima. Fur-
thermore, the proposed deterministic optimization strategy
(ICM with α-relaxation using (t2)- and (t4)-moves) per-
forms better than SA with 16, 000|E | iterations in the case
of 26-connectivity when the PSNR is high (σ < 0.6)
(the corresponding computational gain is 46

6 ≈ 7.66). It
performs better than SA with 64, 000|E | iterations in all
cases when considering 124-connectivity (which gives a

computational gain of 259
6 ≈ 43.16). This last observation

shows that the proposed modified ICM algorithm is less
sensitive than SA to the increase in complexity associated
with higher connectivity.

As far as the final energy level is concerned, these results
suggest that one should favor the proposed modified ICM
algorithm in the case of high SNR and SA in the case of low
SNR.

Mean Fiber Length. Figure 13 displays the mean fiber
length for the whole fiber population as a function of
the noise level using streamlining and using the pro-
posed graph-based approach. Our approach gives fibers
with greater length than does streamlining with an inte-
gration step of 1 (for all noise levels) and streamlining with
an integration step of 0.1 when the PSNR is smaller than
32 dB. From a PSNR point of view, it is the area from 20
to 10 dB that is meaningful in terms of real data quality.
Similar results are obtained with 124-connectivity.

In the case of streamlining, the mean fiber length drasti-
cally decreases as the noise level increases in the low PSNR
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FIG. 12. Fibre tract estimations from the synthetic dataset using our approach with 124-connectivity (22,829 edges). The arrangement is
the same as in Fig. 11. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

region. This high sensitivity to noise is due to the fact that
the termination of fiber tracts depends on the fractional
anisotropy and on the curvature angle whose accuracy is
highly noise dependent. Our approach presents more stable

mean fiber length thanks to the topological term, which
enforces each vertex to be connected to at most two neigh-
bors and thus tends to produce fibers with similar lengths
independentlyof the noise level.

Table 1
Energies and Computation Times Associated with Fibre Tract Estimations Obtained from the Synthetic Dataset with our Approach Using
26-Connectivity

Method Comp. time σ = 0 σ = 0.3 σ = 0.6 σ = 0.9 σ = 1.2

t1 ICM 1 0.549 0.550 0.568 0.572 0.582
SA (8000|E|) 16 0.344 0.406 0.482 0.526 0.547

q1 SA (16,000|E|) 30 0.334 0.397 0.475 0.522 0.546
SA (32,000|E|) 56 0.323 0.390 0.466 0.508 0.544
SA (64,000|E|) 115 0.311 0.383 0.461 0.511 0.541

t2 ICM 2 0.446 0.480 0.505 0.512 0.524
SA (8000|E|) 24 0.317 0.399 0.452 0.476 0.499

q2 SA (16,000|E|) 46 0.305 0.390 0.444 0.469 0.490
SA (32,000|E|) 88 0.301 0.383 0.438 0.462 0.478
SA (64,000|E|) 170 0.295 0.376 0.434 0.458 0.472

t1 ICM 3 0.341 0.426 0.494 0.537 0.556
t2 + 4 0.308 0.393 0.454 0.490 0.501
t2

⋃
t4 relaxation 6 0.304 0.387 0.445 0.463 0.485

The computation time is divided by the computation time corresponding to ICM with α = 1 and (t1)-moves.
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Table 2
Energies and Computation Times Associated with Fiber Tract Estimations Obtained from the Synthetic Dataset with our Approach Using
124-Connectivity

Method Comp. time σ = 0 σ = 0.3 σ = 0.6 σ = 0.9 σ = 1.2

t1 ICM 1 0.552 0.573 0.588 0.591 0.595
SA (8000|E|) 29 0.374 0.414 0.446 0.476 0.484

q1 SA (16,000|E|) 55 0.357 0.400 0.436 0.459 0.472
SA (32,000|E|) 105 0.344 0.392 0.423 0.447 0.460
SA (64,000|E|) 209 0.336 0.385 0.412 0.438 0.449

t2 ICM 3 0.428 0.471 0.509 0.525 0.534
SA (8000|E|) 35 0.355 0.401 0.437 0.459 0.476

q2 SA (16,000|E|) 69 0.339 0.385 0.421 0.448 0.463
SA (32,000|E|) 130 0.321 0.371 0.407 0.433 0.446
SA (64,000|E|) 259 0.303 0.359 0.395 0.421 0.438

t1 ICM 3 0.348 0.398 0.441 0.473 0.495
t2 + 4 0.290 0.355 0.394 0.430 0.445
t2

⋃
t4 relaxation 6 0.284 0.346 0.389 0.420 0.436

The computation time is divided by the computation time corresponding to ICM with α = 1 and (t1)-moves.

