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Abstract Simulated annealing (SA) is a generic optimization method that is quite popular
because of its ease of implementation and its global convergence properties. However, SA is
widely reported to converge very slowly, and it is common practice to allow extra freedom in
its design at the expense of losing global convergence guarantees. A natural way to increase
the flexibility of SA is to allow the objective function and the communication mechanism
to be temperature-dependent, the idea being to gradually reveal the complexity of the opti-
mization problem and to increase the mixing rate at low temperatures. We call this general
class of annealing processes stochastic continuation (SC). In the first part of this paper, we
introduce SC starting from SA, and we derive simple sufficient conditions for the global con-
vergence of SC. Our main result is interesting in two respects: first, the conditions for global
convergence are surprisingly weak—in particular, they do not involve the variations of the
objective function with temperature—and second, exponential cooling makes it possible to
be arbitrarily close to the best possible convergence speed exponent of SA. The second part
is devoted to the application of SC to the problem of producing aesthetically pleasing draw-
ings of undirected graphs. We consider the objective function defined by Kamada and Kawai
(Inf Process Lett 31(1):7–15, 1989), which measures the quality of a drawing as a weighted
sum of squared differences between Euclidean and graph-theoretic inter-vertex distances.
Our experiments show that SC outperforms SA with optimal communication setting both in
terms of minimizing the objective function and in terms of standard aesthetic criteria.
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1 Introduction

1.1 Background

Simulated annealing (SA) is a generic method for combinatorial optimization that is quite
popular because of its ease of implementation and its global convergence properties. It has
been successfully applied to many difficult problems such as the travelling salesman [1,36],
graph partitioning [32], graph coloring [33], clique partitioning [17], graph embedding [16],
task scheduling [11], image reconstruction [49,51], image segmentation [57], and bicluster-
ing [7].

The key feature of SA is to allow uphill moves (that is, moves that increase the value of the
objective function) in order to escape local minima. By analogy with the physical process of
annealing in solids, uphill moves are accepted with some probability controlled by a temper-
ature parameter that decreases monotonically to zero. As the temperature goes to zero, the
invariant measure of the underlying Markov chain model concentrates on the ground states
(that is, the global minima) of the objective function, and we can expect that the process
converges to a ground state if the cooling is sufficiently slow. Early results [13,25,28] show
that this is indeed the case if the temperature is inversely proportional to the logarithm of
the iteration index, but this theoretical advantage is outweighted by well-known practical
disadvantages: SA converges very slowly and the convergence assumptions severely limit
design freedom.

Good SA algorithm design means careful selection of the cooling schedule—the most
successful applications of SA use exponential cooling, which is theoretically justified in
[9]—and clever construction of the candidate-solution generation mechanism (we call it the
communication mechanism for short). However, many implementations of SA found in the
literature use unadapted cooling schedules and crude communication mechanisms, which
translates to convergence to poor local minima and sensitivity to initialization; it is therefore
not surprising that SA is often abandoned in favor of other (mainly deterministic) optimiza-
tion methods. The truth is that carefully designed annealing algorithms produce very good
results for a wide class of problems. Yet, despite various theoretical and practical improve-
ments over the last two decades, SA is generally much slower than deterministic methods
and efficient acceleration techniques are welcome. As a result, it is common practice to relax
some of the convergence conditions of SA as well as to allow extra freedom in its design,
but variations on the theme of SA usually come without optimal convergence guarantees.

1.2 Contributions of the paper

1.2.1 Stochastic continuation

A natural generalization of SA is to allow the objective function and the communication
mechanism to be temperature-dependent; we call the class of such algorithms stochastic
continuation (SC). The first idea is to ease the annealing process by gradually revealing the
complexity of the optimization problem. The second idea is to facilitate the exploration of
the state space by adapting the communication mechanism to the temperature regime.

SC includes SA with temperature-dependent energy, which is studied in [22,39,48], and
it belongs to the general class of Markov processes investigated in [18]. Yet the conver-
gence conditions obtained in these papers strongly limit the freedom in parameterizing the
objective function with temperature, and [18,22,39] impose impractical logarithmic cool-
ing schedules. We show here that these limitations can be overcome while allowing the
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communication mechanism to vary with temperature. Our starting point is the observation
that the transitions of SC obey a large deviation principle with speed inversely proportional
to the temperature, which suggests to appeal to generalized SA (GSA) theory [12,56]. This
theory makes the finite state space assumption, and so do we. This is not a problem in most
practical situations, as it is generally possible to increase the number of states to achieve the
desired level of accuracy. Besides, the existing results on Markov Chain Monte-Carlo opti-
mization on general state spaces—especially continuous domains—are not flexible enough
to study the behavior of SC algorithms: they do not allow the energy to be time-dependent,
they either require logarithmic cooling [24,27,37,38] or impose too restrictive conditions on
the communication mechanism [3,59], and they do not provide relevant information on the
convergence speed.

In this paper, we refine some of our results obtained in [50] by placing more emphasis
on the line of thought from SA to SC and by delving more deeply into the GSA interpre-
tation of SC—we also provide algorithmic details as well as fast methods for selecting the
initial and final temperatures of the cooling schedule. We obtain a bound on the probability
to exceed some threshold above the minimum objective value, and our main result states
that SC with suitably adjusted exponential cooling can have a convergence speed exponent
arbitrarily close to the optimal exponent of SA. Moreover, the associated conditions are sur-
prisingly weak; in particular, they do not involve the variations of the objective function with
temperature. (The reader interested in a brief overview of SC may consult [52]. Compared
to this short communication, the present paper offers a comprehensive background, a better
understanding of SC and its convergence properties, full proofs, practical implementation
considerations, and a successful application to the graph layout problem introduced below.)

