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Abstract. Simulated annealing (SA) is a generic optimization method whose pop-
ularity stems from its simplicity and its global convergence properties; it emulates
the physical process of annealing whereby a solid is heated and then cooled down
to eventually reach a minimum energy configuration. Although successfully applied
to many difficult problems, SA is widely reported to converge very slowly, and it
is common practice to relax some of its convergence conditions as well as to allow
extra freedom in its design. However, variations on the theme of annealing usually
come without optimal convergence guarantees.

In this paper, we review the fundamentals of SA and we focus on acceleration
techniques that come with a rigorous mathematical justification. We discuss the
design of the candidate-solution generation mechanism, the issue of finite-time cool-
ing, and the technique of acceleration by concave distortion of the objective func-
tion. We also investigate a recently introduced generalization of SA — stochastic
continuation — which significantly increases the design flexibility by allowing the
candidate-solution generation mechanism and the objective function to vary with
temperature.

1 Introduction

1.1 Background

Simulated annealing (SA) is a generic method for combinatorial optimization that is
quite popular because of its ease of implementation and its global convergence prop-
erties. The key feature of SA is to allow uphill moves (that is, moves that increase the
value of the objective function) in order to escape local minima. By analogy with the
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physical process of annealing in solids, uphill moves are accepted with some prob-
ability controlled by a temperature parameter that decreases monotonically to zero.
As the temperature goes to zero, the invariant measure of the underlying Markov
chain model concentrates on the global minima of the objective function, and we can
expect that the process converges to a global minimum if the cooling is sufficiently
slow. Early results [15, 16, 9] show that this is indeed the case if the temperature is
inversely proportional to the logarithm of the iteration index. However, this theoret-
ical advantage is counterbalanced by well-known practical disadvantages, namely,
that SA converges very slowly and that the convergence assumptions severely limits
design freedom.

Good SA algorithm design means careful selection of the cooling schedule —
most successful applications of SA use exponential cooling, which is theoretically
justified in [6] — and clever construction of the candidate-solution generation mech-
anism (we call it the communication mechanism for short). Nevertheless, many im-
plementations of SA found in the literature use inappropriate cooling schedules and
crude communication mechanisms, which usually translates to convergence to poor
local minima and sensitivity to initialization. It is therefore not surprising that SA
is often abandoned in favor of other (mainly deterministic) optimization methods.
The truth is that carefully designed annealing algorithms produce very good results
for a wide class of problems. Yet, standard SA is generally much slower than de-
terministic methods, and it is common practice to relax some of its convergence
conditions as well as to allow extra freedom in its design at the expense of losing
optimal convergence guarantees.

In this paper, we focus on acceleration techniques that come with a rigorous
mathematical justification; these include (i) restriction of the state space, transfor-
mation of the state space, and relaxation, (ii) proper selection of the cooling sched-
ule, (iii) concave distortion of the objective function, (iv) temperature dependence
of the objective function, and (v) temperature dependence of the communication
mechanism.

1.2 Overview

We start by reviewing the fundamentals of Metropolis-type SA on a finite state
space, which is the most popular and the best understood class of annealing algo-
rithms. Let U be a real-valued function to be minimized over a finite state space Ω ;
call it the energy function. Without going into details, a Metropolis-type SA algo-
rithm with energy U is a Markov chain (Xn)n∈N on Ω whose transitions are guided
by a communication mechanism θ and controlled by a cooling sequence (βn)n∈N∗ .
The communication mechanism is a Markov matrix on Ω that gives the probabilities
of the possible moves for generating a candidate solution from the current solution,
and the cooling sequence is a divergent sequence of inverse temperatures acting
on the rate of acceptance of uphill moves. The transitions of (Xn)n are defined as
follows: for any (x,y) ∈Ω 2 such that x �= y,
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P(Xn = y |Xn−1 = x) =

{
θ (x,y) if U(y)�U(x),

θ (x,y)exp(−βn(U(y)−U(x))) if U(y)>U(x).
(1)

Putting it simply, downhill moves are unconditionally accepted, whereas an uphill
move from x to y is accepted with probability exp(−βn(U(y)−U(x))) at iteration n.
It is well known [16] that, under weak assumptions on θ , if (βn)n increases slowly
enough, then (Xn)n converges to the set of global minima of U in the sense that

lim
n→+∞

P
(
U(Xn)> inf

y∈Ω
U(y)

)
= 0. (2)

This is the case for logarithmic cooling sequences of the form βn = β0 ln(n+ 1)
provided β0 is smaller than a critical value βc that depends on U and θ . However,
logarithmic cooling is inefficient for most practical problems; indeed, βc is generally
too large to reach the low temperature regime in a reasonable amount of computation
time, whereas the process gets easily stuck in poor local minima for feasible values
of β0.

Designing an efficient SA algorithm means smartly choosing the communication
mechanism θ and carefully selecting the cooling sequence (βn)n. These two levers
for convergence acceleration are considered first, and our discussion about cooling
sets the basis for introducing the technique of acceleration by concave energy distor-
tion. We continue with a recently introduced generalization of SA, called stochastic
continuation, in which both the energy function and the communication mechanism
are allowed to vary with temperature. The paper ends with practical considerations
for tuning the cooling schedule. Each topic is summarized below.

Design of the Communication Mechanism (Section 3). The design of the com-
munication mechanism is application-dependent and hence cannot be reduced to
a simple recipe, but there are general ideas that can lead to significant benefits in
terms of convergence speed. We start with the standard construction scheme based
on a neighborhood system that specifies the allowed moves. We then discuss three
concepts that can facilitate the exploration of the state space and that can be tied
together: state-space restriction, as successfully used in [28], state-space transfor-
mation, an example of which can be found in [26], and relaxation.

Finite-Time Cooling (Section 4). The issue of finite-time cooling is of primary
importance, as the available computing time is always bounded in practice. We in-
vestigate the finite-time convergence results of Catoni [6], who showed that the con-
vergence rate cannot be faster than some optimal power of 1/n and that exponential
cooling must be preferred over logarithmic cooling. More precisely, the optimal
convergence speed exponent is 1/D, where D is the so-called difficulty of the en-
ergy landscape (D is a function of U and θ ), and it is possible to construct a family
{(β N

n )1�n�N ; N ∈ N
∗} of finite cooling sequences of the form β N

n = β0 exp(ζn),
where ζ ∈ (0,+∞) depends on N, such that

lnP
(
U(XN)> inf

y∈Ω
U(y)

) ∼ lnN−1/D. (3)
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These results are not well-known, and yet they constitute the most significant ad-
vance in SA theory beyond the asymptotic properties established in [16]: they pro-
vide a rigorous justification for the commonly used exponential cooling schedules.

Concave Energy Distortion (Section 5). The convergence results associated with
finite-time SA ground the theoretical justification for acceleration by distortion of
the energy function [28]. The technique simply consists in replacing U by ϕ ◦U ,
where the function ϕ is differentiable, increasing, and strictly concave. The rationale
behind this is that the difficulty of the energy landscape Dϕ associated with ϕ ◦U
is strictly smaller than the original difficulty D; therefore, the optimal convergence
speed exponent is increased, thus leading to potential acceleration. We also discuss a
theoretical way to compare the relative performance of different distortion functions.

