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Abstract. The standard approach for image reconstruction is to stabilize

the problem by including an edge-preserving roughness penalty in addition to
faithfulness to the data. However, this methodology produces noisy object

boundaries and creates a staircase effect. State-of-the-art methods to correct

these undesirable effects either have weak convergence guarantees or are limited
to specific situations; furthermore, most of them use a quadratic data-fidelity

term. In this paper, we propose a simple alternative regularization model
to improve contour regularity and to reduce the staircase effect—our model

incorporates the smoothness of the edge field in an implicit way by adding a

simple penalty term defined in the wavelet domain. We also derive an efficient
half-quadratic algorithm to solve the resulting optimization problem, including

the case when the data-fidelity term is not quadratic and the cost function is

not convex. Our approach either extends or supplements existing methods
and offers strong convergence guarantees. Numerical experiments show that it

outperforms first-order total variation regularization as well as state-of-the-art

second-order regularization techniques.

1. Introduction. We consider the classical inverse problem of recovering a piecew-
ise-smooth image x?∈ RK from some data d ∈ RK′ (K ′ 6 K) of the form

(1) d = χ(Hx? + εη),

where H is a linear map from RK to RK′ which models the acquisition process, εη ∈
RK′ is an unknown realization of a random vector η, and the function χ : RK′→ RK′

represents possible additional corruption by impulse noise. (We call this problem
image denoising when H = idRK .) Throughout this paper, we make no distinction
between (i) a real-valued image with n pixels and its vector representation in Rn,
(ii) a vector of Rn and its n × 1 column-matrix representation, and (iii) a linear
map from Rn to Rm and its m × n canonical matrix. We denote by Ln,m(R) the
set of linear maps from Rn to Rm.
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A common estimate of the original image x? is defined as any global minimum
of a cost function U : RK → R which combines a data-fidelity term Φd with a
stabilization term Ψ weighted by a parameter λ > 0 :

(2) U(x) = Φd(x) + λΨ(x).

The original justification for this choice lies within the regularization framework
[38] and its Bayesian interpretation [17].

The data-fidelity term accounts for the noise characteristics; it is generally defined
by

(3) Φd(x) =
∑

k∈[[1,K′]]

φk
(
|(Hx− d)k|

)
,

where the φk’s are increasing in R+ ([[1,K ′]] is a shorthand notation for the set
{1, . . . ,K ′}). In the Bayesian setting, this form is obtained in the absence of impulse
noise and under the following assumptions: (i) the noise components η1, . . . , ηK′ are
independent, and (ii) the density of each ηk is proportional to exp(−φk(|t|)). The
most commonly used examples are the squared `2-norm of the residual, defined by
φk(t) = t2, and the `1-norm of the residual, defined by φk(t) = t. (The former
corresponds to i.i.d. Gaussian random variables, and the latter corresponds to i.i.d.
Laplace random variables.) The `1-norm also allows to deal with impulse noise [41].
In this case, a possible refinement is to detect the data pixels corrupted by impulse
noise and to consider the data to be missing at these outlier pixel locations [7, 8, 34];
the data-fidelity term is then of the same form as (3), but with a summation over
the set of non-outlier pixels.

The regularization functional Ψ is intended to promote the formation of smooth
regions separated by edges; it is of the form

(4) Ψ(x) =
∑

l∈[[1,L]]

ψl
(
‖Rlx‖2

)
,

where ‖ · ‖2 is the `2-norm, Rl ∈ LK,ρl(R) (ρl ∈ N∗), and the functions ψl are
increasing in R+. Concrete examples can be found in [22, 33, 11, 16, 46, 41, 47].
Usually, all the ψl’s are equal to a same function ψ, and {Rl : l ∈ [[1, L]]} is a
set of first-order difference operators (ρl = 1) or a discrete approximation to the
gradient (ρl = 2). The ψl’s are called potential functions (PFs) in the Bayesian
framework. They are often classified in two categories: convex PFs, which ensure
the convexity of U and reduce smoothing in the vicinity of discontinuities [11],
and non-convex PFs, which yield sharper edges [42] at the expense of increased
optimization difficulty.

The formulation of the image reconstruction problem as the minimization of a
cost function of the form (2)–(4) has proven effective, and yet it has two limitations:

1) Noisy contour lines. Regularization functionals of the type of (4) do not
embed prior knowledge on the geometry of edges. They tend to produce noisy
object boundaries which are not faithful to the original image. Early attempts to
correct this effect were based on the introduction of an explicit edge-process—either
boolean [23, 3] or continuous [6, 29]—to model the mutual dependence between
neighboring discontinuities. However, boolean edge-processes drastically increase
computational complexity (not to mention the problem of correctly specifying the
penalties of the various edge configurations), and continuous edge-processes give
disappointing results.
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2) Staircase effect. A basic requirement for edge preservation is that ψ′(t)/t goes
to zero as t → +∞ (see [11]), which explains why convex PFs are typically nearly
affine beyond a neighborhood of the origin. In fact, convex edge-preserving PFs are
often similar to the identity on R+, but with zero derivative at the origin to make
the regularization term Ψ differentiable—a well-known example is

(5) ψδid(t) =
√
δ2 + t2 − δ,

where δ > 0 is small compared to the width of the range of the original image. If
ψ is the identity on R+, Ψ(x) is the discrete total variation (TV) of x. Despite its
popularity, TV regularization produces blocky images (see, for instance, [19, 10]),
and so do PFs close to the identity. This phenomenon is called the staircase effect
because ramps (affine regions) tend to turn into stairs (piecewise-constant regions);
it is most pronounced for bounded PFs [22].

State-of-the-art methods for edge continuation and/or reduction of the staircase
effect use second-order difference operators [10, 35, 1, 34, 49, 32, 28, 53]. These
methods are reviewed in Section 2; they lack strong convergence guarantees, and,
except for [34], they are restricted to quadratic data-fidelity and/or image denoising.
Our contributions are the following:

1) We propose a simple alternative regularization model to encourage the forma-
tion of smooth contours lines (while preserving edges) and to reduce the staircase
effect. Our model is obtained by adding constraints in a multiresolution space: the
solutions are the global minima of an augmented functional V : RK → R of the
form

(6) V (x) = U(x) + λ̃Ψ̃(Tx),

where T is a directional multiresolution transform, Ψ̃ is a smoothness penalty term

similar to (4) which operates on the detail coefficients, and λ̃ > 0 weights the

influence of Ψ̃. This technique incorporates the smoothness features of the edge
field implicitly and has limited impact on optimization complexity.

2) We derive an efficient deterministic relaxation algorithm to minimize V under
differentiability and coercivity assumptions. Our algorithm can deal with non-
quadratic data-fidelity and has the following properties: (i) it finds the global min-
imum when V is strictly convex, (ii) it converges from any initialization when the
minima are isolated, and (iii) it gets arbitrarily close to the set of local minima
in any situation. The proposed optimization scheme has two further advantages:
it allows to enforce inequality constraints on the pixel values, and it allows to use
continuation sequences to gradually reveal the complexity of minimizing V (this
latter refinement improves performance when V is not convex and/or approximates
a non-differentiable cost function).

The price of the convergence guarantees of our deterministic relaxation algorithm
is that the PFs must be smooth at zero and coercive (a function ψ defined on R+

is said to be smooth at zero if ψ′(0) = 0, and it is called coercive if limt→+∞ ψ(t) =
+∞). These conditions preclude PFs of the form ψ(t) = tp with p ∈ (0, 1] [47] and
bounded PFs such as ψ(t) = tp/(δp + tp) with p ∈ [1, 2] [24, 22]. However, they
allow standard choices such as, for instance, ψδid (see (5)), ψ(t) = ln(cosh(t/δ)) [25],
and the non-convex PF

(7) ψδHL(t) = ln
(
1 + (t/δ)2

)
originally proposed by Hebert and Leahy [26]. In fact, the limitations imposed by
our extra conditions are of no practical importance; indeed, any PF that is not
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smooth at zero can be closely approximated by a smooth-at-zero PF, and coercive
non-convex PFs such as ψδHL perform as well as bounded PFs in terms of edge
preservation [42, Theorem 3.1].

This paper is organized as follows. We review previous work related to ours in
Section 2. In Section 3, we discuss our approach to the issue of edge continuation.
Section 4 is devoted to the description of the optimization algorithm along with
its convergence properties (the proofs are relegated to Appendix A). Experimental
results are presented in Section 5, followed by concluding remarks.

2. Related work.

2.1. Methods restricted to quadratic data-fidelity. Chouzenoux et al. [13]
proposed a subspace optimization approach for minimizing cost functions of the
form

(8) U(x) = ‖Hx− d‖22 + λ
∑
l

ψ
(
‖Rlx‖2

)
,

where Rl ∈ LK,ρ(R) for some fixed ρ ∈ N∗ and ψ is smooth at zero and coercive.

They showed that, under assumptions similar to ours, the sequence (x(n))n of it-
erates generated by their algorithm is such that (i) (U(x(n)))n is non-increasing,
and (ii) limn→∞ ‖∇U(x(n))‖ = 0 (as we will see in Section 4.2, these convergence
guarantees are weak compared to those derived for our algorithm). Cost functions
of the above form were also studied by Nikolova et al. [43]. They developed a con-
tinuation approach to handle the situation where ψ is not smooth at zero and not
convex, but they did not investigate the theoretical convergence properties of their
algorithms. In [27], Hou et al. considered the special case where ψ(t) = tp with
p ∈ (0, 1) in order to promote sparsity of the gradient at different resolutions (the
set {Rl}l consists of multi-resolution derivative filters). They used the multi-stage
convex relaxation method proposed in [52], whose only convergence guarantee is
that the cost of the iterates is non-increasing.