1.2.2 Graph drawing

The second contribution of this paper is the application of SC to the problem of producing
aesthetically pleasing drawings of undirected, connected graphs (we refer to [35,54] for a
comprehensive introduction to this subject). We confine ourselves to straight-line represen-
tations, in which each edge is mapped to a line segment in the plane. In this case, the problem
reduces to that of finding a suitable mapping from the vertex set V to R

2, or from V to
{1, . . . , L}2 for a given integer L � |V|.

There are many criteria for judging the aesthetic quality of a graph layout [46,58], but the
most popular approaches are based on simple, physically-inspired models that are expressed
in terms of forces acting on the objects (the vertices) of the system (the graph) or in terms
of a potential energy reflecting the internal stress of the system. The layout is the result of
the simulation of the relaxation of the system, which amounts to minimize a cost function
defined either implicitly [21,23] or explicitly [16,34], depending on which representation is
used. We consider the energy model introduced by Kamada and Kawai [34], which measures
the quality of a layout as a weighted sum of squared differences between Euclidean and
graph-theoretic inter-vertex distances. There are two main reasons for this choice. First, the
Kamada–Kawai energy favors smooth drawings with small maximum-to-minimum edge-
length ratio, small edge-length dispersion, and high amount of symmetry [6], which are three
consensus aesthetic criteria. Second, although seemingly simple compared to cost functions
that involve multiple constraints and multiple free parameters (such as in [16]), the Kamad-
a–Kawai energy defines a challenging optimization problem and is therefore appropriate for
comparing the performance of SA and SC. We construct a family of communication mecha-
nisms and a family of objective functions indexed by temperature to speed up the annealing
process for that particular objective function. Our experimental results show that the resulting
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SC algorithm substantially outperforms both SA and the well-known Kamada–Kawai algo-
rithm [34] in terms of objective function value, maximum-to-minimum edge-length ratio,
and number of edge-crossings.

1.3 Outline

This paper is organized as follows. In Sect. 2, we review the elements of SA theory that are
needed to introduce SC and to assess its theoretical performance (we refer to the survey of
Nikolaev and Jacobson [41] for a comprehensive treatment of SA). The formalism of SC is
presented in Sect. 3, where we study its finite-time behavior by appealing to GSA theory,
and where we discuss the practical tuning of the cooling schedule. Section 4 is devoted to the
application of SC to the graph drawing optimization problem discussed above. Concluding
remarks are given in Sect. 5.

2 Simulated annealing

We consider the problem of finding a global minimum of an arbitrary real-valued function
U defined on a finite state space �; we call this objective function the energy function. We
denote the ground state energy infx∈� U (x) by Uinf , and we let �0(U ) be the set of global
minima of U , that is, �0(U ) = {x ∈ �|U (x) = Uinf }.

2.1 Fundamentals

SA operates on an energy landscape (�,U, θ) defined by a symmetric and irreducible Mar-
kov matrix θ on �, called the communication matrix, which gives the probabilities of the
possible moves for generating a candidate solution from the current solution. More precisely,∑

z∈� θ(x, z) = 1 for all x ∈ � (that is, θ is a Markov matrix), θ(x, y) = θ(y, x) for all
(x, y) ∈ �2 (that is, θ is symmetric), and the digraph

(�,�(θ)), �(θ) = {
(x, y) ∈ �2

∣
∣ y �= x and θ(x, y) > 0

}
, (1)

is strongly connected (that is, θ is irreducible). In simple terms, �(θ) is the set of allowed
moves and the irreducibility means that any state can be reached from any other state. The
most simple communication mechanisms are defined by selecting a neighborhood system N
on � (that is, N = {N (x); x ∈ �} is a collection of subsets of � such that (i) x �∈ N (x),
and (ii) y ∈ N (x)⇐⇒ x ∈ N (y)) and setting

θ(x, y) =

⎧
⎪⎨

⎪⎩

c if y ∈ N (x)
1− c |N (x)| if y = x

0 otherwise,

(2)

where c is a positive constant such that c � 1/(supx∈� |N (x)|). More sophisticated mecha-
nisms are constructed by weighting the allowed moves via a positive function � defined on
{{x, y} ⊂ � | y ∈ N (x)}; they are of the form

θ(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c�({x, y}) if y ∈ N (x)

1− c
∑

z∈N (x)

�({x, z}) if y = x

0 otherwise,

(3)
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where 0 � c � 1/(supx∈�
∑

z∈N (x) �({x, z})). Note that the communication matrices (2)
and (3) are clearly symmetric, and that they are irreducible if and only if the adjacency graph
(�, {{x, y} ⊂ � | y ∈ N (x)}) is connected (in both cases, (x, y) ∈ �(θ) if and only if
y ∈ N (x)).

An SA process on an energy landscape (�,U, θ) is defined by a family (Pβ)β∈R+ of
Markov matrices on � of the form

Pβ(x, y) =

⎧
⎪⎨

⎪⎩

θ(x, y)Aβ(x, y) if y �= x

1 −
∑

z∈�\{x}
Pβ(x, z) if y = x , (4)

where the so-called acceptance probability function Aβ : �2 → [0, 1] is defined by

Aβ(x, y) = exp
(− β(U (y)−U (x))+

)
(5)

with a+ := sup{a, 0}. The parameter β plays the role of an inverse temperature, and Aβ(x, y)
is the probability to accept the move from the current solution x to the candidate solution y
at temperature β−1. Other acceptance probability functions are possible (we then speak of
an hill-climbing process [31]), but it is shown in [53] that (5) is the unique form such that (i)
Aβ(x, y) = 1 if U (y) � U (x), (ii) Aβ depends uniformly on the energy difference between
the current and candidate solutions, and (iii) the Markov chain (Xn)n∈N with transitions
P(Xn = y | Xn−1 = x) = Pβ(x, y) is reversible.

