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a b s t r a c t

Simulated annealing (SA) is a generic optimization method that is quite popular because
of its ease of implementation and its optimal convergence properties. Still, SA is widely
reported to converge very slowly and it is common practice to allow extra freedom in its
design at the expense of losing global convergence guarantees.

In this paper, we derive simple sufficient conditions for the global convergence of SA
when the cost function and the candidate solution generationmechanismare temperature-
dependent. These conditions are surprisingly weak – they do not involve the variations
of the cost function with temperature – and exponential cooling makes it possible to be
arbitrarily close to the best possible convergence exponent of standard SA.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of finding a global minimum of an arbitrary real-valued energy function U defined on a general
but finite state space E. We denote by Uinf the ground state energy and we let Einf(U) be the set of global minima of U ,
that is, Uinf = infx∈E U(x) and Einf(U) =


x ∈ E | U(x) = Uinf


. A simulated annealing (SA) algorithm is a Markov chain

(Xn)n∈N on E whose transitions are guided by a communication mechanism q and controlled by a sequence of temperatures
(τn)n∈N∗ called a cooling schedule; the communicationmechanism is a symmetric and irreducibleMarkovmatrix on E which
specifies how to generate a new candidate solution from the current solution, and the cooling schedule is decreasing and
converges to zero. The transitions of (Xn)n∈N are defined by P(Xn = y | Xn−1 = x) = Pτn(x, y) with

Pτ (x, y) =


q(x, y) exp


−τ−1U(y) − U(x)

+
if y ≠ x

1 −

−
z∈E\{x}

Pτ (x, z) if y = x,
(1)

where a+
:= sup{a, 0}. The key feature of the Markov matrix Pτ is that its stationary distribution πτ tends to the uniform

distribution on Einf(U) as the temperature τ decreases to zero (πτ is the Gibbs distribution with energy U at temperature
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τ ). Consequently, the law of Xn should stay close to πτn if the cooling schedule decreases slowly enough, and hence we can
expect that the convergence measure

M(n) = sup
x∈E

P

Xn ∉ Einf(U) | X0 = x


(2)

goes to zero as n → +∞. It is well known (see Hajek, 1988) that this is the case for logarithmic cooling schedules of the form
τn = τ0/ ln(n + 1) provided τ0 is larger than the critical height HU of the energy landscape. Formally, HU is the maximum
energy barrier separating a non-optimal state from a ground state, that is,

HU = sup
x∈E\Einf(U)

hU(x), (3)

where hU(x) – the depth of x – is defined as follows:
hU(x) = inf

y∈Einf(U)
ηU(x, y) − U(x) with ηU(x, y) = inf

(xi)mi=1∈Πq(x,y)
sup
1⩽i⩽m

U(xi), (4)

where Πq(x, y) denotes the set of paths from x to y in the digraph

(E, ∆(q)), ∆(q) =


(x, y) ∈ E2

| y ≠ x and q(x, y) > 0

. (5)

Logarithmic cooling, however, is inefficient for most practical problems: HU is generally too large to reach the low tempera-
ture regime in a reasonable amount of computation time, while the annealing process gets easily stuck in poor local minima
for feasible values of τ0.

The most significant advance in SA theory beyond the asymptotic properties in Hajek (1988) is due to Catoni. He showed
in Catoni (1992) that exponential cooling must be preferred over logarithmic cooling when the available computing time is
bounded (as is the case in practice), and that the convergence measure (2) cannot decrease faster than some optimal power
of 1/n. More precisely, the optimal convergence speed exponent is 1/DU , where DU – the difficulty of the energy landscape
– is the maximum ratio of the depth to the energy level above the ground state energy:

DU = sup
x∈E\Einf(U)

hU(x)
U(x) − Uinf

. (6)

Besides, the upper bound 1/DU is sharp, since it is possible to construct a family {(τN
n )1⩽n⩽N;N ∈ N∗

} of finite exponential
cooling sequences such that lnM(N) ∼ ln


N−1/DU


; such families are of the form τN

n = τ0 exp(−nξN), where τ0 does not
depend on the horizon N and ξN ∼ N−1 lnN . These results provide the first theoretical justification for the widely used
exponential cooling schedules. Still, although successfully applied to many difficult combinatorial optimization problems,
SA is often criticized for converging very slowly. In fact, it is common practice to allow extra freedom in the design of SA
algorithms, but such variations on the theme generally come without optimal convergence guarantees.