Stochastic Continuation (Section 6). Stochastic continuation (SC) is a recently
introduced generalization of SA which relaxes the design constraints of annealing-
type algorithms by allowing the energy function and the communication mechanism
to vary with temperature [24, 27, 29, 30]. The first idea is to ease the optimization
process by gradually revealing its complexity, which can be obtained by replacing
the energy U by a sequence of functions converging pointwise to U with increas-
ing difficulty. The second idea is to facilitate the exploration of the state space by
adapting the communication mechanism to the temperature regime. Formally, an
SC algorithm is defined by a family (Uβ )β∈R+

of real-valued functions on Ω called
the continuation scheme, a family (θβ )β∈R+

of Markov matrices on Ω called the
communication scheme, and a cooling sequence (βn)n∈N∗ ; the description of SC is
the same as that of SA, except that the energy U and the communication mechanism
θ in (1) are respectively replaced by Uβ and θβ .

We give the conditions for SC to have finite-time convergence properties similar
to that of SA. These conditions are surprisingly weak, and, quite interestingly, ex-
ponential cooling makes it possible for SC to have a convergence speed exponent
arbitrarily close to the optimal exponent of SA. More precisely, letting D be the
difficulty of the energy landscape defined by the limit energy U = limβ→+∞ Uβ and
by the limit communication matrix limβ→+∞ θβ , we have that for any α ∈ (0,1/D),
there is a family {(β N

n )1�n�N ; N ∈N∗} of finite exponential cooling sequences such
that

P
(
U(XN)> inf

y∈Ω
U(y)

)
� N−α (4)

for N large enough. We end our discussion of SC with guidelines for constructing
the continuation and communication schemes.

Practical Tuning of the Cooling Sequence (Section 7). The exponential cooling
sequences suggested by SC theory are of the form

β N
n = β0 exp

(
ζ
⌈σ

N
n
⌉)

, (5)

where � ·	 is the ceiling function and σ is the number of constant-temperature
stages. Generally, σ is fixed in advance and the horizon N is a multiple of σ that
is fixed by the available computing resources. This leaves us with the problem of
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finding appropriate values for β0 and ζ , or equivalently for the initial and final in-
verse temperatures βinf := β0 exp(ζ ) and βsup := β0 exp(ζσ). We discuss efficient
approximate methods for estimating βinf and βsup according to criteria on the ratio
of the number of accepted uphill moves to the number of proposed ones.

2 Simulated Annealing

We consider the problem of finding a global minimum of an arbitrary real-valued
energy function U defined on a finite state space Ω . We denote the ground state
energy by Uinf, and we let Ωinf be the set of global minima of U ; that is,

Uinf = inf
x∈Ω

U(x) and Ωinf =
{

x ∈Ω
∣∣U(x) =Uinf

}
. (6)

Given two integers a and b such that a � b, we denote by [[a,b]] the set of integers
between a and b, including a and b. This notation will be used throughout the paper.

2.1 Fundamentals

Simulated annealing (SA) operates on an energy landscape (Ω ,U,θ ) defined by a
symmetric and irreducible Markov matrix θ on Ω , called the communication matrix,
which specifies how to generate a candidate solution from the current solution. More
precisely, we assume that θ : Ω 2→ [0,1] has the following properties.

1. θ is a Markov matrix: ∑z∈Ω θ (x,z) = 1 for all x ∈Ω .
2. θ is symmetric: θ (x,y) = θ (y,x) for all (x,y) ∈Ω 2.
3. θ is irreducible: for any (x,y) ∈Ω 2, there is a θ -admissible path from x to y, that

is, a path (xi)
m
i=1 such that x1 = x, xm = y, and θ (xi,xi+1)> 0 for all i∈ [[1,m−1]].

In simple terms, the probability to propose a move from x to y is the same as that
to propose a move from y to x, and any state can be reached from any other state in
a finite number of moves. (Standard and advanced construction schemes for θ are
described in Section 3.)

An SA process on an energy landscape (Ω ,U,θ ) is defined by a family (Pβ )β∈R+

of Markov matrices on Ω of the form

Pβ (x,y) =

{
θ (x,y)Aβ (x,y) if y �= x,

1−∑z∈Ω\{x}Pβ (x,z) if y = x,
(7)

where the so-called acceptance probability function Aβ : Ω 2→ [0,1] is defined by

Aβ (x,y) = exp
(−β (U(y)−U(x))+

)
(8)

with t+ := sup{t,0}. The parameter β plays the role of an inverse temperature,
and Aβ (x,y) is the probability to accept the move from the current solution x to the
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candidate solution y at temperature β−1. Other acceptance probability functions are
possible (we then speak of an hill-climbing process [17]), but it is shown in [32]
that (8) is the unique form such that (i) Aβ (x,y) = 1 if U(y)�U(x), (ii) Aβ depends
uniformly on the energy difference between the current and candidate solutions, and
(iii) the Markov chain (Xn)n∈N with transitions P(Xn = y |Xn−1 = x) = Pβ (x,y) is
reversible.

We call a positive real sequence (βn)n∈N∗ a cooling sequence if it is non-
decreasing and if limn→+∞ βn = +∞. Given such a sequence, an SA algorithm on
(Ω ,U,θ ) is a discrete-time, non-homogeneous Markov chain (Xn)n∈N with tran-
sitions P(Xn = y |Xn−1 = x) = Pβn(x,y). We use the notation SA(Ω ,U,θ ,(βn))
for short. In practice, a finite-time realization (xn)n∈[[0,N]] of an annealing chain
SA(Ω ,U,θ ,(βn)) is generated as follows:

pick an initial state x0 ∈Ω ;
for n = 1 to N do

draw a state y from the probability distribution θ (xn−1, ·) on Ω ;
set xn←− xn−1;
set δ ←−U(y)−U(xn−1);
if δ � 0 then set xn←− y;
else set xn←− y with probability exp(−βnδ );
end(if)

end(for)

The Markov matrix Pβ inherits the irreducibility of θ for any β . Therefore, since
Ω is finite, Pβ has a unique and positive invariant measure which we denote by μβ .
Moreover, from the symmetry of θ , we have

exp(−βU(x))Pβ (x,y) = exp(−βU(y))Pβ (y,x) (9)

for all (x,y) ∈Ω 2, that is, Pβ is reversible with respect to a distribution proportional
to exp(−βU(x)), and thus

μβ (x) =
exp(−βU(x))

∑z∈Ω exp(−βU(z))
(10)

for all x ∈ Ω . In other words, the steady-state distribution of Pβ is the Gibbs distri-
bution with energy U at temperature β−1. When β increases to infinity, this distri-
bution concentrates around the ground states and tends to the uniform distribution
on Ωinf, that is,

lim
β→+∞

μβ (x) =

{
1/|Ωinf| if x ∈Ωinf,

0 if x �∈Ωinf.
(11)

This observation leads to the key idea of annealing: if the cooling sequence (βn)n in-
creases sufficiently slowly, then we can expect that the law of Xn stays close enough
to μβn so that

lim
n→+∞

inf
x∈Ω

P
(
Xn ∈Ωinf

∣∣X0 = x
)
= 1. (12)
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However, it is natural to question the need for cooling. Indeed, we can think of
searching for the global minima by Metropolis sampling, which consists in simu-
lating an homogeneous Markov chain with transitions matrix Pβ for a fixed β and
keeping the lowest energy state found during the simulation. Metropolis sampling
has interesting finite-time convergence properties [7, 12, 23, 22], and some exper-
imental results show that it can perform comparably to SA if the temperature is
chosen correctly [10, 13]. Unfortunately, there is no general approach to choosing a
fixed temperature value appropriate to a given optimization problem. The difficulty
is the following. On the one hand, if we want to be reasonably sure of finding a good
solution, we have to choose β large enough so that μβ is sharply peaked around the
ground states. On the other hand, the larger β , the less mobile the Metropolis chain,
and hence the more likely it is to get stuck in poor local minima. From this perspec-
tive, SA can be viewed as an acceleration technique for Metropolis sampling.