We call a positive real sequence (βn)n∈N∗ a cooling sequence if it is non-decreasing and
if limn→+∞ βn = +∞. Given such a sequence, an SA algorithm on (�,U, θ) is a dis-
crete-time, non-homogeneous Markov chain (Xn)n∈N with transitions P(Xn = y | Xn−1 =
x) = Pβn (x, y). We use the notation SA(�,U, θ, (βn)) for short. In practice, a finite-time
realization (xn)n∈[[0,N ]] ([[0, N ]] is a shorthand notation for {0, . . . , N }) of an annealing chain
SA(�,U, θ, (βn)) is generated as follows:

pick an initial state x0 ∈ �;
for n = 1 to N do

draw a state y from the probability distribution θ(xn−1, · ) on �;
set xn ←− xn−1;
set δ←− U (y)−U (xn−1);
if δ � 0 then set xn ←− y;
else set xn ←− y with probability exp(−βnδ);
end(if)

end(for)

The Markov matrix Pβ inherits the irreducibility of θ for any β; thus, since� is finite, Pβ
has a unique and positive invariant measure, which we denote by μβ . From the symmetry of
θ , we have exp(−βU (x))Pβ(x, y) = exp(−βU (y))Pβ(y, x) for all (x, y), and therefore

μβ(x) ∝ exp(−βU (x)). (6)

In other words, μβ is the Gibbs distribution with energy U at temperature β−1. When β
increases to infinity, μβ concentrates around the ground states and tends to the uniform
distribution on �0(U ), that is,

lim
β→+∞μβ(x) =

{
1/|�0(U )| if x ∈ �0(U )

0 otherwise.
(7)
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At this point, it is natural to question the need for cooling. Indeed, we can think of searching
for the global minima by Metropolis sampling, which consists in simulating an homogeneous
Markov chain with transitions matrix Pβ for a fixed β and keeping the lowest energy state
found during the simulation. Metropolis sampling has interesting finite-time convergence
properties [10,19,44,45], and some experimental results show that it can perform compara-
bly to SA if the temperature is chosen correctly [14,20]. Unfortunately, there is no general
approach to choosing a fixed temperature value appropriate to a given optimization problem.
If we want to be reasonably sure of finding a good solution, we have to choose β large enough
so that μβ is sharply peaked around the ground states. On the other hand, the larger β, the
less mobile the Metropolis chain, and hence the more likely it is to get stuck in poor local
minima. The truth is that it is generally not possible to design an efficient communication
mechanism for rapid mixing at low temperatures. This motivates the idea of annealing: if the
cooling sequence (βn)n increases sufficiently slowly, then we can expect that the law of Xn

is close to μβn so as to achieve asymptotic optimality, that is,

lim
n→+∞ inf

x∈� P
(
Xn ∈ �0(U )

∣
∣ X0 = x

) = 1. (8)

From this perspective, SA can be viewed as an acceleration technique for Metropolis
sampling.

2.2 Main convergence results

The most well-known asymptotic convergence result for SA is due to Hajek [28], who showed
that (8) holds if and only if

+∞∑

n=1

exp(−βn Hc) = +∞, (9)

where Hc is the maximum energy barrier separating a non-optimal state from a ground state.
The constant Hc is called the critical depth of the energy landscape. Formally,

Hc = sup
x∈�\�0(U )

H(x), (10)

where H(x)—the depth of x—is defined as follows:

H(x) = inf
y∈�0(U )

h(x, y)−U (x) (11)

with h(x, y) = inf
(xi )

m
i=1∈�θ (x,y)

sup
i∈[[1,m]]

U (xi ), (12)

where �θ(x, y) denotes the set of paths from x to y in (�,�(θ)).
Hajek’s result readily implies that logarithmic cooling sequences of the form βn = β0 ln n

are asymptotically optimal if 0 < β0 � 1/Hc. Notable refinements were given by Chiang
and Chow [13] and by Catoni [8], who provided necessary and sufficient conditions for the
limit distribution of the annealing chain to give a strictly positive mass to any x ∈ �0(U )
and for strong ergodicity, but these results do not provide information about the status of SA
after a finite number of steps. The finite-time behavior of SA with logarithmic cooling was
investigated by Desai and Rao [19], who derived an upper bound on the number N (η, p) of
iterations needed to ensure that a state with energy lower than Uinf+η has been encountered
with probability p. However, in practice, logarithmic cooling yields extremely slow conver-
gence and is usually replaced by exponential cooling, the justification of which is outlined
below.
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Let (βN
n )n∈[[1,N ]] be a finite cooling sequence, and consider the convergence measure

M(N ) of the finite-time algorithm (X N
n )n∈[[0,N ]] = SA(�,U, θ, (βN

n )) defined by

M(N ) = sup
x∈�

P
(
X N

N �∈ �0(U )
∣
∣ X N

0 = x
)
. (13)

It is shown in [9] that as the horizon N increases, M(N ) cannot decrease faster than some
optimal exponent of N−1. More precisely, letting B(N ) be the set of finite cooling sequences
of length N (that is, B(N ) = {(βN

n ) | 0 � βN
1 � · · · � βN

N }), we have

lim
N→+∞ sup

(βN
n )∈B(N )

− ln M(N )

ln N
�

1

D
, (14)

where the constant D, called the difficulty of the energy landscape, is the maximum ratio of
the depth to the energy level above the ground state energy:

D = sup
x∈�\�0(U )

H(x)

U (x)−Uinf
. (15)

Furthermore, the upper bound 1/D in (14) is sharp, as ln M(N ) ∼ ln(N−1/D) for some
families {(βN

n ) ; N ∈ N
∗} of cooling sequences of the form

βN
n = β0 exp(n f (N )) with f (N ) ∼ N−1 ln N , (16)

where β0 is independent of the horizon N . This rigorous justification for exponential cooling
is a direct consequence of Theorem 8.1 in [9], where it is also established that there exists
piecewise logarithmic sequences such that M(N ) � C N−1/D for some positive constant
C (however, these sequences depend strongly on the hierarchical structure of the energy
landscape and their identification is intractable for problems of practical size). On the experi-
mental side, the optimal cooling sequence attached to a particular optimization problem may
be neither logarithmic nor exponential [14], but exponential cooling remains particularly
attractive in practice because, contrary to other cooling strategies, it is uniformly robust with
respect to the energy landscape.