A natural generalization of SA is to allow the energy function and the communication mechanism to be temperature-
dependent.We call this class of algorithms stochastic continuation (SC) by extension of the stochastic optimization processes
studied in Robini et al. (2007). The first idea is to ease the annealing process by gradually revealing the complexity of the
optimization problem, which is obtained by replacing the energy U by the elements of a family (Uτ )τ∈R∗

+
of functions whose

difficulty DUτ increases with decreasing τ . The second idea is to facilitate the exploration of the state space by adapting the
communication mechanism to the temperature regime. SC belongs to the general class of Markov processes studied in Del
Moral and Miclo (1999); it includes SA with temperature-dependent energy, which is studied in Robini et al. (2007) for the
finite-time case and in Frigerio and Grillo (1993) and Löwe (1996) for the asymptotic case. The convergence results in Robini
et al. (2007) and Del Moral and Miclo (1999) require that

sup
(x,τ )∈E×R∗

+

τ−1
|Uτ (x) − U(x)| < +∞, (7)

while it is assumed in Frigerio and Grillo (1993) and Löwe (1996) that there exists a > 0 such that

sup
(x,n)∈E×N∗

na
|Uτn(x) − Uτn−1(x)| < +∞. (8)

Both conditions (7) and (8) significantly limit the freedom in parameterizing the energy with temperature, and, in addition,
the conditions for convergence inDelMoral andMiclo (1999); Frigerio andGrillo (1993) and Löwe (1996) involve impractical
logarithmic cooling sequences. We show here that these limitations can be overcome while allowing the communication
mechanism to vary with temperature.

The formalism and the basic ideas of SC are presented in Section 2. Our starting point for studying the convergence of SC is
the observation that its transitions obey a large deviation principle with speed τ−1, which suggests to appeal to generalized
SA (GSA) theory (see, e.g., Trouvé, 1996 and Catoni, 1999). The convergence properties of GSA are outlined in Section 3,
and those of SC are then derived in Section 4. Our main result states that SC with suitably adjusted exponential cooling can
have a convergence speed exponent arbitrarily close to the optimal exponent 1/DU of SA. Moreover, the conditions for this
to happen are weak and only involve the communication mechanism (putting aside the obvious necessary condition that
(Uτ )τ∈R∗

+
converges pointwise to the target energy U as τ → 0).
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2. Definition and basic ideas

We define an SC process with target energy landscape (E,U, q) to be a family (Qτ )τ∈R∗
+
of Markov matrices on E of the

form

Qτ (x, y) =


qτ (x, y) exp


−τ−1Uτ (y) − Uτ (x)

+
if y ≠ x

1 −

−
z∈E\{x}

Qτ (x, z) if y = x,
(9)

with lim
τ→0

Uτ (x) = U(x) and lim
τ→0

qτ (x, y) = q(x, y).

Given such a family together with a cooling sequence (τn)n∈N∗ , we call a Markov chain (Xn)n∈N on E with transitions
P(Xn = y | Xn−1 = x) = Qτn(x, y) an SC algorithm, and we denote it by SC(E, (Uτ ), (qτ ), (τn))—we use the notation
(E, (Qτ )) or (E, (Uτ ), (qτ )) for the underlying SC process. The family of energy functions (Uτ : E → R)τ is called the
continuation scheme and the family of Markov matrices (qτ : E2

→ [0, 1])τ is called the communication scheme. The limit
communication matrix q is assumed to be irreducible, as there is otherwise no guarantee to reach a ground state of the
target energy U .

The basic idea of SC is quite easy to explain if qτ is symmetric for all τ (wewill relax this assumption in Section 4). Indeed,
Proposition 1 states that in this case the invariant measure θτ of Qτ is a Gibbs distribution which concentrates on the set of
global minima of U as τ → 0. Consequently, similarly to SA, if the cooling sequence does not decrease too fast, the law of
Xn should stay close enough to θτn to expect convergence to an optimum.