The Hessian-based approach of Lefkimmiatis et al. [32] and the isotropic higher-
order TV approach of Hu and Jacob [28] also boil down to minimizing a func-
tion of the form (8). The Hessian-based regularization functionals are of the form∑
l ‖Qlx‖2 (Frobenius-norm regularizer) and ‖∆x‖1 +

∑
l ‖Qlx‖2 (spectral-norm

regularizer), where ∆ is a discrete approximation to the Laplacian operator and the
Ql’s are second-order differential operators (Ql ∈ LK,3(R) for the Frobenius norm
and Ql ∈ LK,2(R) for the spectral norm). The isotropic higher-order TV regular-
ization functional is of the form

∑
l ‖Qlx‖q, where the Ql’s are discrete nth-order

differential operators in LK,n+1(R) (n = 2 or 3) and ‖ · ‖q is the norm induced by a
positive-definite quadratic form on Rn+1. The resulting optimization problems are
solved by majorization-minimization algorithms, but neither paper provides a con-
vergence proof. Hu and Jacob [28] also introduced an anisotropic higher-order TV
penalty to improve contour regularity while preserving edges (this penalty does not
have a closed-form expression). Their experiments on image denoising show that
anisotropic regularization slightly improves the SNR compared to isotropic regular-
ization (the gain in SNR remains below 2.15%), but there is no clear evidence of
edge continuation.

Other higher-order models were proposed in [10, 35, 1, 53] to reduce the stair-
case effect; the associated optimization algorithms are restricted to image denoising.
Chan et al. [10] combined a first-order TV penalty and a second-order term that
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penalizes the square of the laplacian at the locations where the gradient is small.
Lysaker and Tai [35] defined the solution as a convex combination of the solutions
associated with first- and second-order TV regularization. Bae et al. [1] used the
Euler’s elastica model [9], and Zhu and Chan [53] employed the TV of the mean
curvature of the image surface. In [10, 35, 53], the optimization method is based on
solving the Euler-Lagrange equations associated with the model considered, which
are quite complex nonlinear PDEs. These equations are difficult to solve numerically
and the proposed iterative solution schemes have very weak convergence guarantees.
The approach of Bae et al. [1] is radically different: they designed an optimization
algorithm based on graph cuts. Their algorithm is very efficient for image denoising,
but it cannot be extended to the case where H is not the identity; the reason is that
the cost function is not submodular if H is a blurring operator. (An alternative
would be to use quadratic pseudo-Boolean optimization [48, 31], which is an exten-
sion of graph cuts that allows to deal with non-submodular cost functions. However,
as discussed in [45], reconstruction techniques based on quadratic pseudo-Boolean
optimization are limited to small-size blurring kernels.)

2.2. Methods using a non-quadratic data-fidelity term. The approaches re-
viewed above share a common limitation: the quadratic data-fidelity term ‖Hx−d‖22
is appropriate only for Gaussian noise and leads to solutions that are significantly
altered by outliers. In particular, quadratic data-fidelity does not allow to deal
with impulse noise. To overcome this drawback, a standard choice is the `1-norm of
the residual, or, more generally, a data-fidelity term of the form (3) (it is common
practice to replace the `1-norm of the residual by (3) with φk = ψδid).

Nikolova [41] proposed a convergent method to minimize cost functions of the
form

(9) U(x) = ‖x− d‖1 + λ
∑
l

ψ
(
|Rlx|

)
,

where the Rl’s are first-order difference operators and ψ is smooth at zero and
convex. This approach is expressly restricted to image denoising and impulse noise;
it is based on the assumptions that only a part of the pixels are corrupted by noise
and that each noisy pixel is dissimilar to its nearest neighbors. Cai et al. [7] and
Chan et al. [8] also considered the special case of impulse noise. They proposed
a two-phase approach which extends the work of Nikolova: the noisy data pixels
are first detected using an impulse-noise detector, and then the original image is
estimated by minimizing

(10) U(x) =
∑
k∈I

|(Hx− d)k| + λ
∑
l

‖Rlx‖2,

where the first sum is over the set I of indices of the noise-free data pixels. In [7], the
set {Rl}l consists of first-order difference operators, and a smooth approximation of
U is minimized using a fixed-point iteration scheme without convergence guarantee.
In [8], {Rl}l is a discrete approximation to the gradient, and U is minimized by
a variant of the primal-dual method proposed in [20]. By extension, the iterative
reweighted norm approach of Rodr̀ıguez and Wohlberg [47] allows to consider cost
functions of the form

(11) U(x) =
∑
k∈I

|(Hx− d)k|p + λ
∑
l

‖Rlx‖q2
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with p, q ∈ (0, 2). The associated convergence guarantees are the same as in [13]:
the cost of the iterates is non-increasing, and the gradient of U goes to zero as
the number of iterations grows to infinity. Li et al. [34] considered a two-phase
approach to deal with Gaussian plus impulse noise: after detection of the pixels
corrupted by impulse noise, the original image is estimated from the non-outlier
pixels by minimizing

(12) U(x) =
∑
k∈I

φν
(
|(Hx− d)k|

)
+ λ

∑
l

|Rlx|,

where φν(t) = νt2/(ν + t) and {Rl}l is a set of tight framelet filters ({Rl}l is the
union of (i) a weighted-averaging operator, (ii) edge-detection operators, and (iii)
second-order difference operators). The authors designed an iterative shrinkage al-
gorithm in which the hyper-parameters ν and λ are determined automatically, but
they did not provide any convergence guarantee. Finally, Tai et al. [49] proposed an
augmented Lagrangian method for minimizing an Euler’s energy functional com-
bined with a data-fidelity term of the form

∑
k |xk − dk|p with p ∈ [1, 2]. Their

numerical experiments demonstrate the efficiency of their algorithm, but they did
not study its theoretical convergence properties.

2.3. Position of our approach. The methods reviewed above either have weak
convergence guarantees [10, 35, 47, 7, 43, 1, 13, 27, 34, 49, 32, 28, 53] or are limited
to very specific situations [41, 8]. Furthermore, the methods aimed at improving
contour regularity and/or reducing the staircase effect are generally restricted to
quadratic data-fidelity [10, 35, 1, 53, 32, 28], and the methods that employ a non-
quadratic data-fidelity term are often limited to first-order models [41, 47, 7, 8].
By contrast, our approach described in the next two sections has all three of the
following advantages:

• it is not limited to quadratic data-fidelity;
• it has good edge-continuation capabilities (as our experiments show);
• it offers strong convergence guarantees.

As mentioned in the introduction, the latter advantage is balanced by assumptions
that rule out PFs that are either non-smooth at zero or bounded (or both), but the
resulting practical limitations are minor. In addition, our deterministic relaxation
algorithm can incorporate inequality constraints as well as continuation sequences
at no cost. It is also easy to implement and quite generic (it can be used to minimize
the cost functions considered in [41, 7, 8, 13, 27, 34, 32, 28]).

3. Implicit edge-continuation.

3.1. General description. Since we are interested in the recovery of piecewise-
smooth images, we can assume that the level curves of the original continuous image
(from which x? is sampled) are piecewise-smooth. In the domain of a multiscale
directional transform (such as a wavelet or a curvelet transform), this prior informa-
tion is synonymous with clean and strongly oriented detail images. Consequently,
edge continuation can be incorporated into the reconstruction process by means of
an additional penalty term of the form

(13) Ψ̃(x̃) =
∑
m

ψ̃m
(
|Dm x̃|

)
,
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where x̃ denotes the multiresolution decomposition of x, the Dm’s are discrete di-

rectional derivative operators acting on the detail coefficients, and the functions ψ̃m
are increasing in R+.

Let T ∈ LK,K̃(R) be the considered multiresolution transform (K̃ > K with

strict inequality if T is redundant). Our estimate of x? is defined as any global
minimum of the augmented cost function V : RK → R obtained by combining the

contour-line smoothing term Ψ̃ with the standard cost function U :

(14) V (x) = Φd(x) + λΨ(x) + λ̃Ψ̃(Tx),

where Φd and Ψ are defined by (3) and (4), and where the positive parameters λ

and λ̃ control the degree of smoothing in the spatial domain and in the transformed
domain. The interests of this approach are that (i) it avoids the delicate use of
explicit edge-processes, (ii) it can deal with edges at different resolution levels, (iii)

it involves only one extra hyper-parameter (namely, λ̃), and (iv) the associated

increase in optimization complexity is small if the ψ̃m’s are convex.

Remark 1. If the Dm’s are replaced by canonical projections, and if ψ̃m(t) ∝ tp

for all m and for some fixed p ∈ (0, 2), then Ψ̃ is an `p-penalty that favors sparse
representations in the transformed domain. Therefore, our approach generalizes the
sparsity-constraint approaches in [4, 15], which are restricted to cost functions of
the form

(15) x ∈ RK 7−→ ‖Hx− d‖22 +
∑
m

λ̃m|(Tx)m|p,

where the λ̃m’s are non-negative reals. (When T is a wavelet transform, `p-penalties
are obtained under the assumption that the detail coefficients follow a generalized
Gaussian distribution with shape parameter p [4], or when the continuous original
image is assumed to belong to a Besov space [15].)

Remark 2. The issue of choosing appropriate values for λ and λ̃ is beyond the
scope of this paper. Good starting points are the L-hypersurface method [5], the
Monte Carlo SURE approach [44], the use of the no-reference measure proposed in
[54], and the zero-crossing method developed in [30]. (The L-hypersurface method
requires the PFs to be convex, the approaches in [44] and [54] are restricted to
image denoising, and the method in [30] must be calibrated as a function of the
regularization model.) Another avenue is to determine the parameters of the cost
function automatically by updating their values adaptively during the course of the
optimization process, as in [34], but this considerably complicates the convergence
analysis.

In the following section, we refine the description of the contour-line smoothing

term Ψ̃ in the case of a non-redundant wavelet transform. We focus on this situation
for computational efficiency reasons and because the construction is easier when
directional selectivity is limited. However, the approach can be applied to the
case of a redundant transform with high directional selectivity (for instance, the
curvelet transform [36]) at the expense of additional design efforts and increased
computational burden.

