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Optimization by Stochastic Continuation∗

Marc C. Robini† and Isabelle E. Magnin†

Abstract. Simulated annealing (SA) and deterministic continuation are well-known generic approaches to
global optimization. Deterministic continuation is computationally attractive but produces sub-
optimal solutions, whereas SA is asymptotically optimal but converges very slowly. In this paper,
we introduce a new class of hybrid algorithms which combines the theoretical advantages of SA with
the practical advantages of deterministic continuation. We call this class of algorithms stochastic
continuation (SC). In a nutshell, SC is a variation of SA in which both the energy function and the
communication mechanism are allowed to be time-dependent. We first prove that SC inherits the
convergence properties of generalized SA under weak assumptions. Then, we show that SC can be
successfully applied to optimization issues raised by the Bayesian approach to signal reconstruction.
The considered class of energy functions arises in maximum a posteriori estimation with a Markov
random field prior. The associated minimization task is NP-hard and beyond the scope of popular
methods such as loopy belief propagation, tree-reweighted message passing, and graph cuts and its
extensions. We perform numerical experiments in the context of three-dimensional reconstruction
from a very limited number of projections; our results show that SC can substantially outperform
both deterministic continuation and SA.
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1. Introduction.

1.1. Background. Many computer vision problems and signal processing tasks involve
global optimization. Typical examples include image restoration [52], image segmentation
[32], boundary detection [22], stereo matching [59], motion estimation [66], texture analysis
[25], sparse approximation [13], filter design [10], and network optimization [2]. The challenge
is to overcome the multimodality of complex cost functions, which often traps algorithms in
poor local minima.

Promising specific optimization approaches have emerged in the last few years; the most
popular are graph cuts [6] and its extensions based on quadratic pseudo-Boolean optimization
(QPBO) [56, 34], loopy belief propagation (LBP) [63], and tree-reweighted message passing
(TRW) [35]. These techniques are usually confined to energies of the form

(1.1) x ∈ ΛK �−→
∑

k∈[[1,K]]

Jk(xk) +
∑

{k,l}∈ E
φ{k,l}(xk, xl),
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where Λ is a finite set of labels, the Jk’s are unary data-likelihood functions, and the φ{k,l}’s
are pairwise interaction potentials ([[1,K]] is a shorthand notation for {1, . . . ,K}, and E is
a collection of 2-subsets of [[1,K]]). Such functions typically arise in maximum a posteriori
(MAP) estimation with a Markov random field (MRF) prior (see, e.g., [21, 39]). An extensive
three-way comparison of graph cuts, LBP, and TRW is given in [60], where it is observed
that graph cuts and TRW produce consistently high-quality results and perform better than
LBP. The graph cuts method has the most interesting convergence properties among the
three; it finds local minima with respect to large moves in the state space and hence generally
produces near-optimal solutions. However, as shown in Appendix A, graph cuts do not apply
to fundamental optimization problems such as those associated with signal reconstruction
in a MAP-MRF framework, even if the corresponding energy is of type (1.1). (Common
examples include image restoration and two- or three-dimensional reconstruction from line-
integral projection.) The reason for this is that graph cuts are limited to energies whose
pairwise interaction potentials satisfy

∀{a, b, c} ⊂ Λ, φ{k,l}(a, a) + φ{k,l}(b, c) � φ{k,l}(b, a) + φ{k,l}(a, c) .

Such potentials are said to be submodular. A first approach to dealing with nonsubmodular
terms is to “truncate” them, as proposed in [57], but the experiments in [36] and [56] show
that this technique performs well only when the nonsubmodularity ratio (i.e., the ratio of
the number of nonsubmodular to submodular terms) is very small. In the binary-label case,
the method of choice is the QPBO procedure from [28] introduced in computer vision by
Kolmogorov and Rother [36]. Yet the performance of QPBO also decreases with increasing
nonsubmodularity ratio, although less rapidly than truncation. In particular, we show in
Appendix B that, in the context of signal reconstruction, the behavior of QPBO is governed
by the ratio of the number of pair-site cliques in the data-likelihood to the number in the
prior. Our argument is substantiated by the binary image restoration experiments reported
in [56], and our conclusion is that QPBO is not suitable for reconstruction problems in which
the neighborhood system associated with the data-likelihood is larger than the neighborhood
system in the prior. In the multilabel case, the extensions of QPBO come in two forms.
The first approach is to use QPBO within the α-expansion procedure of Boykov (see [6]),
as proposed in [49] and [56], and the second approach is to reduce the original multilabel
energy to a function of binary variables to be minimized by QPBO [34]. It stands to reason
that both methods suffer from the limitations of QPBO: their performance decreases with
increasing nonsubmodularity ratio and increasing strength of the nonsubmodular terms, and
the experiments in [34] indicate decreasing performance with increasing number of labels and
with increasing nonconvexity of the interaction potentials. Ultimately, then, the need for
efficient general-purpose global optimization methods is crucial.

Two well-known generic optimization approaches are simulated annealing (SA), pioneered
in [33], and deterministic continuation, examples of which are mean-field annealing [19] and
graduated nonconvexity (GNC) [4]. On the one hand, SA is asymptotically optimal [24, 27, 11]
but is generally reported to converge slowly, and on the other hand, deterministic continuation
has reasonable computational load but is suboptimal. In practice, deterministic continuation
is preferred whenever possible; it is not so much that annealing is slow, but rather that
SA is commonly dismissed based on an early study by Blake [3] which demonstrates the
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superiority of GNC over the annealing approach of Geman and Geman [24] in the context
of signal denoising. The truth is that carefully designed annealing algorithms produce very
good results for a wide class of reconstruction problems (clear-cut examples can be found
in [53, 52]), although inappropriate design of SA still appears in recent work; for instance,
Nikolova et al. [48] claim that SA does not work for image deconvolution regardless of the
successful results in [23, 53] (obtained for the same cost function) and mention several days of
computation time for denoising a 64 × 64 gray-level image, whereas our annealing algorithm
in [53] takes about 10 minutes on a standard PC to perform this task. Yet, despite various
theoretical and practical improvements over the last two decades, SA is generally much slower
than deterministic methods, and efficient acceleration techniques are welcome.

1.2. Contributions of this paper.

1.2.1. Stochastic continuation. A promising idea to speed up annealing was recently
developed in [51], where it is shown that incorporating a time-dependent energy sequence into
SA can substantially increase performance. More precisely, the resulting class of algorithms,
called stochastic continuation (SC), inherits the finite-time convergence properties of gener-
alized simulated annealing (GSA) established in [12], provided that the energy sequence is
continuous with respect to temperature and converges fast enough to the target cost func-
tion. Yet these conditions are sometimes restrictive, and the results in [51] do not include the
possibility of letting the communication mechanism vary with time. Our first contribution
is to show that the restrictions on the energy sequence can be removed (the only remaining
condition being pointwise convergence to the target), and that it is as possible to use time-
dependent communication to facilitate the exploration of the state space. This great flexibility
in the design of annealing-type algorithms is made possible by the theoretical results in [8]
and opens new horizons to solving difficult optimization problems in the computer vision and
signal processing fields.

Both SA and SC belong to the class of Markov chain Monte Carlo (MCMC) methods;
in simple terms, SA is a speed-up technique for homogeneous MCMC optimization (see [7]
for a theoretical justification), and SC is an extension of SA that allows further convergence
improvement. In this paper, we limit ourselves to the case of Metropolis sampling, but the
SC approach may be extended to the more general Metropolis–Hastings dynamics [29], which
includes well-known MCMC samplers such as the Gibbs and the Swendsen–Wang dynamics
[24, 58]. We will also assume that the state space is finite, because the existing results
on MCMC optimization on general state spaces—especially continuous domains—are not
flexible enough to study the behavior of SC algorithms: first, none allows the energy to
be time-dependent; second, they either require logarithmic cooling [26, 20, 41, 42] or impose
too restrictive conditions on the communication mechanism [1, 65]; and third, none provides
relevant information on the convergence speed. We might add that the finite state space
assumption is not a problem in most practical situations, since it is generally possible to
increase the number of states to achieve the desired level of accuracy.