It can be checked that the supremum in the definition (15) of the difficulty of the energy
landscape can be taken over the set�loc(U, θ) \�0(U ), where�loc(U, θ) denotes the set of
local minima of the energy landscape (�,U, θ):

�loc(U, θ) =
{

x ∈ � ∣
∣ ∀y ∈ �, θ(x, y) > 0 �⇒ U (x) � U (y)

}
. (17)

Therefore, the above finite-time convergence properties are consistent with the intuitive
understanding of annealing: SA performs poorly if the energy landscape has low-energy
non-global minima and if these minima are separated from the ground states by high energy
barriers. By way of illustration, Fig. 1 shows three simple energy landscapes with increasing
difficulty. In each case, � = {xi ; i ∈ [[1, 12]]}, U (�) ⊂ N, and θ(x, y) > 0 if and only if
(x, y) = (xi , xi+1) or (xi , xi−1). The quantities η1 and η2 are defined by

η1 = H(x∗) and η2 = U (x∗)−Uinf (18)

with x∗ ∈ arg sup
x∈�\�0(U )

H(x)

U (x)−Uinf
, (19)

and thus D = η1/η2. As exemplified by Fig. 1a and c, the non-global minimum with maxi-
mum depth does not necessarily coincide with the argument of the supremum in the definition
of the difficulty. In fact, the ordering of the non-global minima in terms of the depth H is

123



192 J Glob Optim (2013) 56:185–215

Fig. 1 Energy landscapes with
increasing difficulty D = η1/η2:
a D = 4

3 ; b D = 7
3 ; c D = 3
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generally not the same as that defined by H/(U −Uinf ), and thus the notion of a local basin
of attraction differs between asymptotic and finite-time convergence theories.

We end this section by noting that the finite-time convergence theory also sheds new light
on the benefits of SA over Metropolis sampling. From [10], the optimal convergence speed
exponent of the Metropolis algorithm is 1/DM with

DM = Hc

inf
x∈�\�0(U )

U (x)−Uinf
. (20)

Letting �†
loc := �loc(U, θ) \�0(U ) be the set of non-global minima of (�,U, θ), we have

D < DM if and only if
(
∃x ∈ �, Uinf < U (x) < inf

y∈�†
loc

U (y)
)

∨
(
∀x ∈ �†

loc, H(x) = sup
y∈�†

loc

H(y) �⇒ U (x) > inf
y∈�†

loc

U (y)
)
.

In other words, SA is potentially faster than Metropolis sampling if there is a state x �∈ �0(U )
with smaller energy than any non-global minimum or if the set of non-global minima with
maximum depth is disjoint from the set of non-global minima with minimum energy. For
example, going back to Fig. 1, the Metropolis difficulty is greater than D in all three cases:
(a) DM = 5

3 , (b) DM = 7
2 , and (c) DM = 7 (the corresponding values of the acceleration

exponent 1/D − 1/DM are 3
20 , 1

7 and 4
21 , respectively).
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3 Stochastic continuation

The relationship between the convergence rate of SA and the difficulty of the energy landscape
suggests a possible acceleration by making the energy temperature-dependent. The idea is to
guide the hierarchical search performed by SA—and thus to reduce the risk of getting stuck in
undesirable basins of attraction—by replacing the energy function U with a sequence (Un)n
of functions converging pointwise to U and such that the difficulty of (�,Un, θ) increases
with n. In a similar vein, since static communication is generally efficient over only a small
range of temperatures, another potential improvement is to adapt the communication mech-
anism to the temperature regime. This leads to an important class of generalized SA (GSA)
algorithms in which the temperature controls not only the acceptance rate of uphill moves,
but also the energy function and the communication matrix. We call it SC by analogy with
deterministic continuation methods, in which the minima are tracked by computing succes-
sive approximate solutions from a parameterized energy that tends to the objective function
as the iterations increase (see, for instance, [4,40,42]).

3.1 Definition and basic idea

We define an SC process with target energy landscape (�,U, q) to be a family (Qβ)β∈R+
of Markov matrices on � of the form

Qβ(x, y) =

⎧
⎪⎨

⎪⎩

qβ(x, y) exp
(− β(Uβ(y)−Uβ(x))+

)
if y �= x

1 −
∑

z∈�\{x}
Qβ(x, z) if y = x, (21)

with lim
β→+∞Uβ(x) = U (x) and lim

β→+∞ qβ(x, y) = q(x, y).

Given such a family together with a cooling sequence (βn)n∈N∗ , we call a Markov chain
(Xn)n∈N on � with transitions P(Xn = y | Xn−1 = x) = Qβn (x, y) an SC algorithm, and
we denote it by SC(�, (Uβ), (qβ), (βn))—we use the notation (�, (Qβ)) or (�, (Uβ), (qβ))
for the underlying SC process. The family of functions (Uβ : � → R)β is called the con-
tinuation scheme, and the family of Markov matrices (qβ : �2 → [0, 1])β is called the
communication scheme.