Proposition 1. Let (E, (Qτ )) be an SC process with q irreducible and qτ symmetric for all τ . Then, there exists τ ∗ > 0 such
that for any τ ∈ (0, τ ∗

],Qτ is irreducible and its unique invariant measure θτ satisfies θτ (x) ∝ exp

−τ−1Uτ (x)


and

limτ→0 θτ (Einf(U)) = 1.

Proof. For τ sufficiently small, qτ inherits the irreducibility of q and hence Qτ is irreducible. By the symmetry of qτ , we have

∀(x, y) ∈ E2, exp

−τ−1Uτ (x)


Qτ (x, y) = exp


−τ−1Uτ (y)


Qτ (y, x),

and therefore θτ (x) ∝ exp

−τ−1Uτ (x)


.

Let Zτ (F) =
∑

z∈F exp

−τ−1Uτ (z)


and let ωτ = supz∈Einf(U) Uτ (z). We have

lim
τ→0

Zτ (E \ Einf(U))

Zτ (Einf(U))
= 0,

and it follows that

∀x ∈ E, θτ (x) ∈ O
τ→0


exp


−τ−1(Uτ (x) − ωτ )


.

Then, since limτ→0

Uτ (x) − ωτ


= U(x) − Uinf, we have limτ→0 θτ (x) = 0 for any x ∉ Einf(U). �

Proposition 1 gives the go-ahead for studying the global convergence properties of SC. To do so, we start from the basic
observation that SC and SA behave similarly at low temperatures in the sense that

∀(x, y) ∈ ∆(q), lim
τ→0

−τ lnQτ (x, y) = lim
τ→0

−τ ln Pτ (x, y) = (U(y) − U(x))+. (10)

In other words, for any (x, y) ∈ E2 such that y ≠ x and q(x, y) > 0,Qτ (x, y) obeys a large deviation principle with speed
τ−1 and rate (U(y) − U(x))+, which suggests to appeal to the GSA theory developed in Trouvé (1996) and Catoni (1999).

3. Generalized simulated annealing

A GSA process on E is defined by a family (Θτ )τ∈R∗
+
of Markovmatrices on E satisfying a large deviation assumption with

speed τ−1 and with irreducible rate function J : E2
→ R+ ∪ {+∞}; that is,

∀(x, y) ∈ E2, lim
τ→0

−τ lnΘτ (x, y) = J(x, y) (11)

(with the convention that ln 0 = −∞), and the digraph

(E, ∆(J)), ∆(J) =


(x, y) ∈ E2

| y ≠ x and J(x, y) < +∞


(12)

is strongly connected. Given a GSA process (E, (Θτ )) and a cooling sequence (τn)n, we call a Markov chain (Xn)n∈N on E with
transitions P(Xn = y | Xn−1 = x) = Θτn(x, y) a GSA algorithm; we denote it by GSA(E, (Θτ ), (τn)).
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The Markov matrix Θτ has a unique invariant measure ϑτ for τ sufficiently small, and it is shown in Catoni (1999) that
(ϑτ )τ satisfies a large deviation principle: there is a function V : E → R+, called the virtual energy, such that

∀x ∈ E, lim
τ→0

−τ lnϑτ (x) = V (x) − Vinf, (13)

where Vinf = infx∈E V (x). Clearly, ϑτ concentrates on the set of global minima of V as τ → 0, which is to say that the virtual
energy plays the role of the objective function. It is defined by

∀x ∈ E, V (x) = inf
T∈T (x)

−
(z,t)∈ET

J(z, t), (14)

where T (x) is the set of directed trees T = (E, ET ), ET ⊂ E2, with root x and whose edges are directed toward x (i.e.,
d+(x) = 0 and d+(y) = 1 for all y ≠ x, where d+(z) is the outdegree of vertex z in T ). Similarly to standard SA theory,
the triplet (E, V , J) defines an energy landscape and is accompanied with a critical depth HV and a difficulty DV ; these two
constants are defined by