1.2.2. MAP-MRF reconstruction. The second contribution of this paper is the applica-
tion of SC to optimization issues raised by the MAP-MRF approach to the classical inverse
problem of estimating an unknown one- or multidimensional piecewise-constant signal x�∈ R

K
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given data of the form

d = H(x�) + eη,

where H : RK→ R
K ′

is a linear map that models the acquisition process and where the noise
term eη ∈ R

K ′
is a realization of a random vector η. The solution is defined as any global

minimum of an energy function

(1.2) U : x ∈ ΛK �−→ J (x) + λΦ(x),

where Λ ⊂ R, J : RK → R is a data-likelihood function, Φ : RK → R is a Gibbs energy
favoring solutions in agreement with some a priori knowledge about the true signal x�, and
the parameter λ ∈ R

∗
+ governs the trade-off between J and Φ [16, 21, 39]. The prior term is

given by

(1.3) Φ(x) =
∑

i∈[[1,M ]]

φ
(
‖Di(x)‖

)
,

where the potential function φ : R+ → R+ is increasing, ‖ · ‖ is the �2-norm, and each Di

is a linear map from R
K to R

Ki. Concrete examples can be found in [23, 40, 9, 15, 53,
45, 55]. Most of the time, the Di’s are either first-order difference operators (Ki = 1) or
discrete approximations to the gradient operator (Ki = r in the r-dimensional case); more
sophisticated possibilities include second- or third-order differences [23, 52] and first-order
differences in the wavelet domain [52, 54]. The data-likelihood term is generally either of the
form

(1.4) J (x) = ‖H(x)− d‖2η ,

where ‖·‖η is the �2-norm weighted by the inverse covariance matrix of η (that is, η is assumed
to be independent from x� and to follow a zero-mean multivariate normal distribution), or of
the form

(1.5) J (x) =
∑

k∈[[1,K ′]]

ψk

(
Hk(x)− dk

)
,

where the ψk’s are even functions increasing on R+. An important particular case of (1.5) is
the �1 data-fidelity term obtained by setting ψk(t) = |t| for all k, which is well adapted to
data corrupted with outliers or with impulsive noise [45, 55].

When Λ = R, there exist efficient algorithms for finding the global minimum of U when U
is C1 and strictly convex [15], which presupposes that both J and φ are C1 and convex and
that φ′(0) = 0. When Λ is finite, exact optimization can be achieved in the special case where
J is of the form (1.4) with H being the identity on R

K , the Di’s are first-order differences,
and φ is convex [30]. If J is of the form (1.1) (as is (1.4)) and if the Di’s are either canonical
projections or first-order differences, then it is possible to look for near-optimal solutions by
multilabel QPBO [49, 56, 34], provided that the adjacency graph associated with the data-
likelihood is sparsely connected (in accordance with our discussion about QPBO in section
1.1). Multilabel QPBO can also be used in conjunction with appropriate clique reduction
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techniques [5, 31] if J is of the form (1.5) or if the Di’s are more sophisticated than first-
order differences. Still, deterministic continuation and stochastic optimization are more viable
options when the adjacency graph of the likelihood is not sparsely connected.

We focus on the case where φ is the “0-1” function, that is,

(1.6) φ(t) =

{
1 if t > 0,

0 if t = 0.

The reason for this choice is twofold. First, the 0-1 potential function is particularly ap-
propriate for the recovery of piecewise-constant signals (we refer to [46] for a comprehensive
treatment). Second, the corresponding optimization problem is challenging for both GNC
and SA, which makes it a good test case for demonstrating the usefulness of our approach.
In fact, both GNC and SA produce good results when using more standard nonconvex poten-
tials such as the truncated-quadratic function φ(t) = min(t2, 1) or the “less friendly” concave
function φ(t) = t/(1 + t) [23, 47, 44, 53, 48]. In the case of the 0-1 function, however, the
energy U is complex enough to mislead GNC tracking processes and has very narrow valleys
in which SA gets easily trapped. The associated minimization task is a generalization of the
metric labeling problem with the Potts model, which is NP-hard [6], and it is closely related
to minimum description length estimation: U is identical to the Leclerc model [38] when J
is of the form (1.4) and the Di’s are first-order differences. (The GNC sequence proposed in
[38] is experimentally compared with SA and SC in section 4.)

1.3. Outline. This paper is organized as follows. In section 2, we review some of the GSA
theory, and we provide our main result about the convergence of SC. Section 3 is devoted to the
application of SC to the class of optimization problems described above. Experimental results
are presented in section 4, where we illustrate the potential benefits of SC over deterministic
continuation and SA in the context of three-dimensional reconstruction from a very limited
number of projections. Concluding remarks are given in section 5.

2. Optimization by stochastic continuation. Let E be a finite state space, and let U be an
arbitrary real-valued function defined on E. We denote the ground state energy minx∈E U(x)
by Umin, and we let Emin be the set of global minima of U , that is, Emin = {x ∈ E |U(x) =
Umin}. The objective here is to find a state x that either belongs to Emin or is such that U(x)
is as close as possible to Umin.

2.1. Foundations: Generalized simulated annealing. GSA theory was originally devel-
oped to study parallel annealing [61]; it covers other stochastic optimization processes in-
cluding SA with time-dependent energy function [51] and some genetic and evolutionary
algorithms [14, 17]. A GSA process on E is a 3-tuple (E, (Qβ)β , V ) defined by a fam-
ily (Qβ : E2 → [0, 1])β∈R+ of Markov matrices having rare transitions with rate function
V : E2 → R+ ∪ {+∞}, that is,

(2.1) ∀(x, y) ∈ E2, lim
β→+∞

− lnQβ(x, y)

β
= V (x, y)

with the convention that ln 0 = −∞. The rate function is assumed to be irreducible in the
sense that for any (x, y) ∈ E2 there exists a V -admissible path from x to y, that is, a path
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(γi)
m
i=0 such that γ0 = x, γm = y, and V (γi−1, γi) < +∞ for all i ∈ [[1,m]]. Given such a

family (Qβ)β, a GSA algorithm is a Markov chain (Xn)n∈N on E with transitions

P(Xn = y |Xn−1 = x) = Qβn(x, y),

where the so-called cooling schedule (βn)n∈N∗ is a divergent, nondecreasing, positive real se-
quence.

A simple example is provided by (standard) SA. An SA algorithm with energy function
U has transitions defined by

(2.2) QSA
β (x, y) =

{
q(x, y) exp

(
−β(U(y)− U(x))+

)
if y 
= x,

1−
∑

z �=xQ
SA
β (x, z) if y = x,

where a+ := max{a, 0} and q is a Markov matrix on E which specifies how to generate a
new candidate solution from the current one. The matrix q is called the communication
mechanism and is assumed to have symmetric support and to be irreducible; in other words,
for all (x, y) ∈ E2, q(x, y) > 0 =⇒ q(y, x) > 0 and there exists a q-admissible path from x to
y, that is, a path (γi)

m
i=0 such that γ0 = x, γm = y, and q(γi−1, γi) > 0 for all i ∈ [[1,m]]. It is

shown in Appendix C that (QSA
β )β∈R+ has rare transitions with rate function

(2.3) V SA(x, y) =

{
(U(y)− U(x))+ if QSA

β (x, y) > 0 ∀β > 0,

+∞ otherwise.