We assume that the limit communication matrix q is irreducible, as there is otherwise no
guarantee to reach a ground state of the target energy U . The basic idea of SC is easy to
explain under the additional assumption that qβ is symmetric for β sufficiently large (this
restriction will be relaxed in the next section). Indeed, Proposition 1 below states that in this
case the invariant measure νβ of Qβ is a Gibbs distribution which concentrates on the set of
global minima of U as β → +∞. Consequently, similarly to SA, if the cooling sequence
does not increase too fast, the law of Xn should stay close enough to νβn to expect conver-
gence to an optimum. This gives the go-ahead for studying the global convergence properties
of SC.

Proposition 1 Let (�, (Qβ)) be an SC process with q irreducible and qβ symmetric for β
sufficiently large. Then, there exists β∗ � 0 such that for any β � β∗, Qβ is irreducible and
its unique invariant measure νβ satisfies

νβ(x) ∝ exp(−βUβ(x)) (22)

and lim
β→+∞ νβ(�0(U )) = 1. (23)
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Proof Since � is finite, there exists β∗ � 0 such that for any β � β∗, qβ is symmetric and
�(q) ⊆ �(qβ), where � is defined in (1).

Let β � β∗. The Markov matrix qβ inherits the irreducibility of q , and thus, since
�(qβ) ⊆ �(Qβ), Qβ is irreducible. It follows that Qβ has a unique invariant measure. Let
νβ be the probability distribution on � defined by

νβ(x) = exp(−βUβ(x))

Zβ(�)
, Zβ(A) :=

∑

z∈A
exp(−βUβ(z)).

For any (x, y) ∈ �2 such that x �= y, we have

νβ(x)Qβ(x, y) = qβ(x, y)
exp(−β sup{Uβ(x),Uβ(y)})

Zβ(�)

and thus

νβ(x)Qβ(x, y) = νβ(y)Qβ(y, x)

by the symmetry of qβ . In other words, Qβ is reversible with respect to νβ , which implies
that νβ is invariant for Qβ .

Let us put �0 := �0(U ) and �0 := � \ �0(U ), and let f0 and f1 be the real-valued
functions on R+ defined by

f0(β) = sup
z∈�0

Uβ(z) and f1(β) = inf
z∈�0

Uβ(z).

We have

Zβ(�0) � |�0| exp(−β f0(β)), Zβ(�0) � |�0| exp(−β f1(β)),

and lim
β→+∞( f1 − f0)(β) = inf

z∈�0

U (z)−Uinf > 0.

Therefore,

Zβ(�0)

Zβ(�0)
∈ O
β→+∞

(
exp(−β( f1 − f0)(β))

) −→
β→+∞ 0

and hence

νβ(x) ∼
β→+∞

exp(−βUβ(x))

Zβ(�0)
∈ O
β→+∞

(
exp

(− β(Uβ(x)− f0(β))
))
. (24)

Now, for any x ∈ �0,

lim
β→+∞(Uβ(x)− f0(β)) = U (x)−Uinf > 0,

and it follows from (24) that lim
β→+∞ νβ(�0) = 0. ��

Remark 1 SC is seemingly related to generalized hill-climbing (GHC) [31], which includes
SA as a special case. The acceptance probability function of a GHC process is of the form

Aβ(x, y) = P
(
Sβ(x, y) � U (y)−U (x)

)
, (25)

where Sβ(x, y) is a non-negative random variable whose density function is parameterized
by β and depends on (x, y) (in the case of SA, Sβ(x, y) = −β−1 ln κx , where κx is a random
variable uniformly distributed on (0, 1)). Strictly speaking, SA with temperature-dependent
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energy—and hence SC—is not included in GHC. Indeed, if there is a pair (x, y) ∈ �2 such
that U (y) = U (x) and Uβ(y) > Uβ(x) for all β, then for such a pair, the acceptance proba-
bility of GHC is P(Sβ(x, y) � 0) = 1 whereas that of SC is exp(−β(Uβ(y)−Uβ(x))) < 1.
We refer the reader interested in GHC to the work of Johnson and Jacobson [31] and Jac-
obson and Yucësan [30]. Both papers examine the asymptotic convergence of GHC: [31]
discusses the standard homogeneous Markov chain approach, and [30] provides necessary
and sufficient conditions that generalize the result of Hajek discussed in Sect. 2.2.

Remark 2 SC includes the class of so-called compressed SA (CSA) algorithms, in which
a variable penalty multiplier approach is used to solve constrained optimization problems
[43,47]. The objective of a CSA algorithm is to find a global minimum of an energy U :
�→ R over a set �g ⊂ � of the form {x ∈ � | g(x) = inf y∈� g(y)}, where g : �→ R is
non-constant. CSA is similar to SA except for the acceptance probability function which is
controlled not only by temperature, but also by a positive parameter λ acting as a Lagrange
multiplier:

Aβ,λ(x, y) = exp
(
− β((U (y)+ λg(y))− (U (x)+ λg(x))

)+)
. (26)

Simply speaking, U is replaced by the augmented energy U + λg. The rationale behind this
is that, since � is finite, the set of global minima of U + λg on � and the set of global
minima of U on�g are equal if λ is sufficiently large. The idea of CSA is to make λ increase
smoothly with increasing β so as to guarantee convergence to a feasible solution while mov-
ing freely through the whole state space at high temperatures. Writing λ as a function of β,
we see that CSA belongs to the class of SC algorithms with fixed communication and with
continuation scheme of the form Uβ = U +(β)g. Therefore, the finite-time convergence
properties of SC derived in the next section shed new light on the behavior of CSA.