2.2 Asymptotic Convergence

The most well-known asymptotic convergence result for SA is due to Hajek [16],
who showed that (12) holds if and only if

+∞

∑
n=1

exp(−βnHc) = +∞, (13)

where Hc is the maximum energy barrier separating a non-optimal state from a
ground state. The constant Hc is called the critical depth of the energy landscape.
Formally,

Hc = sup
x∈Ω\Ωinf

H(x), (14)

where H(x)— the depth of x — is defined as follows:

H(x) = inf
y∈Ωinf

h(x,y)−U(x) (15)

with h(x,y) = inf
(xi)

m
i=1∈Πθ (x,y)

sup
i∈[[1,m]]

U(xi), (16)

where Πθ (x,y) denotes the set of θ -admissible paths from x to y.
Hajek’s result readily implies that logarithmic cooling sequences of the form

βn = β0 ln(n+ 1) are asymptotically optimal if 0 < β0 � 1/Hc. A notable refine-
ments was given by Chiang and Chow [9] who provided a necessary and sufficient
condition for the limit distribution of the annealing chain to give a strictly positive
mass to any global minimum: assuming that |Ωinf|� 2, we have{

y ∈Ω
∣∣∣ lim

n→+∞
inf
x∈Ω

P
(
Xn = y

∣∣X0 = x
)
> 0

}
= Ωinf (17)
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if and only if
+∞

∑
n=1

exp(−βn sup{Hc,Hinf}) = +∞, (18)

where Hinf is the maximum energy barrier separating two ground states, that is,

Hinf = sup
(x,y)∈Ω2

inf

h(x,y)−Uinf. (19)

A necessary and sufficient condition for strong ergodicity can be found in [5]. This
condition is similar to (18) but with a critical constant greater than or equal to
sup{Hc,Hinf}, and it ensures that for any x ∈Ω ,

lim
n→+∞

P
(
Xn = y

∣∣X0 = x
)
=

{
1/|Ωinf| if y ∈Ωinf,

0 if y �∈Ωinf.
(20)

However, these asymptotic results impose logarithmic cooling, which yields ex-
tremely slow convergence, while successful applications of SA generally use ex-
ponential cooling. Furthermore, convergence guarantees such has (12), (17) or (20)
are of limited interest if the horizon is finite, as is always the case in practice. The
finite-time convergence properties of SA along with the justification of exponential
cooling are discussed in Section 4.

3 Design of the Communication Mechanism

The communication mechanism is usually defined via a neighborhood system G on
Ω , that is, a collection G = {G (x) ; x ∈ Ω} of subsets of Ω such that (i) x �∈ G (x)
for all x ∈ Ω , and (ii) y ∈ G (x)⇐⇒ x ∈ G (y) for all (x,y) ∈ Ω 2. We let Δ(G ) ={{x,y} ⊂ Ω

∣∣ y ∈ G (x)
}

be the set of neighboring state pairs in G and
(
Ω ,Δ(G ))

be the adjacency graph with vertex set Ω and edge set Δ(G ). The most simple
mechanisms have the following form:

θ (x,y) =

⎧⎪⎨
⎪⎩

c if y ∈ G (x),

1− c |G (x)| if y = x,

0 otherwise,

(21)

with 0 < c � 1
/(

supx∈Ω |G (x)|). A standard example is that of a single-component
updating communication mechanism on a cartesian product space Ω =ϒ d . In this
case, a candidate solution y = (y1, . . . ,yd) is generated from x = (x1, . . . ,xd) by pick-
ing a component index i ∈ [[1,d]] and a component value t ∈ϒ uniformly at random
and setting yi = t and y j = x j for all j �= i. The associated communication matrix
writes
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θ (x,y) =

⎧⎪⎪⎨
⎪⎪⎩

1/(d|ϒ |) if ∃!i ∈ [[1,d]], yi �= xi,

1/|ϒ | if y = x,

0 otherwise.

(22)

More sophisticated mechanisms are constructed by weighting the allowed moves
using a function γ : Δ(G )→ (0,+∞); they are of the form

θ (x,y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cγ({x,y}) if y ∈ G (x),

1− c ∑
z∈G (x)

γ({x,z}) if y = x,

0 otherwise,

(23)

with 0 < c � 1
/(

supx∈Ω ∑z∈G (x) γ({x,z})). A communication matrix of this type
is clearly symmetric, and it is irreducible if and only if

(
Ω ,Δ(G )) is connected.

Conversely, any symmetric and irreducible Markov matrix on Ω is of the form of
(23) with

(
Ω ,Δ(G )) connected: it suffices to set G (x) = {y∈Ω |y �= x and θ (x,y)>

0} for all x ∈Ω , γ({x,y}) = θ (x,y) for all {x,y} ∈ Δ(G ), and c = 1. The choice of
the neighborhood system G and of the weighting function γ depends on the structure
of the optimization problem under consideration, but there are general ideas that
can significantly improve the convergence speed of SA. These concepts — namely,
restriction of the state-space, transformation of the state-space, and relaxation — are
described below; they can be used independently or together.

3.1 Restriction of the State Space

The difficulty of minimizing a particular energy function U depends on the set Ω
on which it is defined. In particular, if the solutions of interest belong to a relatively
small fraction Ω̃ of Ω that can be easily identified, then it makes sense to try to
minimize the energy function over Ω̃ instead of Ω . Such a restriction of the mini-
mization domain is a valuable option if |Ω̃ | � |Ω | and if Ω̃ is both easy to explore
and rich enough to contain most acceptable solutions.