This makes (E, (QSA
β )β, V

SA) a GSA process, since the irreducibility of q implies the irre-

ducibility of V SA.
A basic condition for a GSA algorithm to find the ground states of U is that its rate

function V is induced by U ; that is,

∀(x, y) ∈ E2, U(x) + V (x, y) = U(y) + V (y, x).

This is, for instance, the case of (2.3): since q has symmetric support, V SA(x, y) < +∞ if and
only if V SA(y, x) < +∞, and thus if V SA(x, y) < +∞, then

V SA(x, y)− V SA(y, x) = (U(y) − U(x))+ − (U(x)− U(y))+ = U(y)− U(x).

It is shown in [8] that if V is induced by U , then for β large enough, the invariant probability
measure μβ of Qβ satisfies

(2.4) ∀x ∈ E, lim
β→+∞

− lnμβ(x)

β
= U(x)− Umin .

An immediate consequence of (2.4) is that as β goes to infinity, μβ gives a strictly positive
mass to Emin and tends to zero elsewhere. Hence the idea that if (βn)n does not increase too
rapidly, then the law of Xn should be close enough to μβn to achieve asymptotic optimality.
As a matter of fact, the convergence measure

(2.5) M(n) = max
x∈E

P
(
Xn 
∈ Emin

∣∣X0 = x
)
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cannot decrease faster than some optimal exponent of n−1. Indeed, from [62],

lim
n→+∞ sup

βn�···� β1>0

− lnM(n)

lnn
� 1

D
,

where D ∈ R
∗
+ is called the difficulty of the energy landscape, the precise definition of which is

given in section 2.2. The constant D is sharp since for any α < 1/D it is possible to construct
finite cooling sequences (βNn )1�n�N so that M(N) � N−α for N large enough. In other words,
there exist cooling schedules such that the convergence speed exponent is arbitrarily close to
the optimal exponent 1/D. Theorem 2.1 states this formally.

Theorem 2.1 (see [8]). Let (E, (Qβ)β, V ) be a GSA process with rate function induced by
U . For any ε ∈ R

∗
+ there exist finite cooling schedules (βNn )1�n�N such that

lim inf
N→+∞

− lnM(N)

lnN
� 1

(1 + ε)D
.

These schedules are piecewise-constant exponential sequences of the form

(2.6) βNn = βmin

(
βmax

βmin

) 1
ν−1(�

ν
N n
−1)

,

where ν is the number of temperature stages and where the minimum and maximum inverse
temperatures βmin and βmax are functions of the horizon N .

Remark 1. If (2.1) is replaced by the stronger condition

∃a ∈ (1,+∞), ∀(x, y) ∈ E2, ∀β ∈ R
∗
+,

a−1e−βV (x,y) � Qβ(x, y) � a e−βV (x,y)
(2.7)

with the convention that e−β(+∞) = 0, then a theorem by Cot and Catoni [12] shows that
there exist cooling schedules of the form (2.6) such that M(N) is asymptotically equivalent
to N−1/D in the logarithmic scale; that is,

(2.8) lim
N→+∞

− lnM(N)

lnN
=

1

D
.

2.2. Difficulty of the energy landscape. The 3-tuple (E,U, V ) is called an energy land-
scape if the rate function V is induced by U . Assuming this is the case, the difficulty of
(E,U, V ) is given by

D(E,U, V ) = max
x∈E\Emin

min
y∈Emin

H(x, y)− U(x)

U(x)− Umin

with H(x, y) = min
(γi)mi=0∈ ΓV

xy

max
i∈[[1,m]]

(
U(γi−1) + V (γi−1, γi)

)
,(2.9)

where ΓV
xy denotes the set of V -admissible paths from x to y.

The particular case of SA (2.2) gives some intuition about this definition. In the SA
framework, the energy landscape is the 3-tuple (E,U, q), and a state x ∈ E is called a local
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minimum of (E,U, q) if U(x) � U(y) for all y ∈ E such that q(x, y) > 0. The energy level
separating two states x and y is given by

(2.10) h(x, y) = min
(γi)mi=0∈ Γq

xy

max
i∈[[0,m]]

U(γi),

where Γq
xy is the set of q-admissible paths from x to y, and we define the depth δ(x) of x to

be the magnitude of the energy barrier separating x from a ground state:

(2.11) δ(x) = min
y∈Emin

h(x, y) − U(x).

The difficulty of the energy landscape (E,U, q) is

(2.12) DSA(E,U, q) = max
x∈E\Emin

δ(x)

U(x)− Umin
.

It can be checked that the maximum in (2.12) can be taken over Eloc \ Emin, where Eloc

denotes the set of local minima of (E,U, q). Therefore, simply speaking, DSA is the maximum
ratio of the depth of the nonglobal local minima to their energy level above the ground state
energy.

2.3. Stochastic continuation. In a nutshell, SC is a variant of SA where both the energy
function and the communication mechanism are allowed to be time-dependent. More precisely,
given a cooling schedule (βn)n, we call an SC algorithm a Markov chain (Xn)n∈N on E with
transitions P(Xn = y |Xn−1 = x) = QSC

βn
(x, y) defined by

(2.13) QSC
β (x, y) =

{
qβ(x, y) exp

(
−β(Uβ(y)− Uβ(x))

+
)

if y 
= x,

1−
∑

z �=xQ
SC
β (x, z) if y = x,

where (qβ)β∈R+ is a family of Markov matrices on E and (Uβ)β∈R+ is a family of real-valued
functions on E—we will use the notation (E, (qβ), (Uβ), (βn)) for short. Because the objective
is to minimize U , this definition makes sense only if limβ→+∞Uβ(x) = U(x) for all x ∈ E. In
this case, since E is finite, the global minima of Uβ belong to Emin for β sufficiently large.

SC includes SA with time-dependent energy function, the convergence of which has been
studied in [18] and [43], and more recently in [51]. Besides the fact that these papers as-
sume a time-invariant communication mechanism, the results in [18, 43] involve impractical
logarithmic cooling schedules, while it is assumed in [51] that

(2.14) sup
(x,β)∈E×R+

β
∣∣Uβ(x)− U(x)

∣∣ < +∞,

which limits the freedom in designing the sequence (Uβ)β . Theorem 2.2 below allows us to
overcome these limitations; it gives simple sufficient conditions for SC to inherit the conver-
gence properties of GSA. (Given a Markov matrix q on E, we denote by supp(q) the support
of q, that is, supp(q) = {(x, y) ∈ E2 | q(x, y) > 0}, and we say that supp(q) is symmetric if for
any (x, y) ∈ E2, (x, y) ∈ supp(q) =⇒ (y, x) ∈ supp(q).)

Theorem 2.2. Let (E, (qβ), (Uβ), (βn)) be an SC algorithm. Assume that
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(i) for all x ∈ E, limβ→+∞Uβ(x) = U(x),
(ii) for all (x, y) ∈ E2, limβ→+∞ qβ(x, y) = q�(x, y),

where q� is a Markov matrix on E satisfying the following conditions:
(iii) q� is irreducible,
(iv) supp(q�) is symmetric,
(v) for all x ∈ E, q�(x, x) > 0,
(vi) for all (x, y) ∈ E2, q�(x, y) = 0 =⇒ limβ→+∞−β−1 ln qβ(x, y) = +∞.

Then (E, (qβ), (Uβ), (βn)) is a GSA algorithm with rate function induced by U . This rate
function is given by

V SC(x, y) =

{
(U(y)− U(x))+ if q�(x, y) > 0,

+∞ otherwise.