3.2 Finite-time convergence

SC is included in the general class of Markov processes investigated in [18]; it is an extension
of SA with temperature-dependent energy, the behavior of which is studied in [22,39] for
the asymptotic case and in [48] for the finite-time case. The convergence results in [18,48]
require that

sup
(x,β)∈�×R+

β
∣
∣Uβ(x)−U (x)

∣
∣ < +∞, (27)

while it is assumed in [22,39] that there exists a > 0 such that

sup
(x,n)∈�×N∗

na |Uβn+1(x)−Uβn (x)| < +∞. (28)

Both conditions (27) and (28) significantly limit the freedom in parameterizing the energy
with temperature. Furthermore, the convergence results in [18,22,39] are limited to the
asymptotic case and involve impractical logarithmic cooling sequences. In this section, we
show that these limitations can be overcome while allowing the communication mechanism
to vary with temperature. More specifically, our analysis of the finite-time convergence of SC
refines our previous results obtained in [50] in three ways: first, we relax the condition that
the limit communication mechanism can rest anywhere (that is, it is no longer required that
q(x, x) > 0 for all x); second, we give an upper bound on the probability that the final energy
level exceeds some given threshold above the ground state energy; and third, we provide a
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more precise description of the families of cooling sequences that allow to approach the
optimal convergence speed exponent of SA.

We start from the basic observation that SC and SA behave similarly at low temperatures
in the sense that

∀(x, y) ∈ �(q), lim
β→+∞

− ln Qβ(x, y)

β
= lim

β→+∞
− ln Pβ(x, y)

β

= (U (y)−U (x))+. (29)

In other words, for any (x, y) ∈ �2 such that y �= x and q(x, y) > 0, Qβ(x, y) satisfies a
large deviation principle with speed β and rate (U (y)−U (x))+, which suggests to use the
GSA theory developed in [12,15,56].

A GSA process on � is defined by a family (�β)β∈R+ of Markov matrices on � satisfy-
ing a large deviation assumption with speed β and with irreducible rate function J : �2 →
R+ ∪ {+∞}; that is,

∀(x, y) ∈ �2, lim
β→+∞

− ln�β(x, y)

β
= J (x, y) (30)

(with the convention that ln 0 = −∞) and the digraph

(�, �̃(J )), �̃(J ) = {
(x, y) ∈ �2

∣
∣ y �= x and J (x, y) < +∞}

(31)

is strongly connected. Given a GSA process (�, (�β)) and a cooling sequence (βn)n , we
call a Markov chain (Xn)n∈N on � with transitions P(Xn = y | Xn−1 = x) = �βn (x, y) a
GSA algorithm; we denote it by GSA(�, (�β), (βn)).

Clearly, if q is irreducible, then any rate function J such that J (x, y) = (U (y)−U (x))+
for all (x, y) ∈ �(q) is irreducible. Consequently, from (29), we can appeal to GSA theory
provided we can find conditions so that for any (x, y) �∈ �(q),−β−1 ln Qβ(x, y) has a limit
in R+ ∪ {+∞} as β →+∞. The following proposition makes this precise.

Proposition 2 Let (�, (Qβ)) be an SC process with communication scheme (qβ)β and with
target energy landscape (�,U, q). Assume that

(A1) q is irreducible,

(A2) ∀(x, y) ∈ �2, q(x, y) = 0 �⇒ lim
β→+∞

− ln qβ(x, y)

β
=

{
+∞ if y �= x

0 if y = x .

Then (�, (Qβ)) is a GSA process with rate function

J (x, y) =
{
(U (y)−U (x))+ if q(x, y) > 0 or y = x

+∞ otherwise.
(32)

Proof The irreducibility of J readily follows from the irreducibility of q . Taking (29) into
account, we just have to show that

lim
β→+∞

− ln Qβ(x, y)

β
=

{
+∞ if q(x, y) = 0 and y �= x

0 if y = x .

If q(x, y) = 0 and y �= x , then

− ln Qβ(x, y)

β
= − ln qβ(x, y)

β
+ (Uβ(y)−Uβ(x))

+

−→
β→+∞ (+∞) + (U (y)−U (x))+ = +∞.
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If y = x , then

1 � Qβ(x, x) � 1−
∑

z �=x

qβ(x, z) = qβ(x, x)

and hence

0 �
− ln Qβ(x, x)

β
�
− ln qβ(x, x)

β
−→
β→+∞ 0.

��
Let (�, (�β)) be a GSA process with rate function J . Since � is finite and J is irreduc-

ible, it follows from (30) that for β large enough, �β is irreducible and hence has a unique
invariant measure ϑβ . We know from [12] that there is a function V : �→ R+ such that

∀x ∈ �, lim
β→+∞

− ln ϑβ(x)

β
= V (x)− Vinf , (33)

where Vinf = inf x∈� V (x); in other words, (ϑβ)β satisfies a large deviation principle with
speed β and with rate function V − Vinf . The function V is called the virtual energy and is
defined by

∀x ∈ �, V (x) = inf
T∈T (x)

∑

(z,t)∈ET

J (z, t), (34)

where T (x) is the set of directed trees T = (�, ET ), ET ⊂ �2, with root x and whose edges
are directed towards x (that is, d+T (y) = 1 for all y �= x and d+T (x) = 0, where d+T (z) is the
outdegree of vertex z in T ). Similarly to standard SA theory, the triplet (�, V, J ) defines an
energy landscape—call it the virtual energy landscape—and is accompanied with a critical
depth H̃c and a difficulty D̃; these two constants are defined by

H̃c = sup
x∈�\�0(V )

H̃(x) (35)

and D̃ = sup
x∈�\�0(V )

H̃(x)

V (x)− Vinf
, (36)

where H̃(x) denotes the depth of x in (�, V, J ):

H̃(x) = inf
y∈�0(V )

h̃(x, y)− V (x) (37)

with h̃(x, y) = inf
(xi )

m
i=1∈ �̃J (x,y)

sup
i∈[[1,m−1]]

(
V (xi )+ J (xi , xi+1)

)
, (38)

where �̃J (x, y) is the set of paths from x to y in (�, �̃(J )).
From (33), ϑβ concentrates on the set �0(V ) of global minima of the virtual energy as

β →+∞, which is to say that V plays the role of an objective function for the GSA process
(�, (�β)). Hence, an SC process that fits into the GSA framework can potentially minimize
its target energy U if �0(V ) ⊆ �0(U ). Proposition 3 gives a simple condition for this to be
the case.