Fibre-length Dispersion. The fiber-length dispersion is
defined as the ratio of the fiber-length standard deviation
to the mean fiber length.

Figure 14 displays the fiber-length dispersion for the
whole fiber population as a function of the noise level
using streamlining and using the proposed graph-based
approach. For all noise levels and all optimization strate-
gies, our approach produces fibers with lower length
dispersion than does streamlining. Similar results are
obtained when considering 124-connectivity.

The fiber-length dispersion gradually decreases as the
noise level increases. In the case of streamlining, the fiber-
length dispersion is high because of the cohabitation of long
fibers (accurate fiber tract estimations) with short ones that
appear near the mask boundaries. When the noise level
is high, long fibers are less numerous and the number of
short fibers is higher as the noise corrupts the fractional

FIG. 13. Mean fiber length associated with fiber tract estimations
obtained from the synthetic dataset with our approach using 26-
connectivity and with the streamlining approach. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.
com.]

anisotropy and the curvature angle, which are used as ter-
mination criteria. By comparison, our approach presents
more stable dispersion, which is again a consequence of
the topological term. The SA algorithm produces solutions
with higher fiber-length dispersion than those obtained
with ICM. Yet, this observation must be put into perspective
as SA leads to significantly longer fibers.

Number of Fibers. Tables 3 and 4 display the number of
fibers estimated using streamlining with different integra-
tion steps and using the proposed graph-based approach
in the case of 26-connectivity (the results are similar in the
case of 124-connectivity). Fibres with length smaller than
4 mm were not taken into account. Besides, in the case of
streamlining, the number of seeds is equal to the number of
voxels, and redundant fibers are removed (our graph-based
approach does not produce redundant fibers).

FIG. 14. Fiber-length dispersion associated with fiber tract estima-
tions obtained from the synthetic dataset with our approach using
26-connectivity and with the streamlining approach. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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Table 3
Number of Fibers Associated with Fiber Tract Estimations Obtained
from the Synthetic Dataset with our Approach Using
26-Connectivity

Method σ = 0 σ = 0.6 σ = 1.2 Evolution (%)

t1 ICM 68 82 90 32.3
SA (8000|E|) 30 34 38 26.7

q1 SA (16,000|E|) 28 31 34 21.4
SA (32,000|E|) 24 26 29 17.8
SA (64,000|E|) 22 24 25 13.6

t2 ICM 62 75 80 29.1
SA (8000|E|) 26 29 32 23.1

q2 SA (16,000|E|) 24 27 29 20.8
SA (32,000|E|) 22 23 25 15.6
SA (64,000|E|) 20 20 21 5

t1 ICM 45 49 55 22.2
t2 + 38 40 44 15.7
t2

⋃
t4 relaxation 35 37 39 11.4

Compared to standard ICM, Metropolis-type annealing
produces less fibers (increasing the number of iterations of
SA further reduces this number). This is a consequence of
our global model, which favors configurations with long
fibers and where only one fiber goes through any given
voxel.

As regards the influence of the noise term, we observe
that both approaches (streamlining and graph-based) pro-
duce more fibers as the noise level increases. When the
PSNR is 4.4 dB (σ = 1.2), streamlining gives more than
twice the number of fibers obtained in the absence of noise.
By contrast, using our approach, the number of additional
fibers is about 5% only in the case of SA with commu-
nication q2 and 64, 000|E | iterations and about 11% in
the case of our modified ICM algorithm (α-relaxation and
(t2)+(t4)-moves). This shows that streamlining is much
more sensitive to noise than is our approach when con-
sidering the number of predicted fibers. It is due to noisy
estimations of the fractional anisotropy and of the cur-
vature angle, which results in unreliable and erroneous
terminations of the tractography process.

Fiber Error. To assess the accuracy of a tracking algorithm,
we can measure the adequation of the reconstructed fibers
φi : [0, L] −→ R

3 to the noise-free tensor distribution by
computing the error term

E(φi) = 1
L(φi)

∫ L

0

(
1 −

∥∥Tv (φi(l)) φ′
i(l)

∥∥
2∥∥φ′

i(l)
∥∥

2 |‖Tv (φi(l))|‖2

) ∥∥φ′
i(l)

∥∥
2 dl,

[23]

where L(φi) = ∫ L
0 ‖φ′

i(l)‖2 dl denotes the length of φi ,
Tv (φi(l)) is the tensor at φi(l), and |‖.|‖2 is the spectral norm
induced by the Euclidean norm ‖.‖2.