Proof. The proof is given in Appendix D.
Let (x, y) ∈ E2. For any V SC-admissible path (γi)

m
i=0 from x to y, we have

U(γi−1) + V SC(γi−1, γi) = U(γi−1) + (U(γi)− U(γi−1))
+ = max{U(γi−1), U(γi)}

for all i ∈ [[1,m]]. Further, since V SC(x, y) < +∞ if and only if q�(x, y) > 0, the set of
V SC-admissible paths from x to y is the same as the set of q�-admissible paths from x to y.
It follows that the function H from (2.9) associated with the energy landscape (E,U, V SC)
reduces to the function h from (2.10) associated with (E,U, q�), and thus D(E,U, V SC) =
DSA(E,U, q�). Then, under the assumptions of Theorem 2.2, Theorem 2.1 gives that for
any α < 1/DSA(E,U, q�) there exist finite cooling schedules of the form (2.6) such that
the convergence measure (2.5) satisfies M(N) � N−α for N large enough. In other words,
piecewise-constant exponential cooling makes it possible for SC to have a convergence speed
exponent arbitrarily close to the optimal exponent of the SA algorithm obtained at the limit
N = +∞. We conclude this section with some remarks about the conditions for this to occur.

Remark 2. Conditions (iii) and (iv) in Theorem 2.2 are basic assumptions on the commu-
nication mechanism in SA theory. They guarantee that any state can be reached from any
other state in finitely many steps and that any path in the energy landscape can be followed
in the reverse direction.

Remark 3. If condition (v) is not met, it is always possible to replace the family (qβ)β with
the family (q′β)β defined by

q′β(x, y) =

⎧⎨⎩
(1− ε)qβ(x, y)

1− qβ(x, x)
if y 
= x,

ε if y = x,

where ε ∈ (0, 1), so that the algorithm can rest in any state.
Remark 4. Condition (vi) can be rephrased as follows: for any (x, y) 
∈ supp(q�), qβ(x, y)

goes to zero faster than any positive power of e−β as β → +∞. A simple sufficient condition
for this to hold is that supp(qβ) = supp(q�) for β large enough.

Remark 5. Conditions (i)–(vi) are not sufficient for (2.7) to hold and hence for SC to be
“log-optimal” in the sense of (2.8). Using a proof similar to that of Theorem 1 in [51], we
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can show that (2.7) is satisfied if (i) is replaced by (2.14) and if (v) and (vi) are replaced by
conditions (v′) and (vi′) below.

(v′) For all β ∈ R+, {(x, x); x ∈ E} ⊂ supp(qβ) ⊂ supp(q�).
(vi′) For all (x, y) ∈ E2, the maps β �→ qβ(x, y) and β �→ Uβ(x) are continuous.

3. Application to piecewise-constant signal reconstruction. We now consider the prob-
lem of minimizing an energy function U of the general form given by (1.2), (1.3), and (1.6)
for the purpose of piecewise-constant signal reconstruction. (In the two- or three-dimensional
cases, think of x as a lexicographically ordered vector representing an image or a volume.)
In particular, the linear operators Di in (1.3) are either first-order differences or discrete
approximations to the gradient.

Since the theory presented in section 2 assumes a finite state space, we take

(3.1) Λ = { c1j + c2 ; j ∈ [[0, L − 1]]}

with L ∈ N \ {0, 1} and (c1, c2) ∈ R
∗
+ × R. If ΛK is a proper subset of the original domain E

of U , then minimizing the restriction of U to ΛK amounts to searching over ΛK for the best
possible approximation of some element of Emin with a level of accuracy determined by the
step-size parameter c1. That being said, everything is about smart design of families (Uβ)β∈R+

and (qβ)β∈R+ satisfying the assumptions of Theorem 2.2.

3.1. Choice of the continuation sequence (Uβ)β. Since the difficulty in minimizing
U is due to our choice of φ in (1.6), it is natural to focus on SC algorithms in which the
continuation sequence (Uβ)β is obtained by replacing the 0-1 function φ in (1.2) with some
function parameterized by β; that is,

Uβ(x) = J (x) + λ
∑

i∈[[1,M ]]

φβ
(
‖Di(x)‖

)
,

where (φβ : R+ → R+)β is a family of increasing functions such that limβ→+∞ φβ(t) = φ(t)
for all t. It is then readily seen that limβ→+∞ Uβ(x) = U(x) for all x.

It makes sense that the difficulty in minimizing Uβ should be an increasing function of
β, although this is not a necessary condition for SC to converge. Assuming that φβ is twice
differentiable on R

∗
+ for any β, this amounts to saying that the maximum concavity of φβ,

ρ(β) = max{0,− inf t>0 φ
′′
β(t)}, should increase with β. There are various ways to construct

such a family (φβ)β [44], but contrary to GNC, ρ(β) does not need to go to zero as β → 0.
It is also desirable that φβ be not too far from φ so that the relaxed energy Uβ is reasonably
close to the target energy U . Based on these comments, we suggest taking

(3.2) φβ(t) = 1− 1

1 + (t/Δ(β))κ
,

where κ ∈ (1,+∞) is fixed and Δ : R+ → R+ decreases monotonically to zero. Further
motivation for this choice of φβ comes from the fact that it satisfies the assumptions of
Theorem 3.1 in [46]; that is, there exist two functions τ,T : R+ → R+ such that the following
hold:

1. 0 < τ < T ,
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Figure 1. Some functions in the family (φβ)β defined by (3.2) with κ = 2.

2. φ′′β � 0 on [0, τ(β)] and φ′′β � 0 on [τ(β),+∞],
3. φ′′β is decreasing on (τ(β),T (β)) and increasing on (T (β),+∞).

These functions are given by

τ(β) = Δ(β)

(
κ− 1

κ+ 1

)1/κ

and T (β) = Δ(β)

(
κ− 1

κ+ 2

( √
3κ√

κ2 − 1
+ 2

))1/κ

.

If J is of the form (1.4) and if the Di’s are difference operators, then there exists β0 ∈ R+ and
there exist two functions θ0, θ1 : R+ → R+ such that, for any β � β0, τ(β) < θ0(β) < T (β) <
θ1(β) and every local minimizer zβ of Uβ satisfies either |Di(zβ)| < θ0(β) or |Di(zβ)| > θ1(β)
for any i ∈ [[1,M ]]. In other words, T (β) is the edge-detection threshold associated with φβ.
Therefore, since limβ→+∞ T (β) = 0, smooth regions in the minimizers of Uβ gradually turn
into constant regions as β → +∞, while virtually any discontinuity in the true signal can
eventually be recovered.

In our experiments in section 4, we use κ = 2 so that the edge-detection threshold T (β)
is equal to the scale parameter Δ(β). Examples of the corresponding functions φβ are shown
in Figure 1; they have reversed Lorentzian shape and maximum concavity ρ(β) = Δ2(β)/2.
Given Δsup > 0, we take the function Δ to be a smoothed version of the map β �→ Δsup f(β)
with

(3.3) f(β) =

⎧⎪⎨⎪⎩
1 if β < βmin,
βmax−β

βmax−βmin
if β ∈ [βmin, βmax],

0 if β > βmax,

where βmin and βmax are the minimum and maximum inverse temperature values of the cooling
schedule. The smoothing is performed by convolving f in the time domain with a Gaussian
function; that is, denoting the convolution operator by ∗,

Δ = Δsup((f ◦ β†) ∗ gσ) ◦ (β†)−1

with gσ(t) =
1√
2πσ

exp

(
−t
2σ2

)
and β†(t) = βmin

(
βmax

βmin

) t−1
N−1

.(3.4)

The problem of choosing an appropriate value for Δsup is greatly facilitated if we have an
estimate ϑ of the maximum discontinuity magnitude in the true signal (as is usually the case
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in practice). A good rule of thumb is to take Δsup � 2ϑ so that for any relevant minimum
z of U the set {Di(z) ; i ∈ [[1,M ]]} is in the convex region of φβ at the beginning of the SC
process.