3.2. Wavelet-domain edge-continuation. Let J ∈ N∗. The J-level decomposi-
tion of an image x ∈ RK in a wavelet basis is a set of subimages{

A0x , A h
j x , A v

j x , A d
j x : j ∈ [[0, J − 1]]

}
,
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where the index j represents the scale, A0x is the approximation of x at resolution
2−J (the resolution of x is equal to one and its scale is zero), and the detail im-
ages A h

j x, A v
j x, and A d

j x convey the difference of information between Aj x (the

approximation of x at resolution 2j−J) and the finer approximation Aj+1x. The
linear map A h

j gives the horizontal high frequencies (that is, the vertical edges),

A v
j gives the vertical high frequencies (that is, the horizontal edges), and A d

j gives
the high frequencies in both horizontal and vertical directions. The wavelet trans-
form T can be viewed as the concatenation of the component functions of the maps
A0 ∈ LK,4−JK(R) and A h

j ,A v
j ,A d

j ∈ LK,4j−JK(R) for j ∈ [[0, J − 1]].
Piecewise-smooth level curves in the original continuous image translate to the

fact that the horizontal and vertical detail images of x? are respectively vertically
and horizontally oriented. In other words, the vertical derivatives in A h

j x
? and the

horizontal derivatives in A v
j x

? have small amplitude. This suggests to define the
contour-line smoothing term as follows:

Ψ̃(Tx) =
∑

j∈[[0,J−1]]

( ∑
k∈[[1,Kv

j ]]

ψ̃
(
αj
∣∣D v

j,kA h
j x
∣∣)

+
∑

k∈[[1,Kh
j ]]

ψ̃
(
αj
∣∣D h

j,kA v
j x
∣∣)),(16)

where the αj ’s are positive reals, and where the D v
j ’s and the D h

j ’s are vertical
and horizontal discrete derivative operators, respectively. The outer summation
is over scales, and the inner summations are over the pixels of the detail images

where the derivatives are evaluated. A natural choice for the PF ψ̃ is the identity
on R+, for we want to preserve both sharp transitions and smooth variations along
the preferential directions of the detail images. In practice, we advocate using
a strictly convex function such as (5), which facilitates the optimization process
without compromising the quality of the reconstructions. The weights αj allow to
strengthen the edge-continuation effect at some particular resolution level(s). If
there is no conflict with possible application-specific constraints, we choose the αj ’s
so as to compensate for wavelet-coefficient decay, as discussed in Section 3.3.

From a filtering perspective, the action of Ψ̃ is to discard the solutions that convey
significant information in the frequency regions schematized in Fig. 1(a). These
regions are exemplified in Figs. 1(b)–(d) for the setting used in our experiments
(namely, biorthogonal spline wavelets with two vanishing moments [14], and first-
order difference derivative operators). It appears that the proposed wavelet-domain
smoothing term not only favors the formation of horizontal and vertical edges, but
also preserves diagonal boundaries (which is why we do not add a penalty on the
diagonal subbands A d

j x, j ∈ [[0, J − 1]]).

Remark 3. Although the parallel is tempting, Ψ̃ is not comparable to a second-
or higher-order smoothing term in the spatial domain. To fix ideas, consider the
standard second-order model introduced in [22]:

(17) Ψ2 = Ψh + Ψv + Ψd with Ψx(x) =
∑

l∈[[1,Lx ]]

ψ
(
|Rx

lx|
)
,
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(b)(a)

(d)(c)

2.5
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0.5

1

1.4

0.6

0.2

D v
1 A h

1

D v
0 A h

0

D h
1 A v

1

D h
0 A v

0

Figure 1. Frequency regions penalized by the wavelet-domain

smoothing term Ψ̃ defined in (16) for J = 2 : (a) schematization of
the passbands of the involved filtering operators; (b)–(d) 3dB pass-
bands and frequency responses for biorthogonal spline wavelets and
first-order differences (Figs. 1(c) and 1(d) only show the frequency
responses of D v

1 A h
1 and D v

0 A h
0 ).

where x stands for any of the letters h, v, and d, and where the second-derivative
operators Rh, Rv, and Rd are the convolutions with the masks

(18) Mh =
[

1 −2 1
]
, Mv = (Mh)T , and Md =

[
1 −1
−1 1

]
.

Fig. 2 displays the frequency responses of Rh and Rd (the response of Rv is the 90◦

rotation of that of Rh)—it shows that Ψ2 penalizes the high-frequency components
regardless of their orientation in the spatial domain. Indeed, Rh and Rv filter out
the horizontal and the vertical high frequencies, including the diagonal subbands
which are further attenuated by Rd. Therefore, the combined effect of Ψh, Ψv, and
Ψd (or of Ψh and Ψv only) is that of a low-pass filter with maximum attenuation
in the diagonal subbands, which reveals that second-order models are not even
appropriate for edge-preservation. The same conclusion holds for third- and higher-
order models, as the strength of spatial smoothing increases with the order of the
model.

3.3. Correcting wavelet-coefficient decay. We propose to set the coefficients
αj in (16) so as to compensate for the decay of the magnitudes of the detail co-
efficients across scales. An elegant way to do so is to lie at the intersection of
two standard image models: the independent generalized Gaussian (IGG) model
[37, 40, 4], and the Besov space (BS) model [18, 15].
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(b)(a)
0

3

2

1

4

Rh Rd

Figure 2. Frequency responses of the second-order derivative op-
erators Rh and Rd defined by the masks Mh and Md given in (18)
(the red contour lines delimit the 3 dB passbands).

The IGG model is a statistical model in which it is assumed that (i) the wavelet
coefficients are independent, and (ii) the detail coefficients at scale j follow a zero-
mean, generalized Gaussian distribution πj with shape parameter pj > 0 and vari-
ance σ2

j :

(19) πj(t) ∝ exp
(
−
(
cj |t|

/
σj
)pj)

,

where cj =
(
Γ(3/pj)

/
Γ(1/pj)

)1/2
(Γ is the standard Gamma function). From the

standpoint of this model, wavelet decay correction is achieved by multiplying the
D v
j ’s and the D h

j ’s by σ0/σj . To obtain a guideline for setting the ratios σ0/σj ,
we take inspiration from [15] by assuming that the original discrete image x? is
sampled from a continuous image f? : D → R (D is a rectangular domain of R2)
that belongs to a Besov space Bsp(Lp(D)) with p > 1 and s > 2/p− 1. The precise
definitions of Bsp(Lp(D)) and of its standard norm ‖ · ‖Bs

p(Lp(D)) are given in [18].

All we need to know here is that the BS model is a deterministic characterization of
image smoothness: f? ∈ Bsp(Lp(D)) essentially means that f? has “s derivatives”
in Lp(D).

The relationship between the IGG and BS models arises when

(20) ∀j > 0,

{
pj = p,

σj = 2−j(s+1−2/p)σ0.

(In other words, we further assume that the IGG shape parameter is constant
and that the wavelet coefficients decay exponentially across scales.) In this case,
the standard Besov norm on Bsp(Lp(D)) is equivalent to the negative logarithm
of the normalized IGG likelihood raised to the power of 1/p [12]; that is, letting{
w x
j,k(f) : k ∈ Z

}
be the set of detail coefficients of f : D → R at scale j and at

orientation x = h, v, or d, we have

‖f‖Bs
p(Lp(D)) ∼

(
− ln

( ∏
j>0,k,x

πj
(
w x
j,k(f)

)
πj(0)

))1/p

∝
( ∑
j>0,k,x

2jp(s+1−2/p)
∣∣w x
j,k(f)

∣∣p)1/p

.(21)
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Hence, if (20) is satisfied, the more likely an image according to the IGG model,
the smaller its Besov norm (and vice versa). This connection between the IGG and
BS models suggests to set αj = σ0/σj = 2j(s+1−2/p) for some values of s and p
that reflect some knowledge about the original continuous image f? in addition to
(20). In our experiments (see Section 5), we set p = 1 and s = 2 (that is, αj = 2j),
which amounts to assume that f? has second-order smoothness in L1(D) and that
it conforms to the independent Laplacian model with standard deviation 2−jσ0 at
scale j.

4. Deterministic relaxation. In this section, we focus on the minimization of the
augmented cost function V given in (14) (the proposed wavelet-domain smoothing
term defined in (16) is an instance of (13)). For convenience, we write V in the
more compact form

(22) V (x) = Φd(x) +
∑

l∈[[1,L′]]

θl
(
‖Qlx‖2

)
,

where L′ = L+M and

(23) (θl,Ql) =

{
(λψl,Rl) if l ∈ [[1, L]],(
λ̃ ψ̃l−L,Dl−LT

)
if l ∈ [[L+ 1, L′]].

We assume that the data penalty functions φ1, . . . , φK′ and the PFs θ1, . . . , θL′

satisfy the following conditions:

C1.
(
∀k ∈ [[1,K ′]], φk ∈ S︸ ︷︷ ︸

C1.1

)
or
(
∀k ∈ [[1,K ′]], φk(t) = t2︸ ︷︷ ︸

C1.2

)
C2. ∀l ∈ [[1, L′]], θl ∈ S

where S is the set of functions ϕ : R+ → R+ such that

(a) ϕ(0) = 0, ϕ is increasing, and ϕ is twice differentiable;
(b) limt→+∞ ϕ(t) = +∞;
(c) ϕ is four times differentiable at zero and ϕ′′′(0) = 0;
(d) the function

(24) ϕ† : t ∈ R+ 7−→
{
ϕ′(t)

/
t if t > 0,

ϕ′′(0) if t = 0,

is strictly decreasing, and limt→+∞ ϕ†(t) = 0.
Conditions of type (a) are standard in regularized reconstruction; conditions (b)

ensure that V is coercive (that is, lim‖x‖→∞ V (x) = +∞) and hence has a global
minimum; and conditions (c) are technical requirements for convergence proofs.
Conditions of type (d) have different implications depending on whether they con-
cern the data penalty functions or the PFs: their application to the φk’s allows to
handle the case of a non-Gaussian noise, and their application to the θl’s guarantees
edge-preservation properties.

Remark 4. C1.1 and C1.2 are mutually exclusive (because φ†k = 2 if φk(t) = t2).
The choice C1.2 allows to consider the important special case when the data-fidelity
term is an `2-norm weighted by a symmetric positive-definite matrix (call it S), that
is, when Φd is of the form

(25) Φd(x) = (Hx− d)TS(Hx− d) = ‖S1/2(Hx− d)‖22.
Inverse Problems and Imaging Volume 7, No. 4 (2013), 1331–1366
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This situation arises in the Bayesian setting when there is no impulse noise and
when the noise vector η has a multivariate normal distribution with covariance
matrix S−1.

Our deterministic relaxation algorithm for minimizing V is described in Section
4.1. Its convergence properties are presented in Section 4.2, and we discuss two pos-
sible refinements in Section 4.3 (namely, the enforcement of inequality constraints
and the introduction of continuation sequences).

4.1. Construction of the algorithm. Let eφ = (eφ,1, . . . , eφ,K′) : RK → (0,

+∞)K
′

and eθ = (eθ,1, . . . , eθ,L′) : RK → (0,+∞)L
′

be the vector-valued functions
with components

(26) eφ,k(x) = φ†k
(
|(Hx− d)k|

)
and eθ,l(x) = θ†l

(
‖Qlx‖2

)
.