An important case is when Ω is a cartesian product space ∏d
i=1 Ωi and Ω̃ consists

of the states x = (x1, . . . ,xd) such that each component xi belongs to a subset of Ωi

defined as a function of the other components; that is,

Ω̃ =
{

x = (x1, . . . ,xd)
∣∣ ∀i ∈ [[1,d]], xi ∈ Fi(x\{i})

}
, (24)

where each Fi is a function from Ω \{i} := ∏d
j=1, j �=i Ω j to the power set of Ωi, and

where x\{i} denotes the (d− 1)-tuple obtained by removing the ith component xi

from x. The design of a single-component updating communication mechanism θ̃
operating on Ω̃ is conceptually simple. For any x ∈ Ω̃ , we let x\{i}(t) ∈ Ω be the
state obtained by replacing the ith component of x by t, and we denote the section
of Ω̃ at x\{i} by ωi(x); that is,
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∀ j ∈ [[1,d]], (x\{i}(t)) j =

{
t if j = i,

x j otherwise,
(25)

and ωi(x) =
{

t ∈Ωi
∣∣ x\{i}(t) ∈ Ω̃

}
. (26)

Then, a candidate solution y can be generated from x by picking a component index
i ∈ [[1,d]] and a component value t ∈ ωi(x) uniformly at random and setting y =
x\{i}(t). The corresponding formal description is the following:

θ̃ (x,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
d|ωi(x)| if y\{i} = x\{i} and yi ∈ ωi(x)\ {xi},

1
d ∑

i∈[[1,d]] : xi∈ωi(x)

1
|ωi(x)| if y = x,

0 otherwise,

(27)

which is of the form of (23) with

G (x) =
d⋃

i=1

{
x\{i}(t) ; t ∈ ωi(x)\ {xi}

}
, (28)

γ({x,y}) = 1
/|ωi(x)|, and c = 1/d. The efficiency of this communication mech-

anism depends on how difficult it is to evaluate the ωi’s, which in turn depends
on the choice of the functions Fi that define Ω̃ . This choice cannot be arbi-
trary: it must guarantee that the adjacency graph with vertex set Ω̃ and edge set{{x,y} ⊂ Ω̃

∣∣ y ∈ G (x)
}

defined by (28) is connected. A clear-cut example can be

found in [28], where Ω is a digital image space and Ω̃ is a so-called locally bounded
image space which consists of the images in which each pixel value is bounded by
the values of neighboring pixels up to an additive constant.

3.2 Transformation of the State Space

The design of an efficient communication mechanism can be facilitated by trans-
forming the domain in which the state space Ω lies. The idea is to get around the
difficulty of constructing a sophisticated communication mechanism in the original
minimization domain by operating on a transformed domain that can be effectively
explored using a simple communication mechanism.

By way of illustration, consider the case when Ω is a cartesian product space in-
dexed by the sites of a spatial lattice, as in image processing. If the lattice has a large
number of sites, it is a common situation that the energy bonds between the state
components are loose and hence that SA with single-component updating experi-
ences difficulties (see, for instance, Jennison’s discussion in [1]). This is especially
true when the low energy regions of the state space correspond to smooth configu-
rations, as moving between such regions by changing only one component at a time
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requires many iterations. The obvious answer to this problem is to generate candi-
date solutions by changing several components simultaneously, but direct design of
a multiple-component updating mechanism can be very cumbersome. An effective
way to do that is to operate in a multiresolution transform domain, because single-
component updating at a coarse resolution level corresponds to multiple-component
updating in the finest scale (that is, in the original domain) and hence improves the
mobility of the annealing chain. A comprehensive example is given in [26], where
multi-component updating is achieved by performing single-component moves in a
wavelet transform domain.

Formally, the state-space transformation approach uses a bijective map between
the original domain, say Λ , which contains Ω , and the transformed domain which
we denote by Λ̃ . Let π : Λ → Λ̃ be such a map, and assume for the sake of generality
that Λ (and hence Λ̃ ) is uncountable. Then, since SA operates on finite state spaces,
Λ̃ must be restricted to a finite set Ω̃ on which an efficient communication mecha-
nism can be easily constructed. If π−1(Ω̃)⊆Ω , the original problem of minimizing
U over Ω is replaced by that of minimizing U ◦π−1 over Ω̃ . However, it can be dif-
ficult to ensure that π−1(Ω̃) ⊆Ω , and thus, strictly speaking, the new optimization
problem is that of minimizing U |Λ ◦π−1 over Ω̃ , where U |Λ is an extension of U to
Λ . This brings us to the concept of relaxation.

3.3 Relaxation

Extending the set Ω over which the energy U is to be minimized is called a relax-
ation of the original problem; it is adapted to situations where (i) the structure of
Ω complicates the optimization problem unnecessarily, and (ii) there is a larger set
Λ ⊃Ω that contains interesting approximate solutions that can be found more easily
than the global minima of U on Ω .

Given an extension U |Λ of the original energy to Λ , we denote the ground state
energy infx∈Λ (U |Λ )(x) by (U |Λ )inf and we let Λinf be the set of global minima of
U |Λ . Ideally, (U |Λ )inf =Uinf and there exists a surjective map κ : Λ →Ω such that
κ(Λinf) = Ωinf, so that solving the relaxed problem solves the original problem.
Otherwise, the computed solution only provides a lower bound on Uinf. In practice,
however, one is usually satisfied with solutions whose energy level is close to the
ground state energy rather than with global minima only; that is, the set of solutions
is extended from Ωinf to a sublevel set

Ωε =
{

x ∈Ω
∣∣U(x)�Uinf + ε

}
, (29)

where ε > 0 is a given tolerance level. In this case, a basic requirement is that κ
maps the acceptable solutions to the relaxation to acceptable solutions to the original
problem, that is,

∀ε > 0, ∃α > 0, κ(Λα)⊆Ωε , (30)

where Λα =
{

x ∈Λ | (U |Λ )(x) � (U |Λ )inf +α
}

.



322 M.C. Robini

Relaxation is the opposite concept to restriction, but both can be used together
when the minimization is performed in a transformed domain, as summarized by
the following diagram:

Ω Ω̃

Relaxation

�⏐⏐ κ
(surjection)

ι̃
(inclusion map)

⏐⏐�Restriction

Λ π (bijection)−−−−−−−−−−−−−−−−−−→
Transformation

Λ̃

(31)

Let Ω̃inf be the set of solutions of the transformed optimization problem, that is,
the set of global minima of the transformed energy U |Λ ◦ π−1 over the restricted
set Ω̃ . Finding a state in Ω̃inf solves the original problem of minimizing U over
Ω if and only if the set Ω ′inf := κ(π−1(Ω̃inf)) is a subset of Ωinf. Otherwise, the
original solution set Ωinf is implicitly replaced by the approximate solution set Ω ′inf,
which makes sense if the set of acceptable solutions is of the form of (29) and if κ
satisfies (30).