3.2. Design of the communication sequence (qβ)β. Since we are looking for piecewise-
constant solutions, it is worthwhile to restrict the domain ΛK of U to a locally bounded space,
that is, a set Ωζ which consists of the elements x = (x1, . . . , xK) of ΛK such that

(3.5) ∀k ∈ [[1,K]], min
l∈N (k)

xl − c1ζ � xk � max
l∈N (k)

xl + c1ζ ,

where ζ ∈ [[1, L − 1]] and N is a predefined neighborhood system on [[1,K]] (e.g., the (2r)
or (3r − 1) nearest-neighbor systems in the r-dimensional case). Informally, Ωζ is the set
of configurations in which each component is in the range delimited by its neighbors with
some “slack” characterized by ζ. Clearly, this definition does not preclude the presence of
discontinuities, and Ωζ contains all piecewise-constant configurations in ΛK whatever the
value of ζ. From now on, we take the state space to be Ωζ .

The construction of a symmetric and irreducible Markov matrix q on Ωζ is detailed in
[64]; basically,

q(x, y) =

{(
K |Ωk

ζ (x)|
)−1

if y ∈ Ωk
ζ (x),

0 otherwise,

where Ωk
ζ (x) =

{
y ∈ Ωζ

∣∣ ∀l 
= k, yl = xl
}
.

This communication mechanism yields significant improvement in the performance of SA
when the energy function promotes solutions that are reasonably smooth in the sense of (3.5)
[64, 53]. In our case, the target energy is more selective in that it encourages piecewise-constant
configurations. In particular, each component of a relevant minimum z of U is expected to
have at least one neighboring component with the same value, that is,

(3.6) ∀k ∈ [[1,K]], ∃l ∈ S(k), zl = zk,

where S is the neighborhood system on [[1,K]] defined as follows:

l ∈ S(k) ⇐⇒ ∃i ∈ [[1,M ]], Di(e
(l)) 
= 0, and Di(e

(k)) 
= 0,

where e(k) denotes the kth vector of the standard basis of RK . To take advantage of this
characteristic, we propose to use a communication sequence of the form

qβ = (1−Θ(β))q +Θ(β)q̃ ,

where Θ : R+ → [0, 1] is monotonic increasing and where q̃ is a Markov matrix designed to
favor the formation of configurations satisfying (3.6). The function Θ gives the probability of
choosing q̃ rather than q to generate a new candidate solution. It is assumed to be increasing
because the visited states are expected to be nearly piecewise-constant by the end of the
SC process. In addition, Θ(β) should be close to zero for small values of β to ensure efficient
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exploration of the state space at the beginning of the SC process. We take Θ to be a smoothed
version of the map β �→ Θsup(1− f(β)) with Θsup ∈ (0, 1) and where f is given by (3.3); that
is,

Θ = Θsup

(
1− ((f ◦ β†) ∗ gσ) ◦ (β†)−1

)
,

where gσ and β† are defined in (3.4). Then, since q is irreducible and q(x, x) > 0 for all x ∈ Ωζ ,
the limit kernel

q� = lim
β→+∞

qβ = (1−Θsup)q +Θsupq̃

satisfies conditions (iii) and (v) in Theorem 2.2, and it remains only to construct q̃ while
guaranteeing that conditions (iv) and (vi) are met.

We propose that q̃ generates a new candidate solution y from x by replacing the value of
x at a randomly selected location k with a neighboring value in the set

Υk(x) =
{
xl

∣∣ l ∈ S(k)
}
∩
{
zk

∣∣ z ∈ Ωk
ζ (x)

}
.

More specifically, yl = xl for all l 
= k, and yk is drawn from the probability distribution pkx
on Υk(x) defined by

(3.7) pkx(ω) =

∑
l∈S(k) 1l{xl =ω}

/
ξ(k, l)∑

l∈S(k) 1l{xl ∈Υk(x)}
/
ξ(k, l)

,

where ξ is a metric on [[1,K]]. (In simple terms, pkx(ω) reflects the likelihood that xk = ω in
the event that x is piecewise-constant.) It may happen that Υk(x) = ∅, in which case we set
yk = xk. Thus,

q̃(x, y) =

{
K−1 pkx(yk) if yl = xl ∀l 
= k and if yk ∈ Υk(x),

0 otherwise.

It is easy to see that supp(q̃) ⊂ supp(q). Consequently, supp(qβ) = supp(q) = supp(q�) for
any β, and hence condition (iv) follows from the symmetry of q and condition (vi) follows from
Remark 4. Note that q̃ is not irreducible, as there is no q̃-admissible path between any two
configurations that do not satisfy (3.6). This is the reason why we require the upper bound
Θsup be smaller than 1.

4. Experiments. The experiments presented here concern the problem of reconstructing
a piecewise-constant three-dimensional test object from a few noisy two-dimensional line-
integral projections. The test object is depicted in Figure 2; it consists of a sphere S inside
a regular octahedron O, the latter being contained in a cube C. The corresponding true
configuration x� is defined over a voxel grid of size K = 493. Denoting the center of the kth
voxel by c(k), we have x�k = 30 if c(k) ∈ S, x�k = 20 if c(k) ∈ O \ S, x�k = 10 if c(k) ∈ C \ O,
and x�k = 0 if c(k) 
∈ C. The data are shown in Figure 3. They consist of six 128 × 128
simulated cone-beam projections corrupted by white Gaussian noise at 20 dB signal-to-noise
ratio (SNR). The associated source positions form the vertices of a regular octahedron, and
the decibel level of the SNR is 10 log10

(
ς2
/
σ2η

)
, where σ2η is the variance of the noise and ς2

is the variance of the exact data H(x�).
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Figure 2. Three-dimensional test object: isosurface representation and vw cross section at u = 24.

Figure 3. Simulated line-integral projection data associated with the object shown in Figure 2.

The solution is defined as any global minimum of the energy

(4.1) U : x ∈ ΛK �−→ 1

σ2η
‖H(x)− d‖2 + λ

∑
{k,l}∈C

φ
(
|xk − xl|

)
,

where the set of admissible voxel values Λ in (3.1) is defined by L = 50 and (c1, c2) = (1, 0),
‖·‖ is the �2-norm, φ is the 0-1 function in (1.6), C is the set of pair-site cliques associated with
the 26 nearest-neighbor system, and the value of the smoothing parameter λ is computed as
described in [51] (λ = 1.06). This function is an important special case of the class of energies
defined in the introduction. Note, however, that our SC algorithm described in section 3
applies equally well to any energy of the general form

U(x) = J (x) + λ
∑

i∈[[1,M ]]

φ
(
‖Di(x)‖

)
,

where the Di’s are any linear maps and whether or not the data-likelihood function J is
convex.
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4.1. The competing algorithms. We investigate the behavior of six different algorithms—
two deterministic continuation algorithms, two SA algorithms, and two SC algorithms—to
make a three-way comparison between standard continuation, standard MCMC optimization,
and SC.

The families of relaxed energies of the two deterministic continuation (DC) algorithms
are obtained by replacing φ with the elements of a sequence (φn)n∈N∗ of potential functions
converging pointwise to φ and starting with φ1 convex on [0, 50]. (This interval covers the
range of admissible voxel values.) The first considered continuation sequence (algorithm DC1)
is of the same form as for the SC approach, and the second continuation sequence (algorithm
DC2) is the one originally proposed by Leclerc [38]. More precisely, the relaxation scheme of
DC1 is defined by

(4.2) φn(t) = 1− 1

1 + (t/Δn)2
,

where (Δn)n∈N∗ is a sequence of positive reals decreasing to zero, and the relaxed potentials
of DC2 are given by

(4.3) φn(t) = 1− exp
(
− (t/Δn)

2
)
.