For any x ∈ RK, we define the diagonal matrices

Eφ(x) = diag
(
eφ,k(x) : k ∈ [[1,K ′]]

)
(27)

and Eθ(x) = diag
(
eθ,l(x)Iρl : l ∈ [[1, L′]]

)
,(28)

where Ir is the identity matrix of order r and ρl is the number of rows of Ql.
The first-order necessary condition for x ∈ RK to be an extremum of V (that is,
∇V (x) = 0) writes

(29)
(
HTEφ(x)H+QTEθ(x)Q︸ ︷︷ ︸

=:M(x)

)
x = HTEφ(x)d,

where Q = [QT1 , . . . ,QTL′ ]T is the vertical concatenation of the Ql’s. For any
x ∈ RK, the symmetric matrix M(x) is positive semidefinite, and it is positive-
definite if and only if

C3. ker(H) ∩ ker(Q) = {0}.
Assuming this condition holds, (29) suggests the following iterative relaxation al-
gorithm:

(30) AV ≡
{
x(0) ∈ RK,
∀n ∈ N, x(n+1) =

(
M
(
x(n)

))−1HTEφ
(
x(n)

)
d.

This fixed-point iteration scheme can be equivalently written as

(31) x(n+1) = arg inf
x∈RK

V0

(
x, eφ

(
x(n)

)
, eθ
(
x(n)

))
,

where V0 : RK×RK′×RL′→ R is defined by

(32) V0(x, δ, ε) =
∑

k∈[[1,K′]]

δk(Hx− d)2
k +

∑
l∈[[1,L′]]

εl‖Qlx‖22.

Condition C3 guarantees that the quadratic function x ∈ RK 7→ V0(x, δ, ε) is

positive-definite for any (δ, ε) ∈ (0,+∞)K
′× (0,+∞)L

′
, and thus that the half-

quadratic algorithm AV can be efficiently implemented using a preconditioned con-
jugate gradient method. Condition C3 trivially holds when rank(H) = K, as in
image denoising problems. It is also usually satisfied for reconstruction problems
where rank(H) < K, such as image deblurring and limited-angle tomography. In-
deed, piecewise-smooth reconstruction involves gradients or directional derivatives
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in the spatial domain, which implies that ker(Q) = span{1K} (1K denotes the
vector in RK whose entries are all equal to one), and we generally have H1K 6= 0.

4.2. Convergence properties. The convergence properties of AV (30) are sum-
marized in Theorem 4.1 below, whose proof is given in Appendix A. We denote by
C the set of critical points of V , that is,

(33) C =
{
x ∈ RK

∣∣∇V (x) = 0
}
,

and we use the following terminology: a continuum of RK is a connected compact
subset of RK ; we call x ∈ C isolated if

(34) ∃a > 0, ∀y ∈ C \ {x}, ‖y − x‖ > a

(‖ · ‖ is any norm on RK); and C is said to be discrete if all its points are isolated.

Theorem 4.1. Assume that conditions C1–C3 are satisfied, and let (x(n))n be any
sequence generated by AV .

(i) (x(n))n has convergent subsequences, and all its accumulation points are in C.
(ii) There exists x∗ ∈ C such that limn→∞ V (x(n)) = V (x∗), and, for any n ∈ N,

V (x(n+1)) 6 V (x(n)) with equality if and only if x(n)∈ C.
(iii) Either (x(n))n converges, or its accumulation points form a continuum.
(iv) Let x∗ be an isolated critical point of V . If x∗ is a local minimum of V ,

then there exists an open neighborhood N of x∗ such that limn→∞ x(n) = x∗

whenever x(0)∈ N.
(v) limn→∞ infy∈C ‖x(n) − y‖ = 0.

(vi) If C is discrete, then there exists x∗ ∈ C such that limn→∞ x(n) = x∗.
(vii) If V is strictly convex, then (x(n))n converges to the global minimum of V .

Theorem 4.1 characterizes the behavior of AV in three mutually exclusive situa-
tions which cover all possibilities: (i) when V is strictly convex, (ii) when V is not
strictly convex and C is discrete, and (iii) when C is not discrete. The corresponding
conclusions are the following:

(i) The cost function V is strictly convex if C3 holds and if the data penalty
functions φ1, . . . , φK′ and the PFs θ1, . . . , θL′ are strictly convex. Therefore,
from (vii), convergence to the global minimum always occurs when the φk’s
and the θl’s are strictly convex.

(ii) If V is not strictly convex and C is discrete, then we have from (vi) that
(x(n))n converges to a critical point x∗ ∈ C. We cannot rigorously exclude
the possibility that x∗ is a maximum or a saddle point; however, this is very
unlikely because, while any isolated critical point that is a minimum is an
attractor (by (iv)), maxima and saddle points are unstable. Indeed, from
(ii), small random perturbations away from an isolated critical point that is
not a minimum will eventually move the iterates away from it. Therefore, from
an algorithmic standpoint, convergence to a maximum or a saddle point can
be avoided by adding a small random vector to the current solution whenever
‖x(n+1) − x(n)‖

/
‖x(n)‖ is below a certain threshold. In practice, the round-

off errors in floating-point arithmetic do the job, and hence any numerical
implementation will lead to a minimum.

(iii) If C is not discrete, then, from (i) and (iii), either (x(n))n converges, or C
contains a non-empty continuum. The latter case may be considered as a
failure in the design of the regularization term(s), but the algorithm also
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behaves well in this situation: by (ii) and (v), (V (x(n)))n converges, and
(x(n))n gets arbitrarily close to C.

4.3. Refinements.

4.3.1. Inequality constraints. The proposed optimization scheme can be easily ex-
tended to enforce inequality constraints on the pixel values, that is, constraints of
the form Ax > b with A ∈ LK,M ′(R) and b ∈ RM ′. Indeed, it suffices to consider
the cost function

(35) W (x) = V (x) + µ‖(b−Ax)+‖22,
where µ is a positive real constant and y+ denotes the positive part of y (that is,
y+ = (y+

1 , . . . , y
+
M ′) with y+

m = max{ym, 0}).
Assume that conditions C1–C3 hold, and let W0 : RK×RK′×RL′ → R be the

function defined by

(36) W0(x, δ, ε) = V0(x, δ, ε) + 2µ‖(b−Ax)+‖22,
where V0 is given in (32). The quadratic function x ∈ RK 7→ V0(x, δ, ε) is strictly

convex and coercive for any (δ, ε) ∈ (0,+∞)K
′×(0,+∞)L

′
, and the penalty function

x ∈ RK 7→ ‖(b − Ax)+‖22 is continuously differentiable and convex. Therefore,
for any positive δ and ε, the piecewise-quadratic function W0( · , δ, ε) : x ∈ RK 7→
W0(x, δ, ε) is continuously differentiable, strictly convex, and coercive, and thus it
has a unique global minimum which can be easily found (using, for instance, a
conjugate gradient method). This leads to the following extension of AV :

(37) AW ≡
{
x(0) ∈ RK,
∀n ∈ N, x(n+1) = arg infx∈RK W0

(
x, eφ

(
x(n)

)
, eθ
(
x(n)

))
,

where eφ and eθ are given in (26). As is made clear in Appendix A, all the conver-
gence results discussed in Section 4.2 generalize to W along with AW .

4.3.2. Continuation. The algorithm AV is very efficient when the data penalty func-
tions φ1, . . . , φK′ and the PFs θ1, . . . , θL′ are strictly convex and when their deriva-
tives do not increase too rapidly at the origin. On the other hand, AV may be
trapped in a poor local minimum when the φk’s or the θl’s are not convex, and
its convergence is slow when the φk’s or the θl’s closely approximate a function
that is not smooth at zero. In these latter two situations, the convergence can be
improved by replacing some or all of the φk’s and of the θl’s with the elements

of some carefully designed sequences (φ
(n)
k )n∈[[1,N ]] and (θ

(n)
l )n∈[[1,N ]] at the begin-

ning of the optimization process. The resulting modified algorithm is the same as
AV , except for the first N iterations where Eφ and Eθ are respectively replaced by
Eφ(n) and Eθ(n) . This continuation technique can be thought of as providing a good
initialization for AV , and the convergence results in Theorem 4.1 still hold.

To actually improve the performance of AV , the sequences (φ
(n)
k )n and (θ

(n)
l )n

should satisfy conditions C4–C6 below. We let (ϕ(n))n be one of these sequences,
ϕ = φk or θl be the associated target function, and κ(ϕ(n)) be the maximum
concavity of ϕ(n), that is,

(38) κ(ϕ(n)) = sup
t>0

max{−(ϕ(n))′′(t), 0}.

C4. ϕ(n) should be as close as possible as ϕ for all n.

C5. If ϕ approximates a function that is not smooth at zero, then the sequence
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(ϕ(n))′′(0)

)
n

should be gradually increasing to ϕ′′(0).

C6. If ϕ is not convex, then the sequence
(
κ(ϕ(n))

)
n

should be gradually increasing

to κ(ϕ), so that the non-convexity (and hence the difficulty) of the optimization
problem increases progressively with the number of iterations.

For instance, if the target is the convex PF ψδid (see (5)), a natural choice is

ϕ(n) = ψδnid with δn decreasing with n. This sequence speeds up the solution search

by gradually reducing the range over which ϕ(n) acts as a quadratic function. If the
target is the non-convex PF ψδHL (see (7)), we suggest to use ϕ(n) = (1− an)ψδid +
anψ

δ
HL with an increasing with n from 0 to 1. In this way, the maximum concavity

increases progressively from 0 to κ(ψδHL) = 1/(4δ2), and the algorithm can reach
deeper minima. These two example sequences are used in our experiments (see
Remark 5).