Figure 15 displays the mean error per fiber (for the
whole fiber population) as a function of the noise level

Table 4
Number of Fibers Associated with Fiber Tract Estimations Obtained
from the Synthetic Dataset with the Streamlining Approach

Int. step σ = 0 σ = 0.6 σ = 1.2 Evolution (%)

Steamlining 0.1 245 585 602 145
1.0 244 451 499 104

FIG. 15. Fiber error associated with fiber tract estimations obtained
from the synthetic dataset with our approach using 26-connectivity
and with the streamlining approach. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

using streamlining with different integration steps and
using the proposed graph-based approach with different
optimization strategies in the case of 26-connectivity.

For high PSNR, streamlining performs better than our
approach regarding this specific measure as the propaga-
tion of line segments stops when the fractional anisotropy
becomes too low (and hence when the mean fiber error
becomes too large). However, this observation does not
take the fiber length into account, which is crucial to
assess fiber likelihood. By contrast, our approach promotes

FIG. 16. Weighted fiber error (Eq. [24]) associated with fiber tract
estimations obtained from the synthetic dataset with our approach
using 26-connectivity and with the streamlining approach. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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FIG. 17. Fiber tract estimations from a real cardiac dataset: short-axis cut (4 mm thick). The displayed fiber bundles have length greater
than 50 mm. (a) ICM with α = 1 using (t2)-moves, (b) ICM with α-relaxation using (t2)- and (t4)-moves, (c) SA with communication q2 and
104|E| iterations, (d) SA with communication q2 and 105|E| iterations, (e) streamlining with an integration step of 1, and (f) streamlining with
integration step of 0.1. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

fibers with homogeneous length and density by allowing a
more significant local error for the orientation than does
streamlining.

Our approach provides more accurate results than
streamlining with an integration step of 1 when the PSNR
is smaller than 15 dB (this unit integration step approxi-
matively corresponds to the distance between neighboring
vertices in our graph structure or, equivalently, between
neighboring voxels in the DW volumes) and with an inte-
gration step of 0.1 when the PSNR is smaller than 12 dB. In
fact, for low PSNR the global nature of our approach over-
comes the error summation resulting from the incremental
and local nature of streamlining; it is less sensitive to noise.

Yet, the measure E(φi) is relevant when applied to a pop-
ulation of fibers with significant and homogeneous length.
This is the case of our method but not of streamlining, espe-
cially when the PSNR is low. Therefore, to better assess the
quality of the reconstructed fibers, we propose to weight

E(φi) by the inverse of the length of the fiber φi . In other
words, we consider the quality indicator:

Ẽ(φi) = E(φi)
L(φi)

. [24]

Figure 16 displays the mean value of Ẽ(φi) as a function of
the noise level. The arrangement is the same as in Fig. 15.
From this viewpoint, our approach provides more accu-
rate results than streamlining with an integration step of 1
when the PSNR is smaller than 26 dB and with an integra-
tion step of 0.1 when the PSNR is smaller than 17 dB. Note
that the noisy character of the curves in Figs. 16 and 17
associated with standard ICM algorithm can be explained
by the deterministic nature of this algorithm. Indeed, the
proposed solution can vary significantly depending on the
initialization and on the noise realization. This behavior
is mainly observed for low PSNR values as the difficulty
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FIG. 18. Fiber tract estimations from a real cardiac dataset: the red plane is the short-axis cut considered in Fig. 18, and the fiber bundles
displayed below this plane are the ones going through it. The arrangement is the same as in Fig. 17. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

of the energy landscape increases with noise. The curves
associated with our improved ICM algorithm are not noisy
because the communication neighborhood is wider, which
translates to an energy landscape with fewer local minima.

Similar results are obtained when considering 124-
connectivity; however, in this case, the mean fiber error is
overall greater than with 26-connectivity, which is a conse-
quence of the fact that 124-connectivity leads to estimated
fibers with greater length.

Real Cardiac Data

We applied the tractography approach described in Section
“Synthetic Data” to the 16 ex vivo human hearts (PSNR ≈
16 dB). Note that a mask was applied to the DT field to
initialize our graph-based approach; the segmentation was

performed by selecting the voxels in the reference DW vol-
ume whose intensity belongs to the characteristic intensity
range of muscles in T2-weighted MR images. Our results
are summarized in the following two paragraphs.