Following [38], we take (Δn)n to be of the form

Δn = Δ1χ
n−1,

where Δ1 is chosen large enough to ensure the convexity of φ1 on [0, 50] (i.e., Δ1 = 50
√
3

for DC1 and Δ1 = 50
√
2 for DC2) and where the parameter χ ∈ (0, 1) controls the speed

of convergence to the target energy. We set χ to 0.95, and the relaxation process ends with
the completion of the first iteration n for which φn(1) � 0.99 (increasing χ or the number of
iterations further does not yield any noticeable improvement). Finally, the optimization task
that takes place at each iteration is performed by half-quadratic minimization [15].

The stochastic algorithms under consideration are SA with logarithmic cooling (algorithm
SA1), SA with exponential cooling (algorithm SA2), SC with time-dependent energy and fixed
communication (algorithm SC1), and SC with time-dependent energy and time-dependent
communication (algorithm SC2), that is,

SA1 = (Ωζ , q, U, (B ln(n+ 1))n∈[[1,N ]]),

SA2 = (Ωζ , q, U, (βn)),

SC1 = (Ωζ , q, (Uβ), (βn)),

and SC2 = (Ωζ , (qβ), (Uβ), (βn)),

where the state space Ωζ , the communication mechanism q, and the sequences (Uβ)β and
(qβ)β are as specified in section 3. The locally bounded space Ωζ is defined by the 6-nearest
neighbor system and ζ = 2, the parameters Δsup and Θsup are set to 20.0 and 0.95, respectively,
and ξ(k, l) in (3.7) is the Euclidean distance between the centers of the kth and lth voxels.
Algorithms SA2, SC1, and SC2 use piecewise-constant exponential cooling of the form (2.6)
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Figure 4. Reconstruction using DC with the Lorentzian-shape relaxation scheme (4.2) (algorithm DC1):
RMSE = 3.5756, U = 1.5082 ·106.

30

10
20

40
40

30
20

10

10

20

30

40

0 3010 20 40 50

Figure 5. Reconstruction using DC with the Leclerc relaxation scheme (4.3) (algorithm DC2): RMSE =
2.3190, U = 3.1005 ·105.

with (N, ν) = (104K, 500) and with initial and final temperature values selected by means of
the procedures proposed in [53]. The horizon N of SA1 is also set to 104K, and the positive
constant B of the logarithmic schedule is chosen so that SA1 ends at the same temperature
as SA2. All four algorithms start from random configurations.

4.2. Results. The reconstructions obtained by standard continuation are shown in Figures
4 and 5; both algorithms completely miss the sphere and fail to recover the cube properly. The
relaxation method of Leclerc (algorithm DC2) performs much better than the Lorentzian-shape
relaxation scheme (algorithm DC1): the root-mean-square errors (RMSE) are respectively
3.5756 and 2.3190 for DC1 and DC2, and the energy of the reconstructed object is substantially
larger for DC1 (1.5082 ·106) than for DC2 (3.1005 ·105). The computation time was 3 hours
and 4 minutes for DC1 and 2 hours and 18 minutes for DC2 on a Quad-Core Xeon 2.66 GHz
(L5430) machine.

The results associated with the stochastic algorithms are summarized in Table 1. Each
algorithm was run 30 times in order to assess the variability of the estimates inherent to the
stochastic approach. In any case, the computation time for a single run did not exceed 45
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Table 1
Statistics over 30 runs of SA with logarithmic cooling (algorithm SA1), SA with exponential cooling (al-

gorithm SA2), SC with time-dependent energy and fixed communication (algorithm SC1), and SC with time-
dependent energy and time-dependent communication (algorithm SC2). Given are the minimum, maximum,
mean, and standard deviation of the RMSE and of the final energy.

RMSE Final energy U
Alg.

Min Max Mean Stdv Min Max Mean Stdv

SA1 6.780 7.219 6.983 1.189 3.3729 ·105 3.5294 ·105 3.4418 ·105 4155.4

SA2 8.700 9.020 8.853 0.0764 3.3414 ·105 3.4002 ·105 3.3693 ·105 1417.4

SC1 1.432 1.534 1.472 0.0249 2.5668 ·105 2.6555 ·105 2.6191 ·105 1828.5

SC2 0.382 0.415 0.400 0.0075 1.8186 ·105 1.8189 ·105 1.8187 ·105 8.8
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Figure 6. Reconstruction by SA. Best solution in terms of energy: U = 3.3414 ·105.

minutes. We observe that DC with Leclerc’s relaxation greatly outperforms SA regardless of
the cooling schedule. The best reconstruction produced by SA is actually a very poor local
minimum; it is shown in Figure 6. A natural question that arises is whether increasing the
length N of the annealing chain can yield significant improvements. The answer is negative.
Indeed, using SA2 with 400 times more iterations (i.e., N = 4 ·106K and about 12 days of
computation), we obtained a solution with an RMSE of 9.258 (which is even greater than the
RMSE of the estimates produced by SA in 104K iterations!) and an energy of 3.0509 ·105
(which is slightly smaller than the energy obtained by DC, but 15% greater than the energy
of the worst solution found by SC in 104K iterations). This shows that the energy landscape
(Ωζ , U, q) is difficult in the sense that it contains poor local minima with deep basins of
attraction. The situation is in fact even worse: there exist elements of the state space that
are far away from the true configuration x� but whose energy is very close to the energy of x�

(U(x�) = 1.8240 ·105). An example is given in Figure 7. This minimum was obtained by SC
with fixed energy and time-dependent communication; its energy is only 0.24% above U(x�).

On the other hand, SC with time-dependent energy ends up in relevant basins of attraction
and substantially outperforms DC (and hence SA). The worst estimate produced by SC1 is
shown in Figure 8. Its energy is 14% smaller than the energy level reached by DC2, and it is
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Figure 7. Undesirable minimum with energy close to U(x�): RMSE = 2.061, U = 1.8283 ·105.
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Figure 8. Reconstruction using SC with time-dependent energy and fixed communication (algorithm SC1).
Worst solution in terms of both RMSE and energy: RMSE = 1.534, U = 2.6555 ·105.

closer to x� than are the output of DC2 and the undesirable minimum in Figure 7. Further
significant improvements are obtained by allowing the communication mechanism to be time-
dependent. The results obtained by algorithm SC2 are striking: the maximum RMSE is only
0.83% of the voxel value range, and the standard deviation of the final energy is negligible
(about 0.005% of the mean final energy). Moreover, in all runs, the energy of the computed
solution turns out to be slightly smaller than U(x�). The worst solution computed by SC2

is shown in Figure 9. It is almost identical to the true configuration, and its energy is 26%
smaller than the energy of the best estimate produced by SC1.

5. Conclusion. We introduced a new class of hybrid algorithms, namely stochastic contin-
uation (SC), which provides great freedom in the design of annealing-type algorithms. SC is
interesting in several respects. First, SC inherits the convergence properties of generalized sim-
ulated annealing (SA) under weak assumptions and is therefore more theoretically grounded
than deterministic continuation (DC). Second, well-designed SC algorithms can substantially
outperform SA without requiring additional computational efforts. Third, the scope of SC is
not limited to specific classes of energies.

Our experimental results in the context of signal reconstruction showed that SC is a
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Figure 9. Reconstruction using SC with time-dependent energy and time-dependent communication (algo-
rithm SC2). Worst solution in terms of both RMSE and energy: RMSE = 0.415, U = 1.8189 ·105.

valuable alternative when both DC and SA fail. More generally, the flexibility of SC makes
it potentially attractive for a wide range of difficult optimization problems in the computer
vision and signal processing fields.