5. Experiments. We consider the reconstruction of the 128 × 128 images shown
in Figs. 3(a) and 4(a) from the data displayed in Figs. 3(b) and 4(b), respectively.
The data associated with the “office” image were generated by first blurring with
a 7 × 7 uniform mask and then adding white Gaussian noise at 20 dB SNR. (The
standard deviation σ of the noise is defined via the decibel level of the signal-to-
noise ratio: SNRdB = 20 log10(σ?/σ), where σ? is the standard deviation of the
exact data H(x?).) The data associated with the “peppers” image were obtained
by first blurring with a 7×7 rotationally symmetric Gaussian mask with a standard
deviation of 2 pixels, then adding white Gaussian noise at 20 dB SNR, and finally
adding random-valued impulse noise with a 30% corruption rate. More precisely,
letting d = Hx? + εη be the blurred image corrupted by Gaussian noise, the data
d = χ(d) is defined by

(39) dk =

{
dk with probability 0.7,

τk with probability 0.3,

where τk is a sample from the uniform density on [mink dk,maxk dk].
Our estimates of the original images are obtained by minimizing the cost function

V given in (14), where the wavelet-domain smoothing term Ψ̃ is defined by (16),
using the algorithm AV (30) with a maximum number of 40 iterations. (We do not
add constraints on the pixel value range to better evaluate the improvement brought
by wavelet-domain smoothing; see Section 5.1.4.) Since the noise characteristics
are stationary, the data penalty functions φk are all set equal to a same function φ.
Likewise, since we do not use any information about possible edge-locations, the PFs
ψl in the spatial-domain smoothing term Ψ (4) are all set equal to a same function
ψ. Each operator Rl in Ψ computes a discrete approximation to the gradient at
pixel l; that is, if (l1, l2) ∈ [[1, L1]]×[[1, L2]] (L1 = L2 = 128) and x(l1, l2) respectively
denote the coordinates and the value of pixel l in x, then Rl(x) ∈ R2 is defined by

(40) Rl(x) =
(
x(l1, l2)− x(l1 − 1, l2), x(l1, l2)− x(l1, l2 − 1)

)
for any (l1, l2) ∈ [[2, L1]]× [[2, L2]], and

(41) Rl(x) =


(
0, x(l1, l2)− x(l1, l2 − 1)

)
if l1 = 1 and l2 ∈ [[2, L2]],(

x(l1, l2)− x(l1 − 1, l2), 0
)

if l1 ∈ [[2, L1]] and l2 = 1,

(0, 0) if (l1, l2) = (1, 1).

We consider the following choices for φ and ψ:
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Figure 3. “Office” image: (a) original (the cyan horizontal line
indicates the location of the profiles shown in Fig. 11); (b) degraded
observation (7×7 uniform blur + 20 dB white Gaussian noise).

• φ(t) = t2, which is appropriate when the noise is additive and consists of i.i.d.
normal random variables (the data-fidelity term Φd(·) is the `2-norm of the
residual H(·)− d).

• φ = ψ0.1
id , as defined in (5), which is appropriate for dealing with impulse noise

(Φd(·) approximates the `1-norm of H(·)− d).
• ψ = ψ0.1

id , referred to as the convex case (Ψ(x) is a smooth, convex approxi-
mation to the discrete TV of x).

• ψ = ψ10
HL, as defined in (7), referred to as the non-convex case (Ψ acts as

a quadratic regularizer for gradient magnitudes up to 3–4 and as an edge
detector for gradient magnitudes greater than 10).

Remark 5. We use the continuation sequences proposed in Section 4.3.2 during
the first 30 iterations of AV : ψ0.1

id is replaced by ψδnid with (δn)n∈[[1,30]] decreasing

linearly from 10 to 0.1, and ψ10
HL is replaced by (1−an)ψ10

id +anψ
10
HL with (an)n∈[[1,30]]

increasing linearly from 0 to 1.

For the wavelet-domain smoothing term, we use biorthogonal spline wavelets with
two vanishing moments [14] and two resolution levels (we set α0 = 1 and α1 = 2 in
accordance with the discussion in Section 3.3). We chose these particular wavelets
because they combine symmetry, regularity, and compact support [50]. The D v

j ’s
compute differences between vertically adjacent coefficients in the horizontal detail
images, and the D h

j ’s compute differences between horizontally adjacent coefficients

in the vertical detail images. In other words, D v
j convolves A h

j (x) with the mask
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Figure 4. “Peppers” image: (a) original; (b) degraded observa-
tion (7×7 Gaussian blur + 20 dB white Gaussian noise + 30%
random-valued impulse noise).

[ −1 1 ]T , and D h
j convolves A v

j (x) with the mask [ −1 1 ] (there are of course
other and better discrete approximations of a derivative [51, 21], but the associated

extra computational load does not worth the effort). Finally, the PF ψ̃ is set equal

to ψ0.1
id , so that the inner summations in Ψ̃ approximate the vertical TVs of the

horizontal detail images and the horizontal TVs of the vertical detail images.
Our results are described in the next two sections, where our estimates are com-

pared with those obtained using the following state-of-the-art methods:

• iterative framelet-based approximation/sparsity (IFAS) reconstruction [34],
• Hessian Frobenius-norm (HFN) regularization [32],
• isotropic second-order TV (ITV2) regularization [28].

(We also performed experiments using the Hessian spectral-norm regularizer pro-
posed in [32], but we do not present the corresponding results because there are
slightly less good than those achieved with the HFN regularizer.) The metrics used
to assess reconstruction quality are the mean-square error (MSE) and the improve-
ment in SNR (ISNR) [2]; the ISNR associated with a computed solution x̂ is defined
by

(42) ISNRdB = 20 log10

( ‖x?|S′ − d‖2
‖x?|S′ − x̂|S′‖2

)
,
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where x|S′ denotes the restriction of x to the lattice S′ supporting d (in image

deblurring, the solution space RK and the data space RK′ are supported by two
rectangular lattices S and S′ such that S′ ⊂ S).

5.1. “Office” image. Since the blurred observation of the “office” image is cor-
rupted by additive white Gaussian noise only, we restrict ourselves here to quadratic
data-fidelity (that is, φ(t) = t2).

5.1.1. Convex case. Fig. 5(a) shows the best reconstruction obtained with the PF
ψ = ψ0.1

id and without wavelet-domain smoothing. The corresponding value of the
spatial-domain smoothing parameter λ is 1.0, the MSE is 208.0, and the ISNR is
5.70dB. The edges are noisy (not to say visually unpleasant), and the staircase effect
is clearly visible at the bottom of the image. By comparison, Fig. 5(b) displays the
best solution achieved by adding the wavelet-domain smoothing term and keeping

λ = 1.0 (this solution is obtained for λ̃ = 0.8). There are noticeable improvements:
the image contours are smoother without penalizing object boundaries, and the
“patchy” appearance due to the staircase effect is softened. Quantitatively, the
MSE is 180.4 and the ISNR is 6.32dB. Fig. 6 displays the ISNR as a function of the

wavelet-domain smoothing parameter λ̃. Too large values of λ̃ predictably produce

over-smoothed solutions, but the values of λ̃ that improve reconstruction quality
cover a large interval compared to λ.
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(b)

(a)

Figure 5. Convex reconstruction of the “office” image: (a) with-
out wavelet-domain smoothing (MSE = 208.0, ISNR = 5.70 dB);
(b) with wavelet-domain smoothing (MSE = 180.4, ISNR =
6.32 dB).

Inverse Problems and Imaging Volume 7, No. 4 (2013), 1331–1366



Edge-preserving reconstruction with contour-line smoothing 1349

5.8

6.0

6.2

10-2 10-1 100 l
~

IS
N

R
 (

d
B

)

no wavelet-domain smoothing5.7

6.32

Figure 6. Convex reconstruction of the “office” image: ISNR as

a function of the wavelet-domain smoothing parameter λ̃ (λ is set
to its optimal value in terms of ISNR without wavelet-domain
smoothing).

The above results clearly show that first-order spatial regularization benefits from
wavelet-domain smoothing; but is the converse also true? To answer this question,
Fig. 7 displays the best reconstruction obtained using wavelet-domain smoothing
without spatial regularization (that is, λ = 0). This estimate is worse than that
obtained using only spatial regularization (the “trellis-like” texture is due to the fact
that wavelet-domain smoothing favors solutions with vertically-oriented horizontal
subbands and horizontally-oriented vertical subbands). We can therefore conclude
that spatial- and wavelet-domain smoothing work in synergy.
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Figure 7. Reconstruction of the “office” image without spatial-
domain smoothing (MSE = 375.1, ISNR = 3.14 dB).

5.1.2. Non-convex case. Fig. 8 shows the estimates obtained with the PF ψ = ψ10
HL

for (λ, λ̃) = (10.5, 0) and (λ, λ̃) = (10.5, 2.3). The particular value λ = 10.5 was
purposely selected to obtain a slightly under-regularized reconstruction in the ab-

sence of wavelet-domain smoothing (the optimal value is 21.0). The value λ̃ = 2.3
is the optimal setting associated with λ = 10.5. The MSE and ISNR are 501.9
and 1.88 dB for the standard regularization approach, and 191.0 and 6.08 dB using
wavelet-domain smoothing. The improvement is even more striking than in the
convex case: the edge artifacts are almost completely removed, and the contour
plots show substantial reduction of the staircase effect. As seen in Fig. 9, the evo-

lution of the ISNR as a function of λ̃ is reasonably smooth, which indicates that
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our optimization algorithm behaves well in the non-convex case. Although λ is not
optimal (the best reconstruction achieved without wavelet-domain smoothing has
an MSE of 354.1 and an ISNR of 3.40dB), our model outperforms optimal standard

regularization over a significant range of values of λ̃.
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(b)

(a)
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Figure 8. Non-convex reconstruction of the “office” image: (a)
without wavelet-domain smoothing (MSE = 501.9, ISNR =
1.88 dB); (b) with wavelet-domain smoothing (MSE = 191.0,
ISNR = 6.08 dB).
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Figure 9. Non-convex reconstruction of the “office” image: ISNR

as a function of the wavelet-domain smoothing parameter λ̃ (the
dotted green line represents the highest ISNR achievable without
wavelet-domain smoothing).
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5.1.3. Comparison with state-of-the-art methods. Fig. 10 shows the estimates achie-
ved by IFAS reconstruction, HFN regularization, and ITV2 regularization. (The
HFN and ITV2 regularization estimates are the best obtained by adjusting the
regularization strength.) ITV2 regularization produces the best solution among
these three methods, but it fails to outperform first-order TV regularization: the
ITV2 regularization estimate shown in Fig. 10(c) has an MSE of 211.2 and an ISNR
of 5.64dB, whereas the first-order TV regularization estimate shown in Fig. 5(a) has
an MSE of 191.0 and an ISNR of 5.70dB. This observation is consistent with the fact
that the performances of second-order regularization techniques decline when the
original image is too degraded. We also observe that HFN and ITV2 regularization
produce estimates with a slightly granular appearance and tend to smooth edges
(this unwanted smoothing effect is clearly visible from the enlargements of the
cropped areas in Figs. 10(b) and 10(c)). As the comparison with Figs. 5(b) and 8(b)
shows, the proposed combination of spatial- and wavelet-domain smoothing does
not have these drawbacks—our approach performs significantly better in terms of
MSE, ISNR, and visual quality.