4 Finite-Time Cooling

Given an energy landscape (Ω ,U,θ ) and a finite cooling sequence (β N
n )n∈[[1,N]],

we define the convergence measure M(N) of the finite-time annealing algorithm
(XN

n )n∈[[0,N]] = SA(Ω ,U,θ ,(β N
n )) by

M(N) = sup
x∈Ω

P
(
XN

N �∈Ωinf
∣∣XN

0 = x
)
. (32)

It is shown in [6] that as the horizon N increases, M(N) cannot decrease faster than
some optimal exponent of N−1. More precisely, let B(N) be the set of finite cooling
sequences of length N, that is, B(N) = {(β N

n ) | 0 � β N
1 � · · ·� β N

N }. We have

lim
N→+∞

sup
(β N

n )∈B(N)

− lnM(N)

lnN
� 1

D
, (33)

where D denotes the difficulty of the energy landscape, which is the maximum ratio
of the depth to the energy level above the ground state energy:

D = sup
x∈Ω\Ωinf

H(x)
U(x)−Uinf

. (34)

Furthermore, the upper bound 1/D in (33) is sharp, as there are some families
{(β N

n )n∈[[1,N]] ; N ∈ N
∗} of finite exponential cooling sequences such that

lim
N→+∞

− lnM(N)

lnN
=

1
D
, (35)
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which implies in particular that for any α ∈ (0,1/D), M(N) � N−α for N large
enough. These families are of the form

β N
n = β0 exp(n f (N)) with f (N) ∼ N−1 lnN, (36)

where β0 ∈ (0,+∞) is independent of N. This rigorous justification for expo-
nential cooling is a direct consequence of Theorem 8.1 in [6] (see [28]), where
it is also established that there exists piecewise logarithmic sequences such that
M(N) � CN−1/D for some positive constant C (however, these sequences depend
strongly on the hierarchical structure of the energy landscape and their identifica-
tion is intractable for problems of practical size). On the experimental side, the opti-
mal cooling sequence attached to a particular optimization problem may be neither
logarithmic nor exponential [10], but exponential cooling is particularly attractive
because, contrary to other cooling strategies, it is uniformly robust with respect to
the energy landscape.

It can be checked that the supremum in the definition (34) of the difficulty of the
energy landscape can be taken over the set of non-global minima of (Ω ,U,θ ), that
is, over

Ω †
loc = Ωloc \Ωinf, (37)

where Ωloc denotes the set of local minima of (Ω ,U,θ ):

Ωloc =
{

x ∈Ω
∣∣ ∀y ∈Ω , θ (x,y)> 0 =⇒ U(x)�U(y)

}
. (38)

Therefore, the above finite-time convergence properties are consistent with the in-
tuitive understanding of annealing, that is, that SA performs poorly if the energy
landscape has low-energy non-global minima and if these minima are separated
from the ground states by high energy barriers. It should be stressed that this un-
derstanding differs from that stemming from the asymptotic convergence results of
Hajek exposed in Section 2.2. Indeed, the supremum in the definition (14) of the
critical height Hc can also be taken on Ω †

loc, and thus the asymptotic performance
of SA is dictated by the maximum energy barrier separating a non-global minimum
from a global one regardless of their relative energies. By way of illustration, Fig.
1 shows three simple energy landscapes with increasing difficulty. In each case,
Ω = {xi ; i ∈ [[1,12]]}, U(Ω)⊂N, and θ (x,y)> 0 if and only if (x,y) = (xi,xi+1) or
(xi,xi−1). The quantities η1 and η2 are defined by

η1 = H(x∗) and η2 = U(x∗)−Uinf (39)

with x∗ ∈ argsup
x∈Ω\Ωinf

H(x)
U(x)−Uinf

, (40)

and thus D = η1/η2. As exemplified by Figs. 1(a) and 1(c), the non-global min-
imum with maximum depth does not necessarily coincide with the argument of
the supremum in the definition of the difficulty. The reason is that the ordering of
the non-global minima in terms of the depth H is generally not the same as that
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Fig. 1 Energy landscapes with increasing difficulty D = η1/η2 : (a) D = 4
3 ; (b) D = 7

3 ; (c)
D = 3.

defined by H
/
(U −Uinf), which means in particular that the notion of a local basin

of attraction differs between asymptotic and finite-time convergence theories.
The finite-time convergence theory also sheds new light on the benefits of SA

over Metropolis sampling. From [7], the optimal convergence speed exponent of
the Metropolis algorithm is 1/DM with

DM =
Hc

inf
x∈Ω\Ωinf

U(x)−Uinf
. (41)

We have D < DM if and only if one of the following two conditions holds:

1. there exists x ∈Ω such that Uinf <U(x)< inf
y∈Ω†

loc
U(y);

2. for any x ∈Ω †
loc, H(x) = supy∈Ω†

loc
H(y) =⇒ U(x)> infy∈Ω†

loc
U(y).

In other words, SA is potentially faster than Metropolis sampling if there is a state
x �∈ Ωinf with smaller energy than any non-global minimum or if the set of non-
global minima with maximum depth is disjoint from the set of non-global minima
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with minimum energy. For example, going back to Fig. 1, we have D < DM in all
three cases: (a) DM = 5

3 , (b) DM = 7
2 , and (c) DM = 7.

5 Concave Energy Distortion

We know from finite-time SA theory (see Section 4) that there are some families
of exponential cooling sequences such that M(N) is asymptotically equivalent to
N−1/D in the logarithmic scale, where 1/D — the inverse of the difficulty of the
energy landscape — is the optimal convergence speed exponent. Therefore, the more
difficult the energy landscape (as measured by D), the lower the convergence rate,
and we can ask ourselves whether there are convenient ways to reduce the difficulty
without changing the set of solutions of the underlying minimization problem. The
concave distortion idea proposed by Azencott [3, 2] makes this possible.

Let ϕ be a strictly increasing function defined on an interval covering the range
of U . Then the set of global minima of ϕ ◦U is the same as the set of global minima
of U , and thus the minimization of U can be performed equally well by replac-
ing U with ϕ ◦U . The nice thing is that if, in addition, ϕ is strictly concave, then
the difficulty D(Ω ,ϕ ◦U,θ ) of the distorted energy landscape is smaller than the
difficulty D(Ω ,U,θ ) of the original energy landscape, which means that annealing
algorithms of type SA(Ω ,ϕ ◦U,θ ,(βn)) are expected to converge faster than those
of type SA(Ω ,U,θ ,(βn)). This is made precise by the following theorem whose
proof is given in [28].

Theorem 1. Let I be an open interval covering the range of U. For any increasing,
strictly concave, differentiable function ϕ : I→ R, the set of global minima of ϕ ◦U
is the same as the set of global minima of U and D(Ω ,ϕ ◦U,θ )< D(Ω ,U,θ ).

Roughly speaking, the idea is that an increasing concave transform of the energy
function exaggerates the depth of global minima. As an example, consider the en-
ergy landscape shown in Fig. 1(c), which has a difficulty of 3. Using a logarithmic
transform, we obtain the energy landscape (Ω , lnU,θ ) displayed in Fig. 2(a). The
global minimum x7 appears deeper compared to the local minima x1, x3, x5, x9 and
x11, and hence the chance of getting stuck in a non-optimal state is reduced. Quanti-
tatively, the distorted energy landscape has a difficulty of 1, and thus the maximum
acceleration is of the order of N−1/3/N−1 = N2/3. This effect is even more pro-
nounced when using ϕ(u) = −exp(−u), as shown in Fig. 2(b): the difficulty of
the distorted energy landscape (Ω ,−exp(−U),θ ) is close to 1

2 , and the maximum
acceleration is of the order of about N5/3.