Appendix A. A fundamental limitation of standard graph cuts. In [37], Kolmogorov
and Zabih give a necessary condition for a pseudo-Boolean function (i.e., a mapping from B

K

to R, where B := {0, 1}) to be minimized by standard graph cuts. Here, we show that this
condition is not satisfied by simple energy functions arising in MAP-MRF reconstruction. We
consider a particular case of the class of functions defined by (1.2) and (1.3), namely,

(A.1) U : x ∈ B
K �−→ ‖H(x)− d‖2 + λ

∑
{k,l}∈C

|xk − xl| ,

where ‖·‖ is the �2-norm, H : RK→ R
K ′

is a linear map, d ∈ R
K ′

, λ ∈ R
∗
+, and C = {{k, l} |l ∈

S(k)} is the set of pair-site cliques associated with a neighborhood system S on [[1,K]].
Given α ∈ B

K−2, (a, b) ∈ B
2, and (i, j) ∈ [[1,K]]2 such that i 
= j, we denote by xαi,j(a, b)

the element (x1, . . . , xK) ∈ B
K defined by{
xi = a, xj = b,

∀k ∈ [[1,K]] \ {i, j}, xk = αri,j(k),

with ri,j(k) = k− (1l{i<k} +1l{j<k}). Let Uα
i,j : B

2 → R be defined by Uα
i,j(a, b) = U(xαi,j(a, b)).

Then U is said to be submodular if

Uα
i,j(0, 0) + Uα

i,j(1, 1) � Uα
i,j(0, 1) + Uα

i,j(1, 0)

for any α ∈ B
K−2 and for any (i, j) ∈ [[1,K]]2 such that i 
= j. It is shown in [37] that a pseudo-

Boolean function cannot be minimized by graph cuts if it is not submodular. (Actually, the
limitation of pseudo-Boolean optimization caused by nonsubmodularity was known prior to
[37]: see, e.g., [5, section 6.1].) Let 〈·, ·〉 be the Euclidean inner product, and let e(i) denote the
ith vector of the standard basis of RK . Proposition A.1 below gives a necessary and sufficient
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condition for U to be submodular, and hence a necessary condition for U to be minimized by
graph cuts. In particular, U is not submodular if there exists (i, j) ∈ [[1,K]]2 such that i 
= j,
j 
∈ S(i), and 〈H(e(i)),H(e(j))〉 > 0. Since most of the time S is a nearest-neighbor system
with small support, it follows that graph cuts cannot deal with the fundamental cases where
H is a line-integral projection operator and where H is a convolution operator whose kernel
has support larger than S.

Proposition A.1. The function U defined in (A.1) is submodular if and only if, for any
(i, j) ∈ [[1,K]]2 such that i 
= j,

〈H(e(i)),H(e(j))〉 �
{
λ if j ∈ S(i),
0 otherwise.

Proof. Let J and Φ be the functions from B
K to R defined by

J (x) = ‖H(x)− d‖2 and Φ(x) =
∑

{k,l}∈C
|xk − xl| .

Let α ∈ B
K−2, (a, b) ∈ B

2, and (i, j) ∈ [[1,K]]2 such that i 
= j. We can write

xαi,j(a, b) = xi,j(a, b) + xαi,j

with xi,j(a, b) = ae(i) + be(j) and xαi,j =
∑

k∈[[1,K]]\{i,j}
αri,j(k)e

(k),

and it is not difficult to check that

(A.2) J (xαi,j(a, b)) = ‖H(xi,j(a, b))‖2 + 2 〈H(xi,j(a, b)),H(xαi,j)− d 〉 + cJ ,

where cJ is a constant independent of a and b. For any x ∈ B
K ,

Φ(x) =
∑

{k,l}∈Ci,j
|xk − xl| + Ψ

(
xr−1

i,j (1)
, . . . , xr−1

i,j (K−2)

)
,

where Ci,j = {{k, l} | l ∈ S(k) and {k, l} ∩ {i, j} 
= ∅} and where

Ψ
(
xr−1

i,j (1)
, . . . , xr−1

i,j (K−2)

)
=

∑
{k,l}∈ C\Ci,j

|xk − xl| .

The set Ci,j can be written as a disjoint union:

Ci,j =
{
{i, k}

∣∣ k ∈ S(i) \ {j}
}
∪

{
{j, k}

∣∣ k ∈ S(j) \ {i}
}
∪ Bi,j

with Bi,j =

{
{{i, j}} if j ∈ S(i),
∅ otherwise.

Consequently, since the function Ψ is independent of xi and xj,

Φ(xαi,j(a, b)) =
∑

k∈S(i)\{j}
|a− αri,j(k)| +

∑
k∈S(j)\{i}

|b− αri,j(k)|

+ 1l{j∈S(i)}|a− b| + cΦ,

(A.3)
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where cΦ is a constant independent of a and b.
Using (A.2) and (A.3), we can compute Uα

i,j(a, b) = (J +λΦ)(xαi,j(a, b)) for (a, b) = (0, 0),
(0, 1), (1, 0), and (1, 1). Substituting these results into

Uα
i,j(0, 0) + Uα

i,j(1, 1) − Uα
i,j(0, 1) − Uα

i,j(1, 0) =: Δα
i,j(U),

we obtain, after simplification,

Δα
i,j(U) = 2

(
〈H(e(i)),H(e(j))〉 − λ1l{j∈S(i)}

)
(note that Δα

i,j(U) is independent of α). By definition, U is submodular if and only if Δα
i,j(U) �

0 for any α ∈ B
K−2 and for any (i, j) ∈ [[1,K]]2 such that i 
= j. Hence the proposition

follows.

Appendix B. On the performance of QPBO for binary signal reconstruction. Consider
the simple class of pseudo-Boolean functions defined in (A.1); these are of the form (1.1) with
pairwise interactions

φ{k,l} : (a, b) ∈ B
2 �−→ 2〈H(e(k)),H(e(l))〉 ab + 1l{{k,l}∈C}λ|a− b| ,

where {k, l} is any 2-subset of [[1,K]], 〈·, ·〉 is the Euclidean inner product, and e(k) denotes
the kth vector of the standard basis of RK . Assuming that H is nonnegative, as is typically
the case in vision, the set R of submodular terms is given by

R =
{
{k, l} ∈ C

∣∣ 〈H(e(k)),H(e(l))〉 � λ
}
,

and the set R of nonsubmodular terms consists of the pairs {k, l} such that k 
= l and{
〈H(e(k)),H(e(l))〉 > λ if {k, l} ∈ C,
〈H(e(k)),H(e(l))〉 > 0 if {k, l} 
∈ C.

In signal reconstruction applications of QPBO methods, it is general practice to choose λ large
enough to have a maximum number of submodular terms, i.e., λ � max{k,l}∈C〈H(e(k)),H(e(l))〉
so that R = C. In this case, R = CH with

CH =
{
{k, l}

∣∣ k 
= l and 〈H(e(k)),H(e(l))〉 > 0
}
,

and the nonsubmodularity ratio |R|/|R| satisfies

|CH|
|C| − 1 � |R|

|R| � |CH|
|C| .