5.1.4. Comparison in terms of deviation from the original range. Since the con-
sidered cost function does not constrain the pixel value range, the range of the
computed solution x̂ may not be included in that of the original image x?. In other
words, there may exists some k ∈ [[1,K]] such that x̂k 6∈ [x?min, x

?
max], where x?min

and x?max respectively denote the minimum and maximum pixel values in x?. For
proper comparison, the images shown in Figs. 5, 7, 8, and 10 are clipped versions
of the actual solutions produced by the competing algorithms: the displayed image
x̆ associated with x̂ is defined by

(43) x̆k =


x?min if x̂k < x?min,

x̂k if x̂k ∈ [x?min, x
?
max],

x?max if x̂k > x?max.

To measure the global deviation of the pixel values in x̂ from the range of x?, we
use a metric we call the deviation from the original range (DOR), which is defined
by

(44) DOR =
‖x̂− x̆‖1

K(x?max − x?min)
.

We consistently observe that the introduction of the wavelet-domain smoothing
term does not introduce DOR if there is none and that it reduces the DOR oth-
erwise. For instance, for the reconstruction of the “office” image, wavelet-domain
smoothing reduces the DOR from 3.38 · 10−4 to 3.08 · 10−4 in the convex case,
and from 1.79 · 10−3 to 4.82 · 10−4 in the non-convex case. The DOR values of
the estimates obtained using wavelet-domain smoothing are also smaller than those
of the solutions achieved by IFAS reconstruction, HFN regularization, and ITV2
regularization (1.16 · 10−3, 1.10 · 10−3, and 8.58 · 10−4, respectively).

5.1.5. Comparison of intensity profiles. Fig. 11 displays line intensity profiles of
the estimates shown in Fig. 5 (convex case), Fig. 8 (non-convex case), and Figs.
10(b) and 10(c) (HFN and ITV2 regularization). We can see from Figs. 11(b) and
11(c) that the wavelet-domain smoothing term does not smooth the edges that are
preserved by first-order spatial regularization. Furthermore, the addition of wavelet-
domain smoothing allows to recover more details (see arrow 1) and eliminates offsets
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Figure 10. Reconstruction of the “office” image using state-of-
the-art regularization approaches: (a) IFAS reconstruction (MSE =
282.7, ISNR = 4.37 dB); (b) HFN regularization (MSE = 222.0,
ISNR = 5.42 dB); (c) ITV2 regularization (MSE = 211.2, ISNR =
5.64 dB).

in edge locations (see arrows 2 and 3). The edge-smoothing effect caused by HFN
and ITV2 regularization is particularly visible in the regions pointed out by arrows
4 and 5.

5.2. “Peppers” image. The “peppers” image test-problem has the following ob-
jectives: (i) to examine the effect of the wavelet-domain smoothing term when the
original image has reduced high-frequency content in the horizontal and vertical
directions, (ii) to show that our algorithm behaves well when the data-fidelity term
is not quadratic, and (iii) to capture the improvement brought by non-quadratic
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Figure 11. Intensity profiles along line 40 (displayed in cyan in
Fig. 3(a)): (a) original; (b) convex reconstruction with (red) and
without (blue) wavelet-domain smoothing; (c) non-convex recon-
struction with (red) and without (blue) wavelet-domain smoothing;
(d) HFN (blue) and ITV2 (red) regularization.

data-fidelity in the presence of impulse noise. Note that, contrary to the approaches
proposed in [7, 8, 34], we do not remove the outlier pixels from the data before re-
construction.

5.2.1. Quadratic versus non-quadratic data-fidelity. Figs. 12(a) and 13(a) show the
best reconstructions obtained using the square data-penalty function φ(t) = t2 and
without wavelet-domain smoothing. They are qualitatively similar: the MSE and
the ISNR are 559.3 and 6.16 dB in the convex case, and 568.4 and 6.09 dB in the
non-convex case. Both estimates are over-smoothed, but decreasing the value of
λ leads to worse solutions that are substantially biased by the impulse noise. By
contrast, Figs. 12(b) and 13(b) show the best reconstructions obtained using the
non-quadratic data-penalty function φ = ψ0.1

id . These solutions have much better
contrast and sharpness than those achieved with quadratic data-fidelity. Quantita-
tively, changing quadratic data-fidelity for non-quadratic data-fidelity divides the
MSE by about 4.5 in the convex-case and about 2.8 in the non-convex-case; the
corresponding increases of the ISNR are 6.58 dB and 4.51 dB, respectively.

5.2.2. Convex versus non-convex regularization. Looking at the contour plots in
Figs. 12(b) and 13(b), we observe that the edges obtained with the non-convex PF
ψ = ψ10

HL are sharper than those obtained with the convex PF ψ = ψ0.1
id . It should be

stressed, however, that sharp-edge recovery makes complete sense when a significant
proportion of the discontinuities in the original image are only one pixel wide—it
can be a disadvantage otherwise. Indeed, non-convex regularization tends to create
sharp discontinuities wherever the gradient exceeds a certain threshold, thus turning
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Figure 12. Convex reconstruction of the “peppers” image: (a)
quadratic data-fidelity, no wavelet-domain smoothing (MSE =
559.3, ISNR = 6.16 dB); (b) non-quadratic data-fidelity, no
wavelet-domain smoothing (MSE = 122.9, ISNR = 12.74 dB); (b)
non-quadratic data-fidelity + wavelet-domain smoothing (MSE =
116.0, ISNR = 13.0 dB).

edges that are more than one pixel wide into thin edges that do not conform to
reality. This unwanted effect is clearly observed by comparing the original contours
in Fig. 4(a) and the contours in Fig. 13(b).

5.2.3. Reconstruction with wavelet-domain smoothing. Figs. 12(c) and 13(c) show
the best solutions achieved by adding the wavelet-domain smoothing term (the val-
ues of λ are kept unchanged). In the convex case, the MSE decreases from 122.9
to 116.0, and the ISNR increases from 12.74 dB to 13.0 dB. Except for a slight
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Figure 13. Non-convex reconstruction of the “peppers” image:
(a) quadratic data-fidelity, no wavelet-domain smoothing (MSE =
568.4, ISNR = 6.09 dB); (b) non-quadratic data-fidelity, no
wavelet-domain smoothing (MSE = 201.2, ISNR = 10.60 dB); (b)
non-quadratic data-fidelity + wavelet-domain smoothing (MSE =
129.3, ISNR = 12.52 dB).

reduction of the staircase effect, there is not much difference with the solution ob-
tained without wavelet-domain smoothing. This result is actually satisfactory: the
wavelet-domain smoothing term has negligible effect if the reconstruction obtained
without using it does not have noisy contour lines and does not present a staircase
effect. In the non-convex case, the improvement accompanying the introduction of
the wavelet-domain smoothing term is significant: the MSE decreases from 201.2
to 129.3, and the ISNR increases from 10.60 dB to 12.52 dB. As observed for the
“office” image, the staircase effect is largely reduced and the noise on the contour
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lines is eliminated. In addition, we notice that the wavelet-domain smoothing term
allows to better recover the true thickness of the edges. This can be seen from the
contour plots in Figs. 4(a), 13(b), and 13(c): the vertical edge obtained without
wavelet-domain smoothing is too sharp compared to the original one, whereas that
obtained using wavelet-domain smoothing is more conform to reality.

5.2.4. Comparison with state-of-the-art methods. Contrary to IFAS reconstruction,
the algorithms proposed in [32, 28] for HFN and ITV2 regularization are limited
to quadratic data-fidelity. Nevertheless, as mentioned in Section 2.1, the HFN and
ITV2 regularizers are special cases of (4), and thus we can use our algorithm AV
to assess their behavior when added to a non-quadratic data-fidelity term. Fig.
14 displays the estimates achieved by IFAS reconstruction and by the HFN and
ITV2 regularizers combined with non-quadratic data-fidelity. Similarly to what
observed for the “office” image, IFAS reconstruction gives the worse estimate, and
HFN and ITV2 regularization are outperformed by first-order TV regularization.
Again, our approach outperforms all three alternatives in terms of MSE and ISNR.
We also clearly see from the enlargements and the contour plots that HFN and
ITV2 regularization produce over-smoothed solutions compared to reconstruction
with wavelet-domain smoothing.

6. Conclusion. We introduced the idea of implicitly interacting discontinuities by
means of an additional penalty term operating on the detail images in the wavelet
domain. When combined with first-order edge-preserving regularization, the pro-
posed wavelet-domain regularizer preserves boundary sharpness while smoothing
contour lines. Aside from producing visually more pleasing reconstructions, this
behavior is desirable for subsequent feature-extraction and segmentation tasks. We
also provided an efficient half-quadratic optimization algorithm with strong con-
vergence guarantees even when the faithfulness to the data is non-quadratic and
the cost function is not convex. Our experiments show that our approach out-
performs first-order TV regularization as well as state-of-the-art second-order reg-
ularization techniques. The only drawback is the introduction of the additional

hyper-parameter λ̃ which controls the degree of smoothing in the wavelet domain.

However, the range of values of λ̃ that lead to an improvement in reconstruction

quality is fairly large, and preliminary results suggest that λ̃ can be selected by
tracking the value of the spatial-domain regularizer Ψ when this parameter varies.

Appendix A. Proof of Theorem 4.1.

A.1. General framework. We consider a generalization of the optimization prob-
lems studied in Section 4, namely, the minimization of a cost function Z : RK → R+

of the form

(45) Z(x) = F0(x) +
∑

i∈[[1,r]]

λi (fi ◦ Fi)(x),

where λi > 0 for all i, and where the functions Fi : RK → R+ and fi : R+ → R+

satisfy the following assumptions:

A1. For any i ∈ [[0, r]], Fi is differentiable.