HV = sup
x∈E\Einf(V )

hV (x) and DV = sup
x∈E\Einf(V )

hV (x)
V (x) − Vinf

, (15)

where hV (x) denotes the depth of x in (E, V , J):

hV (x) = inf
y∈Einf(V )

ηV (x, y) − V (x) with ηV (x, y) = inf
(xi)mi=1∈ΠJ (x,y)

sup
1⩽i⩽m−1


V (xi) + J(xi, xi+1)


, (16)

where ΠJ(x, y) is the set of paths from x to y in (E, ∆(J)).
The main convergence result for GSA is stated in the following theorem; it gives an asymptotic bound on the probability

of error for suitably adjusted piecewise-constant exponential cooling sequences.

Theorem 1 (Catoni, 1999). Let (E, (Θτ )) be a GSA process with virtual energy landscape (E, V , J). For any positive reals α, β
and γ , consider the family of finite-time algorithms


Xn

0⩽n⩽σK = GSA


E, (Θτ ),


τ σ ,K
n


; σ , K ∈ N∗


with cooling sequence of

the form

τ σ ,K
n =

1
α ln K


γ

β

 1
σ


n−1
K


. (17)

If α < 1/HV , β > HV/DV and γ < β , then, for any σ ,

lim inf
K→+∞

−

ln sup
x∈E

P

V (XσK ) ⩾ Vinf + γ | X0 = x


ln(σK)

⩾
1
DV


γ

β

 1
σ

. (18)

4. Finite-time convergence of stochastic continuation

To apply Theorem 1 to optimization by SC, we need to find sufficient conditions for an SC process with target energy U
to be a GSA process with virtual energy V such that Einf(V ) ⊂ Einf(U). This is the subject of the two propositions below.
The conditions for an SC process to fit into the GSA framework only involve the communication scheme; they are given in
Proposition 2. Proposition 3 gives a simple additional condition for the virtual energy to be equal to the target energy plus
a constant.

Proposition 2. Let (E, (Qτ )) be an SC process with communication scheme (qτ )τ and with target energy landscape (E,U, q).
Assume that

(A1) q is irreducible,
(A2) ∀(x, y) ∈ E2, q(x, y) = 0 H⇒ limτ→0


qτ (x, y)

τ
= 1{x=y}.

Then (E, (Qτ )) is a GSA process with rate function

J(x, y) =


(U(y) − U(x))+ if q(x, y) > 0 or x = y
+∞ otherwise. (19)
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Proof. For any (x, y) ∈ E2,
x ≠ y and q(x, y) > 0


H⇒ −τ lnQτ (x, y) = −τ ln qτ (x, y) + (U(y) − U(x))+ −→

t→0
(U(y) − U(x))+,

x ≠ y and q(x, y) = 0


H⇒ −τ lnQτ (x, y) ⩾ −τ ln qτ (x, y) −→
t→0

+∞,

x = y H⇒ 0 ⩽ −τ lnQτ (x, x) ⩽ −τ ln


1 −

−
z≠x

qτ (x, z)


= −τ ln qτ (x, x) −→

t→0
0.

The irreducibility of J follows from the irreducibility of q. �

Proposition 3. Let (E, (Qτ )) be an SC process with target energy landscape (E,U, q) and satisfying assumptions (A1) and (A2).
If

(A3) ∆(q) is symmetric (i.e., ∀(x, y) ∈ E2, q(x, y) > 0 ⇐⇒ q(y, x) > 0),

then the virtual energy V of (E, (Qτ )) satisfies V − Vinf = U − Uinf.