Some example functions for energy distortion are

ϕτ,a
1 (u) = (u− a)1/τ , τ ∈ (1,+∞), (42)

ϕτ,a,b
2 (u) = ln

(
(b− a)τ− (b− u)τ), τ ∈ [1,+∞), (43)

and ϕτ,a
3 (u) = −exp

(− τ(u− a)
)
, τ ∈ (0,+∞), (44)
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Fig. 2 Increasing concave transforms of the energy landscape shown in Fig. 1(c): (a)
D(Ω , lnU,θ ) = 1; (b) D(Ω ,−exp(−U),θ )≈ 0.503.

where a∈ (−∞,Uinf) and b∈ (Usup,+∞) with Usup := supx∈Ω U(x). The problem of
choosing suitable values for the parameters τ , a and b, along with the fact that many
other families of concave transforms are conceivable, raises the question of whether
a theoretical mean of comparison can be found. We have the following result which
encourages the use of functions with large concavity-to-increase ratio (see [28] for
proof).

Theorem 2. Let I be an open interval covering the range of U, and let ϕ and ψ be
twice-differentiable increasing functions from I to R. If(

− ϕ ′′

ϕ ′

)
(u) <

(
− ψ ′′

ψ ′

)
(u) for all u ∈ I, (45)

then D(Ω ,ψ ◦U,θ )< D(Ω ,ϕ ◦U,θ ).

Putting it simply, ψ is a “better” concave transform than ϕ if condition (45) holds,
which we denote by ϕ ≺ ψ . For instance, considering examples (42) and (43), we
have, for any a <Uinf and any b >Usup,

∀(τ,τ ′) ∈ [1,+∞)2,

⎧⎪⎨
⎪⎩

τ < τ ′ =⇒ ϕτ,a
1 ≺ ϕτ ′,a

1 ,

ϕτ,a
1 ≺ ϕτ ′,a,b

2 ,

τ < τ ′ =⇒ ϕτ,a,b
2 ≺ ϕτ ′,a,b

2 .

(46)

Moreover, the closer a and b are to Uinf and Usup, the larger the concavity-to-increase
ratio, and thus the higher the potential acceleration. Note, however, that trying to find
the best possible distortion function in terms of the strict order ≺ may not be fruit-
ful: for instance, although the functions ϕτ,a

3 defined in (44) have the remarkable
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property that−(ϕτ,a
3 )′′/(ϕτ,a

3 )′ = τ , and hence virtually unbounded acceleration ca-
pability, they are practically unfeasible even for small values of τ . Experiments
demonstrating the benefits of concave energy distortion can be found in [28] and
[25], where we focus on typical optimization problems in image restoration and in
image reconstruction from line-integral projections.

6 Stochastic Continuation

The relationship between the convergence rate of SA and the difficulty of the en-
ergy landscape suggests a possible acceleration by making the energy temperature-
dependent. The idea is to guide the hierarchical search performed by SA — and thus
to reduce the risk of getting stuck in undesirable basins of attraction — by replacing
the energy function U with a sequence (Un)n of functions converging pointwise to
U and such that the difficulty of (Ω ,Un,θ ) increases with n. In a similar vein, since
static communication is generally efficient over only a small range of temperatures,
another potential improvement is to adapt the communication mechanism to the
temperature regime. This leads to an important class of generalized SA algorithms
in which the temperature controls not only the acceptance rate of uphill moves, but
also the energy function and the communication matrix. We call it stochastic con-
tinuation (SC) by analogy with deterministic continuation methods, in which the
minima are tracked by computing successive approximate solutions from a parame-
terized energy that tends to the objective function as the iterations increase (see, for
instance, [4, 20, 21]).

6.1 Definition and Basic Idea

In a nutshell, SC is a variant of SA in which both the energy function and the com-
munication mechanism can vary with temperature. More precisely, we define an SC
process with target energy landscape (Ω ,U,θ ) to be a family (Qβ )β∈R+

of Markov
matrices on Ω of the form

Qβ (x,y) =

{
θβ (x,y)exp

(−β (Uβ (y)−Uβ (x))
+
)

if y �= x,

1−∑z∈Ω\{x}Qβ (x,z) if y = x,
(47)

with lim
β→+∞

Uβ (x) = U(x) and lim
β→+∞

θβ (x,y) = θ (x,y).

Given such a family together with a cooling sequence (βn)n∈N∗ , we call a Markov
chain (Xn)n∈N on Ω with transitions P(Xn = y |Xn−1 = x) = Qβn(x,y) an SC al-
gorithm, and we denote it by SC(Ω ,(Uβ ),(θβ ),(βn)). The family of functions
(Uβ : Ω →R)β is called the continuation scheme, and the family of Markov matri-
ces (θβ : Ω 2→ [0,1])β is called the communication scheme.

The limit communication matrix θ is assumed to be irreducible, as otherwise the
target energy landscape cannot be freely explored and there is no guarantee to reach
a ground state of the target energy U . The basic idea of SC is similar to that of SA
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and is quite easy to explain if θβ is symmetric for all β (this assumption is relaxed
in the next section). Indeed, in this case, the invariant measure νβ of Qβ is the Gibbs
distribution with energy Uβ at temperature β−1, that is, νβ (x) ∝ exp(−βUβ (x)), and
this distribution concentrates on the set Ωinf of global minima of U as β →+∞ [29].
Consequently, similarly to SA, if the cooling sequence does not increase too fast,
the law of Xn should stay close enough to νβn to expect convergence to an optimum.

6.2 Finite-Time Convergence

SC is an extension of SA with temperature-dependent energy, the behavior of which
is studied in [14] and [19] for the asymptotic case and in [24] for the finite-time
case. Besides, SC is included in the general class of Markov processes investigated
in [11]. However, the convergence results in [11] and [24] require that

sup
(x,β )∈Ω×R+

β
∣∣Uβ (x)−U(x)

∣∣ <+∞, (48)

while it is assumed in [14] and [19] that there exists a > 0 such that

sup
(x,n)∈Ω×N∗

na|Uβn+1
(x)−Uβn(x)| <+∞. (49)

These conditions impose lower bounds on the speed of convergence of the contin-
uation scheme which significantly limit the freedom in parameterizing the energy
with temperature. Consequently, the difficulty of (Ω ,Uβn ,θβn) may increase too
rapidly, thereby reducing — if not canceling — the benefits of continuation. More-
over, the convergence results in [11, 14, 19] involve impractical logarithmic cooling
sequences.

Theorem 3 below shows that, under weak conditions, the above limitations can be
overcome while allowing the communication mechanism to vary with temperature.
(The proof is given in [29, 30] — it starts from the observation that SC and SA
behave similarly at low temperatures in the sense that they satisfy the same large
deviation principle, which allows to use the generalized SA theory developed in
[8].) Given a Markov matrix q on Ω , we denote by supp(q) the support of q, that
is, supp(q) = {(x,y) ∈ Ω 2|q(x,y) > 0}, and we say that supp(q) is symmetric if
for any (x,y) ∈Ω 2, (x,y) ∈ supp(q) =⇒ (y,x) ∈ supp(q). We recall that Hc, D and
DM are the critical depth, the difficulty and the “Metropolis difficulty” of (Ω ,U,θ )
defined in (14), (34) and (41), respectively.