A2. For any i ∈ [[1, r]], fi is twice differentiable, strictly concave, and such that

fi(0) = 0, f ′i(0) = 1, and lim
t→+∞

f ′i(t) = 0.
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Figure 14. Reconstruction of the “peppers” image using state-of-
the-art regularization approaches: (a) IFAS reconstruction (MSE =
376.4, ISNR = 7.88 dB); (b) HFN regularization combined with
non-quadratic data-fidelity (MSE = 135.5, ISNR = 12.32 dB);
(c) ITV2 regularization combined with non-quadratic data-fidelity
(MSE = 135.3, ISNR = 12.32 dB).

A3. Z is coercive, that is, lim‖x‖→∞ Z(x) = +∞.

We also assume that the function Z0 : RK× (0, 1]r → R+ defined by

(46) Z0(x, γ) = F0(x) +
∑

i∈[[1,r]]

λiγiFi(x)

is such that

A4. for any γ ∈ (0, 1]r, Z0( · , γ) : x ∈ RK 7→ Z0(x, γ) is strictly convex.
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Let g = (g1, . . . , gr) : RK → Rr be the vector-valued function with components

(47) gi = f ′i ◦ Fi,
and let J : RK → RK be given by

(48) J (y) = arg inf
x∈RK

Z0(x, g(y)).

(The function J is well defined. Indeed, for any γ ∈ (0, 1]r, we have

(49) ∀x ∈ RK,
Z0(x, γ)

infi∈[[1,r]] γi
> Z0(x,1r) > Z(x),

where 1r = (1, . . . , 1) ∈ Rr, and where the right inequality follows from A2. There-
fore, Z0( · , γ) is coercive by A3, and since it is strictly convex, it has a unique global
minimum.) We will show in Appendix A.3 that the cost functions of type (45) that
satisfy assumptions A1–A4 are minimized by the algorithm

(50) AZ ≡
{
x(0) ∈ RK,
∀n ∈ N, x(n+1) = J

(
x(n)

)
.

But first, we show in Appendix A.2 that the cost functions and the optimization
algorithms studied in Section 4 are special cases of this general framework—Theo-
rem 4.1 then readily follows from the convergence results stated in Theorem A.9 in
Appendix A.3.

A.2. Special cases of interest.

Theorem A.1. If conditions C1–C3 are satisfied, then the cost function W (35)
fits the general form (45) along with assumptions A1–A4, and the algorithm AW
(37) is a special case of AZ . (The same conclusion holds for the cost function V
(22) and the algorithm AV (30), as these are special cases of W and AW .)

Proof. Let

Iθ = [[1, L′]], Iφ =

{
[[L′+1, L′+K ′]] if C1.1,

∅ if C1.2,

and r = |Iθ ∪ Iφ| =

{
L′ +K ′ if C1.1,

L′ if C1.2.

We consider the function Z of the form (45) with r given above and with

(51) F0(x) =

{
µ‖(b−Ax)+‖22 if C1.1,

‖Hx− d‖22 + µ‖(b−Ax)+‖22 if C1.2,

(52) ∀i ∈ Iθ,


λi = θ′′i (0)

/
2,

fi(t) = θi
(√
t
)/
λi,

Fi(x) = ‖Qix‖22,

(53) and ∀i ∈ Iφ,


λi = φ′′i−L′(0)

/
2,

fi(t) = φi−L′
(√
t
)/
λi,

Fi(x) = (Hx− d)2
i−L′ .

Clearly, Z = W , and assumption A1 is satisfied. It remains to check the validity of
A2–A4 and the equivalence of AZ and AW .
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Assumption A2. Each fi is of the form fi(t) = 2ϕ
(√
t
)/
ϕ′′(0) with ϕ ∈ S . We

immediately have that fi(0) = 0, f ′i is strictly decreasing on (0,+∞), limt→0+ f ′i(t)
= 1, limt→+∞ f ′i(t) = 0, and fi is twice differentiable on (0,+∞). Without going
into details, the second-order Taylor expansion of ϕ at zero gives that f ′i(0) = 1
(hence f ′i is strictly decreasing on R+, and thus fi is strictly concave), and the
third-order Taylor expansion of ϕ′ at zero gives that fi is twice differentiable at
zero.

Assumption A3. Suppose that V is not coercive, that is, there exists a sequence
(x(n))n in RK such that limn→∞ ‖x(n)‖ = ∞ and (V (x(n)))n is bounded. Since
the φk’s and the θl’s are non-negative, and since limt→+∞ φk(t) = limt→+∞ θl(t) =
+∞ for all k and for all l, (V (x(n)))n is bounded if and only if the sequences
(supk |(Hx(n) − d)k|)n and (supl ‖Qlx(n)‖2)n are bounded, which is equivalent to
say that (‖Hx(n)‖)n and (‖Qx(n)‖)n are bounded. Let q be the quadratic form on
RK defined by q(x) = ‖Hx‖2 + ‖Qx‖2. By C3, q is positive-definite (or, equiva-
lently, coercive), and thus limn→∞ q(x(n)) = +∞. This contradicts the fact that
(‖Hx(n)‖)n and (‖Qx(n)‖)n are bounded. Therefore, V is coercive, and thus so is
W .

Assumption A4. For any γ ∈ (0, 1]r, we let

γθ =
(
γ1θ
′′
1 (0), . . . , γL′θ

′′
L′(0)

)
,

and γφ =

{(
γL′+1φ

′′
1(0), . . . , γL′+K′φ

′′
K′(0)

)
if C1.1,

2 ·1K′ if C1.2.

Substituting (51)–(53) into (46), we obtain

Z0(x, γ) = 1
2W0(x, γφ, γθ).

Since W0( · , δ, ε) is strictly convex for any positive δ and ε, it follows that Z0( · , γ)
is strictly convex for any γ ∈ (0, 1]r.

Equivalence of AZ and AW . Substituting (52) and (53) into (47), we get

gi(y) =


θ†i
(
‖Qiy‖2

)
θ′′i (0)

if i ∈ Iθ,
φ†i−L′

(
|(Hy − d)i−L′ |

)
φ′′i−L′(0)

if i ∈ Iφ.

Therefore,

γ = g(y) ⇐⇒ (γφ, γθ) = (eφ(y), eθ(y)),

and thus

Z0(x, g(y)) = 1
2W0(x, eφ(y), eθ(y)).

This shows that AZ and AW are equivalent algorithms.

A.3. Convergence analysis of AZ . In this section, we consider the general frame-
work described in Appendix A.1, and we assume that assumptions A1–A4 hold. We
let C(Z) be the set of critical points of Z and F(J ) be the set of fixed points of J ,
that is,

(54) C(Z) =
{
x ∈ RK

∣∣∇Z(x) = 0
}
,

(55) and F(J ) =
{
x ∈ RK

∣∣J (x) = x
}
.

We denote by A(x(n)) the set of accumulation points of a sequence (x(n))n.
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We first show in Lemma A.2 that finding a critical point of Z is equivalent to
finding a fixed point of J . We will then use specific instances of Theorems 3.1
and 3.5 in [39] to establish convergence to a fixed point of J —the results that we
need are put together into Theorem A.4 after some definitions. The purpose of
the subsequent lemmas (A.5 to A.8) is to show that Theorem A.4 applies when its
variables ζ and K are restrictions of Z and J to compact sets of the form {x ∈
RK |Z(x) 6 a}, a ∈ (infx∈RK Z(x),+∞). Our main results about the convergence
of AZ are stated in Theorem A.9.

Lemma A.2. F(J ) = C(Z).

Proof. Let x ∈ RK . We have

∇Z(x) = ∇F0(x) +
∑

i∈[[1,r]]

λigi(x)∇Fi(x) = ∇Z0( · , g(x))(x),

where ∇Z0( · , γ)(x) denotes the gradient of Z0( · , γ) : y ∈ RK 7→ Z0(y, γ) evaluated
at x. Therefore,

x ∈ C(Z) ⇐⇒ ∇Z0( · , g(x))(x) = 0 ⇐⇒ x ∈ F(J ).

(The second equivalence follows from the fact that Z0( · , γ) is strictly convex and
coercive for any γ ∈ (0, 1]r.)

Definitions A.3. Let Ω be a closed subset of RK, let K be a function from Ω to
Ω, and let F(K) be the set of fixed points of K.

(i) A sequence (x(n))n in Ω is said to be generated by K if

(56)

{
x(0) ∈ Ω,

∀n ∈ N, x(n+1) = K
(
x(n)

)
.

(ii) K is said to be uniformly compact if there exists a compact subset C of RK
such that K(Ω) ⊆ C.

(iii) K is said to be strictly monotonic with respect to a function ζ : Ω→ R if

(57) ∀x ∈ Ω \ F(K), (ζ ◦ K)(x) < ζ(x).

(iv) K is said to be upper semi-continuous if, for any convergent sequences (x(n))n
and (y(n))n in Ω,

(58)
(
∀n ∈ N, y(n) = K(x(n))

)
=⇒ lim

n→∞
y(n) = K

(
lim
n→∞

x(n)
)
.

Theorem A.4. Let Ω be a closed subset of RK, let ζ : Ω → R be a continuous
function, and let K : Ω → Ω be a function that is uniformly compact, strictly
monotonic with respect to ζ, and upper semi-continuous. Let (x(n))n be any sequence
generated by K.

(i) A(x(n)) ⊆ F(K).
(ii) There exists x∗ ∈ F(K) such that limn→∞ ζ(x(n)) = ζ(x∗).

(iii) Either (x(n))n converges, or A(x(n)) is a continuum.
(iv) Let x∗ be an isolated fixed point of K. If x∗ is a strict local minimum of ζ,

then there exists an open neighborhood N∗ of x∗ such that limn→∞ x(n) = x∗

whenever x(0)∈ N∗.
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Lemma A.5. For any i ∈ [[1, r]], there exists a strictly increasing and strictly
convex function hi : (0, 1]→ R+ such that, for any t ∈ R+,

(59) fi(t) = inf
u∈(0,1]

(
tu+ hi(u)

)
,

(60) and arg inf
u∈(0,1]

(
tu+ hi(u)

)
= {f ′i(t)}.

Proof. Let f : R+ → R+ be a function satisfying the conditions of assumption A2
(we drop the subscript i to simplify notation). Then, f has the following properties:

(61) ∀(s, t) ∈ (R+)2, s 6= t =⇒ f(t) < f(s) + (t− s)f ′(s),
f ′′ is negative on (0,+∞), f ′ is a bijection from R+ to (0, 1], and (f ′)−1 is positive
on (0, 1).