Proof. Let (x, y) ∈ E2 such that x ≠ y. Let T ∈ T (x) and let πT (x, y) = (xi)mi=1 be the (unique) path from x to y in
T . Assume that πT (x, y) is J-admissible, that is, J(xi, xi+1) < +∞ for all i ∈ {1, . . . ,m − 1}. Then, by (19) and (A3),
J(xi, xi+1) − J(xi+1, xi) = U(xi+1) − U(xi) for all i, and it follows that−

(z,t)∈ET :z∈πT (x,y)

J(z, t) = U(x) − U(y) +

−
(z,t)∈ET :z∈πT (x,y)

J(t, z). (20)

Since J is irreducible, there exists T ∈ T (x) such that J(T ) :=
∑

(z,t)∈ET
J(z, t) < +∞ (and hence such that πT (x, y) is

J-admissible); consequently, using (20),

V (x) + U(y) = inf
T∈T (x):J(T )<+∞

 −
(z,t)∈ET :z∉πT (x,y)

J(z, t) +

−
(z,t)∈ET :z∈πT (x,y)

J(t, z) + U(x)


.

Letting ζ : T (x) → T (y) be the one-to-one mapping that reverses the orientation of each edge in the path from y to x, we
obtain

V (x) + U(y) = inf
T∈T (x):J(ζ (T ))<+∞

J(ζ (T )) + U(x) = V (y) + U(x).

In particular, given y0 ∈ Einf(U), we have V (x) = V (y0) + U(x) − Uinf ⩾ V (y0) for all x, and hence V (y0) = Vinf. �

Our main result is given by Theorem 2. Putting it simply, it states that increasing the number of temperature stages of
piecewise-constant exponential cooling makes it possible for SC to have a convergence speed exponent arbitrarily close to
the optimal convergence speed exponent of SA.

Theorem 2. Let (E, (Uτ ), (qτ )) be an SC process with target energy landscape (E,U, q) and satisfying assumptions (A1)–(A3),
and let M be the convergence measure defined in (2). For any ε > 0, there is a family of piecewise-constant cooling sequences
τ σ ,K
n


1⩽n⩽σK with σ stages of length K such that the family of finite-time algorithms
Xn

0⩽n⩽σK = SC


E, (Uτ ), (qτ ),


τ σ ,K
n


; σ , K ∈ N∗


(21)

satisfies

lim
K→+∞

−
lnM(σK)

ln(σK)
⩾

1
(1 + ε)DU

. (22)

These cooling sequences are of the form

τ σ ,K
n =

A
ln K

exp


−

B
σ


n − 1
K


(23)

with A > HU , B > ln


HU

DU infx∈E\Einf(U) U(x) − Uinf


, and σ ⩾

B
ln(1 + ε)

.
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Proof. Let (E, V , J) be the virtual energy landscape associated with (E, (Uτ ), (qτ )). From Propositions 2 and 3, we have
Einf(V ) = Einf(U), ∆(J) = ∆(q), and for any (z, t) ∈ ∆(J),

V (z) + J(z, t) = U(z) − Uinf + Vinf + (U(t) − U(z))+ = sup

U(z),U(t)


− Uinf + Vinf.

It follows that ηV − Vinf = ηU −Uinf, and thus hV = hU ,HV = HU , and DV = DU . Consequently, for a family of finite-time SC
algorithms of type (21) with cooling sequence of the form (17), Theorem 1 gives that if α < 1/HU , β > HU/DU , and γ < β ,
then

∀ε > 0, ∀σ ⩾
ln(β/γ )

ln(1 + ε)
, lim inf

K→+∞

−

ln sup
x∈E

P

U(XσK ) ⩾ Uinf + γ | X0 = x


ln(σK)

⩾
1

(1 + ε)DU
.

Taking γ < infx∈E\Einf(U) U(x) − Uinf gives the asymptotic bound in (22). �

The conditions for Theorem 2 to apply are weak; they only concern the communication scheme (qτ )τ . Assumptions (A1)
and (A3) are standard in SA theory: the irreducibility of the limit q and the symmetry of its support∆(q) ensure that the target
energy landscape can be fully explored and that any path in this landscape can be traveled in the opposite direction. The
meaning of (A2) is less clear, but a simple sufficient condition for it to hold is that q(x, x) > 0 for all x and that∆(qτ ) = ∆(q)
for τ small enough. In other words, it suffices to allow the limit communicationmechanism to rest anywhere and to ‘‘freeze’’
the set of possible moves at low temperatures. Quite interestingly, there is no condition on the continuation scheme (Uβ)β
apart from pointwise convergence to the target energy.
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