Qualitative Analysis

Figures 17 and 18 show the estimation of fiber bundles from
the real cardiac dataset using our graph-based approach
with 26-connectivity and using the streamlining approach.
The streamlining approach was run with integration steps
of 0.1 and 1; the criteria for stopping the tracking are thresh-
olds on fractional anisotropy (FA ≤ 0.08) and on curvature
(the angle between two successive principal directions is
kept smaller than 18◦). The results associated with the
graph-based approach were obtained using (a) ICM with
a fixed value of the parameter α in (Eq. [7] [α = 1] and
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Table 5
Quantitative Results Associated with Estimations from Real Cardiac Data

Fiber Mean fiber
Scheme Method Comp. time count length Dispersion Energy

Graph t1 ICM 1 4852 13.71 0.4530 0.5952
approach q1 SA (104|E|) 20 1768 39.84 0.7769 0.3960

SA (105|E|) 201 1456 48.77 0.8349 0.3662
t2 ICM 2 2204 26.28 0.6994 0.4715
q2 SA (104|E|) 30 1427 49.85 0.8123 0.3738

SA (105|E|) 298 1528 55.37 0.8411 0.3399
t1 ICM 3 2083 14.05 0.4676 0.5524
t2 + 4 2163 29.53 0.7003 0.4336

t2
⋃

t4 relaxation 6 1556 38.36 0.7866 0.3937
Stream. rk 4 step = 1.0 12 9002 30.12 2.4176 None
approach rk 4 step = 0.1 96 15,337 35.20 2.4834 None

edge-pair moves, (b) ICM with gradual increase of α and
both edge-pair moves and “crossing scheme” moves, and
(c,d) SA with edge-pair moves.

When using the proposed graph-based approach with
SA, the fiber-bundle prediction seems to be more chaotic.
This visual impression can be explained by the fact that our
approach predicts several organized fiber-bundle sheets.
In fact, we can see from Figs. 17(c,d) that our approach
produces peripheral fiber-bundle sheets in addition to the
central fiber-bundle sheet obtained with streamlining (i.e.,
the central sheet displayed in red in Fig. 17f, from which
all the other fibers run away), which is in accordance with
histological studies (16). Hence, the graph-based approach
may provide more reliable information about the human
heart architecture than does streamlining.

Quantitative Analysis

Table 5 gives the computation time, the fiber bundle count,
the mean fiber length, the fiber-length dispersion, and the
energy using streamlining and using the proposed graph-
based approach with 26-connectivity. Fibres with length
smaller than 4 mm were not taken into account. In the case
of streamlining, the number of seeds for the initialization
step is equal to the number of voxels, and redundant fiber
bundles are removed. Computation times are divided by
the computation time corresponding to ICM with α = 1
and (t1)-moves.

The quantitative results obtained from the real cardiac
dataset are coherent with those associated with the syn-
thetic datasets. We can see that SA provides lower energies
(and hence better approximations to the global fibrous
structure according to our model) than classical ICM. The
proposed deterministic optimization strategy (ICM with α-
relaxation and (t2)+(t4)-moves) shows similar performance
to SA with communication q1, and the corresponding
computational gain is 20

6 ∼ 3.33.
The graph-based approach together with either SA or

our modified ICM algorithm presents longer fiber bun-
dles and lower fiber-length dispersion. Furthermore, our
approach produces a more compact representation of the
cardiac fibrous architecture than does streamlining, and
our modified ICM algorithm reconstructs the human heart
organization faster (the corresponding computational gain
is 12

6 = 2).

CONCLUSION

We presented an original way of performing deterministic
tractography, which gives an all-paths estimation for the
whole DT-MRI volume in one shot and in a completely
automatic way. This approach uses local tensor parameters
and is guided by a global cost functional that favors the
formation of fiber tracts supported by the whole diffusion
data. It has low noise sensitivity and produces fiber popula-
tions with significant mean length, low length dispersion,
and homogeneous density, which makes it particularly well
adapted to cardiac imaging. More specifically, our graph-
based approach provides more accurate fiber estimations
(smaller fiber error) than does streamlining with a unit
integration step when the PSNR is smaller than 26 dB and
with an integration step of 0.1 when the PSNR is smaller
than 17 dB; it also gives more stable mean fiber length, fiber
length dispersion, and fiber number as the noise increases.

Our results with real data (PSNR ≈ 16 dB) corrobo-
rate this findings. Streamlining is more sensitive to noise
because of its local nature and because noisy estimations
of fractional anisotropy and curvature lead to erroneous
terminations of the tractography process. By contrast, our
approach yields all the fiber bundles representing a DT-
MRI volume with a uniform density (one fiber bundle per
voxel).

The proposed deterministic optimization strategy shows
performances similar to annealing for both synthetic and
real data, but it runs substantially faster than annealing and
streamlining. Moreover, our approach does not require seed
initialization and does not rely on the choice of hyperpa-
rameters. It accurately captures the principal fiber bundles
in one shot, and it provides an optimal balance between the
density of fiber bundles and the amount of available data.
This is particularly interesting for a better understanding
of the architecture and organization of the cardiac muscle
continuum.
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