The behavior of QPBO is thus closely linked to the connectivity ratio � = |CH|/|C|, that is,
the ratio of the number of pair-site cliques in the data-likelihood to the number in the prior.
The approach shows good performance when the connectivity ratio is small (i.e., � � 1). A
nice example of its application to parallel magnetic resonance imaging can be found in [50]
(� = (m − 1)/8 for an m-fold acceleration and an 8-nearest neighbor system in the prior).
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However, the performance of QPBO decreases rather rapidly as � increases beyond 1. To
fix ideas, the binary image restoration experiments reported in [56] show that, for � = 3, SA
performs similarly to QPBO both in terms of quality of the results and in terms of computation
time (in the case of image deconvolution, � = m(2m+1) for a (2m+1)×(2m+1) point spread
function and a 4-nearest neighbor system in the prior). On the other hand, for � = 10, QPBO
does not find a global minimum—SA does—and is, moreover, substantially slower than SA
(more than 20 times slower, actually). What emerges from these observations is that, when
applied to signal reconstruction problems with large connectivity ratios (e.g., � � 10), QPBO
not only performs poorly but also is significantly outperformed by SA. This is especially
the case for reconstruction from line-integral projections, where � increases approximately
linearly with the number of projections and with the square root of the number of pixels
(two-dimensional case) or the cubic root of the number of voxels (three-dimensional case).
For instance, � ≈ 33 for the experimental setup described in section 4, even though there are
only six projections!

Appendix C. The particular case of simulated annealing. Here, we show that the family
(QSA

β )β defined by (2.2) has rare transitions with rate function V SA given in (2.3). We proceed
by cases.

Case 1. If y 
= x, then

V SA(x, y) =

{
(U(y)− U(x))+ if q(x, y) > 0,

+∞ if q(x, y) = 0,

and since

lim
β→+∞

−β−1 ln q(x, y) =

{
0 if q(x, y) > 0,

+∞ if q(x, y) = 0,

then

lim
β→+∞

−β−1 lnQSA
β (x, y) = lim

β→+∞
−β−1 ln q(x, y) + (U(y)− U(x))+ = V SA(x, y).

Case 2. If y = x and q(x, x) > 0, then for any β > 0

1 � QSA
β (x, x) � 1−

∑
z �=x

q(x, z) = q(x, x) > 0.

It follows that V SA(x, x) = 0 and that

0 � −β−1 lnQSA
β (x, x) � −β−1 ln q(x, x) −→

β→+∞
0.

Hence limβ→+∞−β−1 lnQSA
β (x, x) = V SA(x, x).

Case 3. If y = x and q(x, x) = 0, we have to distinguish two subcases depending on
whether or not x is a local maximum of the energy landscape (E,U, q).

� If x is a local maximum of (E,U, q), that is, if for all z ∈ E, q(x, z) > 0 =⇒ U(z) � U(x),
then for any β > 0

QSA
β (x, x) = 1−

∑
z �=x

q(x, z) = q(x, x) = 0,
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and thus limβ→+∞−β−1 lnQSA
β (x, x) = +∞ = V SA(x, x).

� If x is not a local maximum of (E,U, q), then we can pick z0 ∈ E such that q(x, z0) > 0
and U(z0) > U(x). For any β > 0, we have

1 � QSA
β (x, x) � 1 −

∑
z∈E\{x,z0}

q(x, z) − q(x, z0) exp
(
−β(U(z0)− U(x))

)
= q(x, z0)

(
1− exp

(
−β(U(z0)− U(x))

))
.

It follows that QSA
β (x, x) > 0 for all β > 0 (hence V SA(x, x) = 0) and that

lim
β→+∞

−β−1 lnQSA
β (x, x) = 0.

Appendix D. Proof of Theorem 2.2. The function V SC is irreducible, as q� is irreducible
and V SC(x, y) < +∞ if and only if q�(x, y) > 0. Furthermore, since q� has symmetric support,
V SC(x, y) < +∞ if and only if V SC(y, x) < +∞, and thus if V SC(x, y) < +∞, then

V SC(x, y)− V SC(y, x) = (U(y)− U(x))+ − (U(x)− U(y))+ = U(y)− U(x).

Hence V SC is induced by U . It remains to show that the family (QSC
β )β defined by (2.13) has

rare transitions with rate function V SC; that is, for all (x, y) ∈ E2,

lim
β→+∞

−β−1 lnQSC
β (x, y) =

⎧⎪⎨⎪⎩
+∞ if q�(x, y) = 0,

0 if q�(x, y) > 0 and y = x,

(U(y) − U(x))+ if q�(x, y) > 0 and y 
= x.

Case 1. Assume that q�(x, y) = 0. Then, by (v), we have y 
= x and thus

−β−1 lnQSC
β (x, y) = −β−1 ln qβ(x, y) + (Uβ(y)− Uβ(x))

+ � −β−1 ln qβ(x, y).

Consequently, using (vi),
lim

β→+∞
−β−1 lnQSC

β (x, y) = +∞.

Case 2. If q�(x, y) > 0 and y = x, then

∃ε ∈ (0, 1), ∃β0 � 0, ∀β � β0, qβ(x, x) � ε.

Therefore, for any β � β0,

1 � QSC
β (x, x) � 1−

∑
z �=x

qβ(x, z) = qβ(x, x) � ε,

and thus 0 � −β−1 lnQSC
β (x, x) � −β−1 ln ε. It readily follows that

lim
β→+∞

−β−1 lnQSC
β (x, x) = 0.

Case 3. If q�(x, y) > 0 and y 
= x, then

lim
β→+∞

−β−1 lnQSC
β (x, y) = lim

β→+∞
−β−1 ln qβ(x, y) + (U(y)− U(x))+,

and there exists ε ∈ (0, 1) such that qβ(x, y) � ε for β large enough. Hence

lim
β→+∞

−β−1 lnQSC
β (x, y) = (U(y)− U(x))+.
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[9] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving

regularization in computed imaging, IEEE Trans. Image Process., 6 (1997), pp. 298–311.
[10] S. Chen, R. Istepanian, and B. L. Luk, Digital IIR filter design using adaptive simulated annealing,

Digital Signal Process., 11 (2001), pp. 241–251.
[11] T.-S. Chiang and Y. Chow, On the convergence rate of annealing processes, SIAM J. Control Optim.,

26 (1988), pp. 1455–1470.
[12] C. Cot and O. Catoni, Piecewise constant triangular cooling schedules for generalized simulated an-

nealing algorithms, Ann. Appl. Probab., 8 (1998), pp. 375–396.
[13] G. Davis, S. Mallat, and M. Avellaneda, Adaptive greedy approximations, Constr. Approx., 13

(1997), pp. 57–98.
[14] P. Del Moral and L. Miclo, On the convergence and applications of generalized simulated annealing,

SIAM J. Control Optim., 37 (1999), pp. 1222–1250.
[15] A. H. Delaney and Y. Bresler, Globally convergent edge-preserving regularized reconstruction: An

application to limited-angle tomography, IEEE Trans. Image Process., 7 (1998), pp. 204–221.
[16] G. Demoment, Image reconstruction and restoration: Overview of common estimation structures and

problems, IEEE Trans. Acoust. Speech Signal Process., 37 (1989), pp. 2024–2036.
[17] O. François, Global optimization with exploration/selection algorithms and simulated annealing, Ann.

Appl. Probab., 12 (2002), pp. 248–271.
[18] A. Frigerio and G. Grillo, Simulated annealing with time-dependent energy function, Math. Z., 213

(1993), pp. 97–116.
[19] D. Geiger and F. Girosi, Parallel and deterministic algorithms from MRF’s: Surface reconstruction,

IEEE Trans. Pattern Anal. Machine Intell., 13 (1991), pp. 401–412.
[20] S. B. Gelfand and S. K. Mitter, Metropolis-type annealing algorithms for global optimization in R

d,
SIAM J. Control Optim., 31 (1993), pp. 111–131.

[21] D. Geman, Random fields and inverse problems in imaging, in École d’été de Probabilités de Saint-
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