Proposition 3 Let (�, (Qβ)) be an SC process with target energy landscape (�,U, q) and
satisfying assumptions (A1) and (A2). If
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(A3) �(q) is symmetric (that is, ∀(x, y) ∈ �2, q(x, y) > 0 ⇐⇒ q(y, x) > 0),
then the virtual energy V of (�, (Qβ)) satisfies

V − Vinf = U −Uinf . (39)

Proof Let (x, y) ∈ �2 such that x �= y. For any T ∈ T (x), there is a unique path πT (x, y)
from y to x in T : πT (x, y) is a finite sequence (xi )

m
i=1 of distinct states such that x1 = y,

xm = x and (xi , xi+1) ∈ ET for all i ∈ [[1,m − 1]]. Assume that πT (x, y) is J -admissible,
that is, J (xi , xi+1) < +∞ for all i . Then, for any i , we have q(xi , xi+1) > 0 from (32),
hence q(xi+1, xi ) > 0 by (A3), and thus

J (xi , xi+1)− J (xi+1, xi ) = (U (xi+1)−U (xi ))
+ − (U (xi )−U (xi+1))

+

= U (xi+1)−U (xi ).

Consequently,

∑

(z,t)∈ET :
z∈πT (x,y)

J (z, t) =
m−1∑

i=1

J (xi , xi+1)

=
m−1∑

i=1

(
U (xi+1)−U (xi )

)+
m−1∑

i=1

J (xi+1, xi )

= U (x)−U (y) +
∑

(z,t)∈ET :
z∈πT (x,y)

J (t, z).

Since J is irreducible, there exists T ∈ T (x) such that

J (T ) :=
∑

(z,t)∈ET

J (z, t) < +∞,

and hence such that πT (x, y) is J -admissible. It follows that

V (x)+U (y) = inf
T∈T (x) :

J (T )<+∞
J (T ) + U (y)

= inf
T∈T (x) :

J (T )<+∞

⎛

⎜
⎜
⎝

∑

(z,t)∈ET :
z �∈πT (x,y)

J (z, t) +
∑

(z,t)∈ET :
z∈πT (x,y)

J (z, t) + U (y)

⎞

⎟
⎟
⎠

= inf
T∈T (x) :

J (T )<+∞

⎛

⎜
⎜
⎝

∑

(z,t)∈ET :
z �∈πT (x,y)

J (z, t) +
∑

(z,t)∈ET :
z∈πT (x,y)

J (t, z) + U (x)

⎞

⎟
⎟
⎠ .

Consider the mapping ζ : T (x) → T (y) that reverses the orientation of each edge in the
path from y to x , that is, ζ(T ) = (�, Eζ(T )) with

Eζ(T ) =
{
(z, t) ∈ ET

∣
∣ z �∈ πT (x, y)

} ∪ {(t, z)
∣
∣ (z, t) ∈ ET and z ∈ πT (x, y)

}
.
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ζ is clearly one-to-one. Moreover, by (32) and (A3), we have J (z, t) < +∞⇐⇒ J (t, z) <
+∞, and thus J (T ) < +∞⇐⇒ J ◦ ζ(T ) < +∞. Therefore,

V (x)+U (y) = inf
T∈T (x) :

J (T )<+∞

( ∑

(z,t)∈Eζ(T )
J (z, t) + U (x)

)

= inf
T∈T (x) :

J◦ζ(T )<+∞
J ◦ ζ(T ) + U (x)

= inf
T∈T (y) :

J (T )<+∞
J (T ) + U (x)

= V (y)+U (x).

In particular, given y0 ∈ �0(U ), we have

V (x)− V (y0) = U (x)−Uinf � 0

for all x , and hence V (y0) = Vinf . ��
From Propositions 2 and 3, and from (33), any SC process satisfying assumptions

(A1)–(A3) is a GSA process whose limit invariant measure is concentrated on the set of
global minima of the target energy. Therefore, the convergence properties of SC as a global
optimization approach can be derived from the properties of GSA. We will use the con-
vergence result stated in the following theorem, which gives an asymptotic bound on the
probability of error of GSA for suitably adjusted piecewise-constant exponential cooling
sequences.

Theorem 1 ([12]) Let (�, (�β)) be a GSA process with virtual energy landscape (�, V, J ).
For any positive reals A, ξ and η, consider the family of finite-time algorithms

{
(Xσ,Kn )n∈[[0,σK ]] = GSA(�, (�β), (β

σ,K
n )) ; σ, K ∈ N

∗}

with cooling sequence

βσ,Kn = lnK

A

(
ξ

η

)1

σ

⌊ n − 1

K

⌋

, n ∈ [[1, σK ]]. (40)

If A > H̃c, ξ > H̃c/D̃, and η < ξ , then, for any σ ,

lim inf
K→+∞ −

ln supx∈� P
(
V (Xσ,KσK ) � Vinf + η

∣
∣ Xσ,K0 = x

)

ln(σK )
�

1

D̃

(
η

ξ

)1

σ
. (41)

Let (�, (Uβ), (qβ)) be an SC process satisfying assumptions (A1)–(A3), and let (�,U, q)
and (�, V, J ) be the associated target and virtual energy landscapes, respectively. From Prop-
ositions 2 and 3, we have �0(V ) = �0(U ), �̃(J ) = �(q) (hence �̃J (x, y) = �q(x, y)
for all (x, y) ∈ �2 such that x �= y), and for any (z, t) ∈ �̃(J ),

V (z)+ J (z, t) = U (z)−Uinf + Vinf + (U (t)−U (z))+

= sup{U (z),U (t)} −Uinf + Vinf .