Theorem 3. Let (Ω ,(Uβ ),(θβ )) be an SC process with target energy landscape
(Ω ,U,θ ) and satisfying the following assumptions:

(A1) θ is irreducible;
(A2) supp(θ ) is symmetric;
(A3) ∀x ∈Ω , θ (x,x)> 0;
(A4) supp(θβ ) = supp(θ ) for β large enough.

For any ε > 0 and for any σ ∈ N
∗ such that
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σ >
ln(DM/D)

ln(1+ ε)
, (50)

there is a family {(β σ ,K
n )n∈[[1,σK]]}K∈N∗ of piecewise-constant cooling sequences (σ

denotes the number of constant-temperature stages, each of length K) such that the
family of finite-time algorithms{(

Xσ ,K
n

)
n∈[[1,σK]]

= SC
(
Ω ,(Uβ ),(θβ ),(β σ ,K

n )n∈[[1,σK]]

)
; K ∈N

∗} (51)

satisfies

lim
K→+∞

− lnsupx∈Ω P
(
Xσ ,K

σK �∈Ωinf
∣∣Xσ ,K

0 = x
)

ln(σK)
� 1

(1+ ε)D
. (52)

These cooling sequences are of the form

β σ ,K
n =

lnK
A

exp

(
B
σ

(⌈
n
K

⌉
− 1

))
(53)

with

{
A > Hc,

ln(DM/D) < B < σ ln(1+ ε).
(54)

If (A1)–(A4) hold, then Theorem 3 gives that for any α ∈ (0,1/D), there is a family
of piecewise-constant exponential cooling sequences of the form (53) such that

sup
x∈Ω

P
(
Xσ ,K

σK �∈Ωinf
∣∣Xσ ,K

0 = x
)
� (σK)−α (55)

for K large enough. In other words, increasing the length of the temperature stages
of piecewise-constant exponential cooling makes it possible for SC to have a conver-
gence speed exponent arbitrarily close to the optimal exponent of SA. Interestingly,
the assumptions of Theorem 3 do not involve the continuation scheme (Uβ )β (except
for pointwise convergence to the target energy). Moreover, it is easy to construct a
communication scheme (θβ )β satisfying (A1)–(A4). Assumptions (A1) and (A2)
are standard in SA theory: the irreducibility of θ and the symmetry of its support
ensure that the target energy landscape can be fully explored and that any path in
this landscape can be traveled in the opposite direction (note that it is not necessary
that θ be symmetric). Assumptions (A3) and (A4) mean that the limit communica-
tion mechanism can rest anywhere and that the set of possible moves is “frozen” at
low temperatures.

6.3 Design Guidelines

The generation of a realization (xn)n of a continuation chain SC(Ω ,(Uβ ),(θβ ),(βn))
is the same as that of an annealing chain SA(Ω ,U,θ ,(βn)), but with U and θ
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respectively replaced by Uβn and θβn . For a piecewise-constant cooling sequence

(β σ ,K
n )n∈[[1,σK]] with σ stages of length K, the construction is the following:

pick an initial state x0 ∈Ω ;
for i = 1 to σ do

set β ←− β σ ,K
(i−1)K+1;

for j = 1 to K do
set n←− (i− 1)K+ j;
draw a state y from the probability distribution θβ (xn−1, ·) on Ω ;
set xn←− xn−1;
set δ ←−Uβ (y)−Uβ (xn−1);
if δ � 0 then set xn←− y;
else set xn←− y with probability exp(−β δ );
end(if)

end(for)
end(for)

The time-complexity of SC is governed by the evaluation of the energy difference
that takes place at each iteration. Let Tβ (x,y) and T (x,y) be the time-complexities
of computing Uβ (y)−Uβ (x) and U(y)−U(x), respectively. The choice of the con-
tinuation and communication schemes (Uβ )β and (θβ )β can be guided by the objec-
tive of keeping the weighted average ∑(x,y)∈Ω2 θβ (x,y)Tβ (x,y) of the same order
as ∑(x,y)∈Ω2 θ (x,y)T (x,y). In this case, putting aside possible updating operations
at the beginning of each temperature stage, SC with piecewise-constant cooling has
the same time-complexity as SA.

Ideally, (Uβ )β should be designed so that the difficulty of (Ω ,Uβ ,θ ) increases
with increasing β . According to Theorems 1 and 2 in Section 5, a simple idea is to
use a parameterized concave transform with decreasing concavity-to-increase ratio,
that is, to set Uβ = ϕβ ◦U , where (ϕβ )β is a family of increasing, strictly concave,
twice differentiable functions such that −ϕ ′′β/ϕ ′β decreases as β increases. Except
for this particular construction, the design of (Uβ )β cannot generally be guided by
the variations of D(Ω ,Uβ ,θ ) with β , as estimating the difficulty of an energy land-
scape is intractable in most practical situations. However, it is often possible to
exploit some particular characteristics of the target energy function to construct an
efficient continuation scheme; example applications include image reconstruction
[24, 27], where β controls the non-convexity of the energy function, inverse treat-
ment planning in radiotherapy [31], where β controls the strength of the constraints
aimed at sparing the critical tissues, and graph layout [30], where β controls the size
of the ideal edge-length.

Intuitively, the communication scheme (θβ )β should allow balanced exploration
of the state space at the beginning of the SC process, and it should favor moves to-
wards nearby minima by the end of the SC process. A simple and efficient way to get
this behavior is to design two communication matrices θ and θ that are respectively
adapted to the high- and low-temperature regimes, and to control the probability of
choosing one over the other as a function of β ; that is,



Theoretically Grounded Acceleration Techniques for Simulated Annealing 331

θβ = (1− ξ (β ))θ + ξ (β )θ , (56)

where ξ (β ) is the probability of choosing θ rather than θ to generate a candidate
solution. The control function ξ : R+→ [0,1] is monotonically increasing, and we
can impose that limβ→+∞ ξ (β ) < 1 to place the conditions of Theorem 3 on θ ;
in this case, (A1)–(A4) hold if (i) θ is irreducible, (ii) θ (x,x) > 0 for all x, (iii)
supp(θ ) is symmetric, and (iv) supp(θ ) ⊆ supp(θ ). Concrete examples of using
communication schemes of the type of (56) can be found in [27, 31, 30].

Another interesting possibility is hierarchical SA, which consists in progres-
sively refining the exploration of the target energy landscape by operating on a
hierarchy of nested approximation spaces associated to different temperature in-
tervals. This hierarchy is defined by a sequence (Ωr)r∈[[1,ρ ]] of subsets of Ω such
that /0 �= Ω1 ⊂ ·· · ⊂ Ωρ = Ω and by a partition of R+ into ρ successive intervals
I1, . . . , Iρ . For each r ∈ [[1,ρ ]], the subspace Ωr is the approximation space to be
explored when the inverse temperature β is in Ir, and Ωr is associated to an en-
ergy function Vr : Ωr → R approximating U on Ωr and to a communication matrix
qr : Ω 2

r → [0,1] adapted to the exploration of Ωr, with the obvious requirement that
(Vρ ,qρ) = (U,θ ). A hierarchical SA process (Ωr, Ir,Vr,qr)r∈[[1,ρ ]] is an SC process
with continuation and communication schemes defined as follows: for all r ∈ [[1,ρ ]]
and for all β ∈ Ir, Uβ is any extension of Vr to Ω , and θβ = qr on Ω 2

r and is zero
elsewhere. The hierarchical approach is interesting when the considered optimiza-
tion problem lends itself to a multiscale, coarse-to-fine analysis, which is typically
the case when Ω is a cartesian product space indexed by the sites of a large spatial
lattice, as in image processing problems such as denoising, reconstruction and seg-
mentation. To achieve good performance, for each r ∈ [[2,ρ ]], the communication
matrix qr should be adapted to the exploration of the neighborhoods in (Ω ,U,θ )
that correspond to the detail difference between the states in Ωr and their coarser
representations in Ωr−1.