Let t ∈ R+. We have from (61) that

f(t) = inf
s∈R+

(
f(s) + (t− s)f ′(s)

)
.

For any s ∈ R+, there is a unique us ∈ (0, 1] such that us = f ′(s) (or, equivalently,
s = (f ′)−1(us)), and thus we can write

f(s) + (t− s)f ′(s) = tus + h(us),

where h : (0, 1]→ R is given by

h(u) = (f ◦ (f ′)−1)(u)− (f ′)−1(u)u.

Therefore,

(62) f(t) = inf
s∈R+

(
tus + h(us)

)
= inf
u∈(0,1]

(
tu+ h(u)

)
.

The function h is twice differentiable on (0, 1). For any u ∈ (0, 1), we have

h′(u) = −(f ′)−1(u) < 0

and h′′(u) =
−1

(f ′′ ◦ (f ′)−1)(u)
> 0.

Hence, h is strictly decreasing and strictly convex on (0, 1). Since, in addition, h is
continuous and h(1) = 0, it follows that h is non-negative, strictly decreasing, and
strictly convex.

Let t ∈ R+. We have (h ◦ f ′)(t) = f(t)− tf ′(t) (by the definition of h), and thus
(62) gives

tf ′(t) + (h ◦ f ′)(t) = inf
u∈(0,1]

(
tu+ h(u)

)
.

The map u ∈ (0, 1] 7→ tu+h(u) is strictly convex (as h is strictly convex), and thus
it has at most one minimum. Consequently, arg infu∈(0,1]

(
tu+h(u)

)
= {f ′(t)}.

Lemma A.6. Let Z∗ : RK× (0, 1]r → R+ be the dual cost function defined by

(63) Z∗(x, γ) = F0(x) +
∑

i∈[[1,r]]

λi
(
γiFi(x) + hi(γi)

)
,

where the hi’s are the functions introduced in Lemma A.5. Then, for any x ∈ RK,

(64) Z(x) = inf
γ∈(0,1]r

Z∗(x, γ) = Z∗(x, g(x)).

Inverse Problems and Imaging Volume 7, No. 4 (2013), 1331–1366



1362 Marc C. Robini, Yuemin Zhu and Jianhua Luo

Proof. Let x ∈ RK. Using Lemma A.5, we have

Z(x) = F0(x) +
∑

i∈[[1,r]]

λi inf
γi∈(0,1]

(
Fi(x)γi + hi(γi)

)
= F0(x) + inf

(γ1,...,γr)∈(0,1]r

∑
i∈[[1,r]]

λi
(
Fi(x)γi + hi(γi)

)
= inf

γ∈(0,1]r
Z∗(x, γ),

and

Z(x) = F0(x) +
∑

i∈[[1,r]]

λi
(
Fi(x)(f ′i ◦ Fi︸ ︷︷ ︸

gi

)(x) + (hi ◦ f ′i ◦ Fi︸ ︷︷ ︸
gi

)(x)
)

= Z∗(x, g(x)).

Lemma A.7. The function J is strictly monotonic with respect to Z, that is,

(65) ∀x ∈ RK \ F(J ), (Z ◦ J )(x) < Z(x).

Proof. Let x ∈ RK such that x 6= J (x), and let y = J (x). We have

Z0(y, g(x)) = inf
z∈RK

Z0(z, g(x)) < Z0(x, g(x)),

and thus the dual cost function Z∗ (63) satisfies

Z∗(y, g(x))− Z∗(x, g(x)) = Z0(y, g(x))− Z0(x, g(x)) < 0.

Besides, by Lemma A.6,

Z(y)− Z(x) = Z∗(y, g(y))− Z∗(x, g(x)) 6 Z∗(y, g(x))− Z∗(x, g(x)),

and consequently Z(y) < Z(x).

Lemma A.8. Let A be a bounded subset of RK, and let

(66) Ω(A) =
{
x ∈ RK

∣∣ Z(x) 6 supZ(A)
}
.

(i) Ω(A) is compact.
(ii) J (Ω(A)) ⊆ Ω(A).

(iii) J |Ω(A) is upper semi-continuous.

(iv) Let (x(n))n be a sequence generated by AZ , and let Ω0 = Ω({x(0)}) and Ω1 =
Ω({x(1)}). If x(0) 6∈ F(J ), then

(67) ∀n ∈ N∗, x(n) ∈ Ω1 ⊂ Ω◦0,

where Ω◦0 denotes the interior of Ω0.

Proof. (i) The set Ω(A) = Z−1
(
[0, supZ(A)]

)
is closed because Z is continuous.

Besides, since Z is coercive,

∃a > 0, ∀x ∈ RK, ‖x‖ > a =⇒ Z(x) > supZ(A),

that is, there exists a > 0 such that Ω(A) ⊆ {x ∈ RK | ‖x‖ 6 a}. Therefore, Ω(A)
is a closed bounded subset of RK .

(ii) Let x ∈ Ω(A). Using Lemma A.7, we have

(Z ◦ J )(x) 6 Z(x) 6 supZ(A),

and thus J (x) ∈ Ω(A).
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(iii) Let (x(n))n and (y(n))n be two convergent sequences in Ω(A) such that
y(n) = J (x(n)) for all n, and let x∗ = limn→∞ x(n) and y∗ = limn→∞ y(n) . Let
z ∈ RK. By the definition of J , we have

(68) Z0(y(n), g(x(n))) 6 Z0(z, g(x(n)))

for all n. Since Z0 and g are continuous, we have

lim
n→∞

Z0(y(n), g(x(n))) = Z0(y∗, g(x∗))

and lim
n→∞

Z0(z, g(x(n))) = Z0(z, g(x∗)).

Therefore, passing to the limit in (68), we obtain

Z0(y∗, g(x∗)) 6 Z0(z, g(x∗)).

This shows that y∗ = arg infz∈RK Z0(z, g(x∗)) (as Z0( · , g(x∗)) is strictly convex),
that is, y∗ = J (x∗).

(iv) Let (x(n))n be a sequence generated by AZ such that x(0) 6∈ F(J ). By
Lemma A.7, we have Z(x(1)) < Z(x(0)) and Z(x(n+1)) 6 Z(x(n)) for all n ∈ N∗.
Consequently, Z(x(n)) 6 Z(x(1)) (or, equivalently, x(n) ∈ Ω1) for all n ∈ N∗, and

Ω1 ⊂
{
x ∈ RK

∣∣ Z(x) < Z(x(0))
}
⊆ Ω◦0.

Theorem A.9. Let (x(n))n be any sequence generated by AZ under assumptions
A1–A4.

(i) ∅ 6= A(x(n)) ⊆ C(Z).
(ii) There exists x∗ ∈ C(Z) such that limn→∞ Z(x(n)) = Z(x∗), and, for any

n ∈ N, Z(x(n+1)) 6 Z(x(n)) with equality if and only if x(n)∈ C(Z).
(iii) Either (x(n))n converges, or A(x(n)) is a continuum.
(iv) Let x∗ be an isolated critical point of Z. If x∗ is a local minimum of Z,

then there exists an open neighborhood N of x∗ such that limn→∞ x(n) = x∗

whenever x(0)∈ N.
(v) limn→∞ infy∈C(Z) ‖x(n) − y‖ = 0.

(vi) If C(Z) is discrete, then there exists x∗ ∈ C(Z) such that limn→∞ x(n) = x∗.
(vii) If Z is strictly convex, then (x(n))n converges to the global minimum of Z.

Proof. (i)–(iii) By Lemmas A.7 and A.8, (x(n))n is generated by J |Ω0
(in the sense

of Definition A.3(i)), and the assumptions of Theorem A.4 hold when Ω = Ω0,
K = J |Ω0 , and ζ = Z|Ω0 . Therefore, since F(J |Ω0) ⊆ C(Z) by Lemma A.2, we
have the following results:

• A(x(n)) ⊆ C(Z).
• There exists x∗ ∈ C(Z) such that limn→∞ Z(x(n)) = Z(x∗).
• Either (x(n))n converges, or A(x(n)) is a continuum.

Since (x(n))n>1 is in the compact set Ω1, it has a convergent subsequence, and thus

A(x(n)) is not empty. The strict monotonicity of J gives that, for any n ∈ N,
Z(x(n+1)) 6 Z(x(n)) with equality if and only if x ∈ C(Z).

(iv) Let x∗ be an isolated critical point and a local minimum of Z. Then, x∗ is a
strict local minimum, because otherwise it is not an isolated critical point. Let a >
0, let B(x∗, a) be an open ball around x∗ with radius a, and let Ωa = Ω(B(x∗, a))
be defined as in (66). By lemmas A.7 and A.8, the sequences generated by J |Ωa

are
the sequences (x(n))n generated by AZ such that x(0) ∈ Ωa, and the assumptions of
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Theorem A.4 hold when Ω = Ωa, K = J |Ωa , and ζ = Z|Ωa . Therefore, there exists
an open neighborhood N∗ of x∗ such that, for any sequence (x(n))n generated by
AZ ,

x(0) ∈ N∗∩ Ωa =⇒ lim
n→∞

x(n) = x∗.

Hence, it suffices to take N = N∗∩ Ω◦a, where Ω◦a denotes the interior of Ωa.
(v) Let dC(Z) : RK → R+ be defined by dC(Z)(x) = infy∈C(Z) ‖x − y‖, and

suppose that dC(Z)(x
(n)) does not go to zero as n→∞; that is, there exists a > 0

such that

∀m ∈ N, ∃n > m, dC(Z)(x
(n)) > a.

Then, there exists a subsequence (y(l))l of (x(n))n>1 such that dC(Z)(y
(l)) > a for all

l, and since (x(n))n>1 is in the compact set Ω1, (y(l))l has a convergent subsequence

(z(k))k. The limit point z∗ of (z(k))k is an accumulation point of (x(n))n, but
z∗ 6∈ C(Z) (as dC(Z)(z

(k)) > a for all k), which contradicts (i).

(vi) Assume that C(Z) is discrete. Then A(x(n)) is discrete by (i), and we
have from (iii) that (x(n))n converges. Therefore, A(x(n)) reduces to the singleton
{limn→∞ x(n)}, and hence, using (i) again, limn→∞ x(n) ∈ C(Z).

(vii) Assume that Z is strictly convex. Then, since Z is coercive, Z has a unique
global minimum x∗ and C(Z) = {x∗}. It follows from (vi) that limn→∞ x(n) =
x∗.
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