7 Practical Tuning of the Cooling Sequence

We know from Sections 4 and 6 that exponential cooling is the best choice for both
SA and SC. However, although Theorem 3 provides bounds for tuning the cooling
sequence, it is generally not possible to obtain good estimates of the critical con-
stants of the target energy landscape — at least not in a reasonable amount of com-
putation time —, and thus the problem of choosing appropriate cooling parameters
remains.

Consider an exponential cooling sequence (β σ ,K
n )n∈[[1,σK]] with σ constant-tempe-

rature stages of length K. This sequence can be written under the form

β σ ,K
n = βinf

(
βsup

βinf

) 1
σ − 1

(⌈ n
K

⌉
− 1

)
, (57)
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where βinf and βsup respectively denote the initial and final inverse temperatures. The
horizon σK is generally fixed by the available computing resources, and setting σ is
not critical, as the performance of SC is robust to the choice of σ if σ is large enough
(to fix ideas, σ � 100 is adequate for most cases). This leaves us with the issue of
setting βinf and βsup, which has been addressed by many authors in the early ages of
SA [18]. According to our experience, the two heuristics below yield consistently
good results. We recall that Qβ is the transition matrix of SC at temperature β−1 (as
defined by (47)) and that νβ denotes the invariant measure of Qβ .

1. Most transitions should be accepted at the beginning of the optimization process;
that is, letting (Xn)n be the homogeneous Markov chain with transition matrix
Qβinf

, the acceptance rate

∑
x∈Ω

νβinf
(x) ∑

y∈Ω\{x}
Qβinf

(x,y) = plim
M→+∞

1
M

M

∑
n=1

1{Xn �=Xn−1}

should be close to one. (The existence of the probability limit follows from the
irreducibility of Qβinf

.)
2. If a global minimum x† of the target energy U is reached by the end of the op-

timization process, then the probability to leave x† by moving uphill should be
negligible; that is,

∑
z∈Ω :U(z)>U(x†)

Qβsup(x
†,z)

should be close to zero. (In practice, x† must be replaced with a local minimum
computed deterministically, as the ultimate goal is precisely to find a ground state
of U .)

Accurate methods to estimate βinf and βsup according to the above criteria can be
found in [28], but they are time-consuming. Besides, high accuracy is not neces-
sary because exponential cooling is not greatly affected by excessively high initial
temperatures or by excessively low final temperatures. The truth is that, as long as
the horizon σK is large enough, correct orders of magnitude are satisfactory and
hence fast approximate estimation methods are sufficient. In this spirit, we propose
to select βinf and βsup so that the uphill acceptance rates (that is, the ratios of the
number of accepted uphill moves to the number of proposed ones) at the begin-
ning and at the end of the optimization process are close to some given values χβinf

and χβsup such that 0 < χβsup � χβinf
< 1. For this purpose, the initial energy land-

scape (Ω ,Uβinf
,θβinf

) is approximated by the infinite-temperature energy landscape
(Ω ,U0,θ0), and the final energy landscape (Ω ,Uβsup ,θβsup) is approximated by the
target energy landscape (Ω ,U,θ ). The procedures are the following.

1. The estimation of βinf uses the Markov chain (Xn)n defined by the communica-
tion matrix θ0: given M ∈ N

∗, generate a finite-time realization (xn)n of (Xn)n

with exactly M uphill moves with respect to U0 (that is, M pairs (xnk ,xnk+1) of
successive states such that U0(xnk ) < U0(xnk+1), k ∈ [[1,M]]), and set βinf to be
the solution of
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M

∑
k=1

exp
(−β (U0(xnk+1)−U0(xnk))

)
= Mχβinf

, (58)

which can be determined by any standard root-finding method.
2. Similarly, βsup is estimated from a realization (yn)n of the Markov chain with

transition matrix θ by considering the M first uphill moves (ynk ,ynk+1) with re-
spect to the target energy U ; that is, βsup is set to be the solution of

M

∑
k=1

exp
(−β (U(ynk+1)−U(ynk))

)
= Mχβsup . (59)

Looking only for estimates with correct orders of magnitude gives some latitude
in choosing χβinf

and χβsup : taking χβinf
∈ [0.6,0.9] and χβsup ∈ [10−4,10−3] gives

exponential cooling schedules with similar performance independently of the appli-
cation. The number M of considered uphill moves can be set in accordance with the
size of the optimization problem; for instance, choosing M of the order of 100d is
suitable for the case where Ω is a cartesian product space included in R

d .

8 Conclusion

Despite its popularity, simulated annealing (SA) remains largely criticized for its
slow convergence. This criticism is fully justified if we stick to early convergence
results which impose unfeasible logarithmic cooling schedules. In practice, one usu-
ally takes liberties with the design of SA algorithms at the expense of losing global
convergence guarantees, and it is commonly admitted that SA implementations are
suboptimal.

Our objective was to emphasize advanced theoretical developments and design
guidelines for annealing-type algorithms. In particular, we have seen that exponen-
tial cooling makes it possible for the probability of failure to decrease to zero with a
speed exponent arbitrarily close to the optimal exponent, and that inexpensive accel-
eration techniques such as restriction of the state space, transformation of the state
space, and concave distortion of the energy function can increase the performance
of SA while not altering its global convergence properties. Even more importantly,
we have shown that increasing the flexibility by allowing the communication mech-
anism and the energy function to vary with temperature is theoretically grounded.
This generalization of SA, called stochastic continuation, has global convergence
properties similar to that of standard SA under weak assumptions on the commu-
nication mechanism and independently of the speed of convergence of the energy
towards the target objective function. Ultimately, then, the advances in SA theory
presented in this paper make annealing-type algorithms attractive for a wide range
of difficult optimization problems.
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In: Séminaire de Probabilités XXXIII. Lecture Notes in Math., vol. 1709, pp. 69–119.
Springer, New York (1999)

9. Chiang, T.S., Chow, Y.: On the convergence rate of annealing processes. SIAM J. Control
Optim. 26(6), 1455–1470 (1988)

10. Cohn, H., Fielding, M.: Simulated annealing: searching for an optimal temperature
schedule. SIAM J. Optim. 9(3), 779–802 (1999)

11. Del Moral, P., Miclo, L.: On the convergence and applications of generalized simulated
annealing. SIAM J. Control Optim. 37(4), 1222–1250 (1999)

12. Desai, M.: Some results characterizing the finite time behaviour of the simulated anneal-
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