Therefore, letting h be the communication height function defined by (12) with θ = q , we
have h̃ − Vinf = h − Uinf , and thus H̃ = H , H̃c = Hc and D̃ = D, where H , Hc and
D are, respectively, the height function, the critical depth and the difficulty of (�,U, q). It
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follows from Theorem 1 that for any family {(βσ,Kn )n∈[[1,σK ]]}σ,K∈N∗ of cooling sequences
of the form of (40) with A > Hc, ξ > Hc/D, and η < ξ , the family {(Xσ,Kn )n }σ,K∈N∗ of
finite-time algorithms (Xσ,Kn )n = SC(�, (Uβ), (qβ), (β

σ,K
n )) satisfies

∀ε > 0, ∀σ �
ln(ξ/η)

ln(1+ ε) ,

lim inf
K→+∞ −

ln supx∈� P
(
U (Xσ,KσK ) � Uinf + η

∣
∣ Xσ,K0 = x

)

ln(σK )
�

1

(1+ ε)D . (42)

In particular, taking

η < inf
x∈�\�0(U )

U (x)−Uinf

gives an asymptotic bound on the probability of failure P(Xσ,KσK �∈ �0(U )). This result is
stated in Theorem 2. Putting it simply, increasing the length K of the constant-temperature
stages makes it possible for the probability of failure to decrease as a power of the inverse
horizon (σK )−1 arbitrarily close to 1/D, which is the optimal convergence speed exponent
of standard SA (see (14)). We recall that DM is the “Metropolis difficulty” of (�,U, q)
defined in (20), and we define the convergence measure M(σ, K ) of (Xσ,Kn )n by

M(σ, K ) = sup
x∈�

P
(
Xσ,KσK �∈ �0(U )

∣
∣ Xσ,K0 = x

)
. (43)

Theorem 2 Let (�, (Uβ), (qβ)) be an SC process with target energy landscape (�,U, q)
and satisfying assumptions (A1)–(A3). For any ε > 0 and for any σ ∈ N

∗ such that

σ >
ln(DM/D)

ln(1+ ε) , (44)

there is a family of finite-time cooling sequences {(βσ,Kn )n∈[[1,σK ]]}K∈N∗ such that the family
of SC algorithms

{
(Xσ,Kn )n∈[[0,σK ]] = SC(�, (Uβ), (qβ), (β

σ,K
n )) ; K ∈ N

∗}

satisfies

lim
K→+∞ −

ln M(σ, K )

ln(σK )
�

1

(1+ ε)D . (45)

These cooling sequences are piecewise-constant exponential sequences of the form

βσ,Kn = lnK

A
exp

(
B

σ

⌊n − 1

K

⌋)

(46)

with

{
A > Hc

ln(DM/D) < B < σ ln(1+ ε). (47)

Interestingly, the assumptions of Theorem 2 do not involve the continuation scheme (Uβ)β
(except for pointwise convergence to the target energy). Moreover, the conditions on the com-
munication scheme (qβ)β and its limit q are weak. Assumptions (A1) and (A3) are standard
in SA theory: the irreducibility of q and the symmetry of its support ensure that the target
energy landscape can be fully explored and that any path in this landscape can be trav-
eled in the opposite direction. Assumption (A2) holds if the following two conditions are
satisfied:
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(i) ∀x ∈ �, q(x, x) = 0 �⇒ ∃α > 0, qβ(x, x) � 1/βα;
(ii) �(qβ) = �(q) for β large enough.

Therefore, since (i) trivially holds if q(x, x)> 0 for all x , it suffices to allow the limit com-
munication mechanism to rest anywhere and to “freeze” the set of possible moves at low
temperatures.

Remark 3 If, in addition to the assumptions of Theorem 2, (27) holds and the maps β �→
qβ(x, y) and β �→ Uβ(x) are continuous for all (x, y), then SC is “log-optimal” in the sense
that

lim
K→+∞ −

ln M(σ, K )

ln(σK )
= 1

D
(48)

(the proof is similar to that of Theorem 1 in [48]). Hence it may seem strange that near log-
optimality can be obtained without condition on the speed at which the continuation scheme
converges to the target energy. The truth is that the slower (Uβ)β converges to U , the larger
the length K of the temperature stages to achieve log-optimal convergence within a given
tolerance. More precisely, for any ε > 0, any σ ∈N

∗ satisfying (44), and any tolerance ε′>ε,
the lower the speed of convergence of (Uβ)β , the larger the infimum

K (ε′) = inf

{

K ∈ N
∗
∣
∣
∣ − ln M(σ, K )

ln(σK )
�

1

(1+ ε′)D
}

. (49)

We can link K (ε′) to the speed of convergence of (Uβ)β by agreeing that a condition for prac-
tical convergence to a global minimum of U is that the final inverse temperature βsup := βσ,KσK
be such that the global minima of Uβ are global minima of U for anyβ � βsup. Let us consider
a cooling sequence in the class defined by (46) and (47) and measure the speed of conver-
gence of (Uβ)β by the minimum inverse temperature β0 from which the global minima of
Uβ stay in �0(U ), that is,

β0 = inf
{
β∗ � 0

∣
∣ ∀β � β∗, �0(Uβ) ⊆ �0(U )

}
(50)

(the finite state-space assumption and the pointwise convergence of (Uβ)β to U guar-
antee the existence of this infimum). Then, we should have βsup � β0, which implies
that

K � exp

(
Hcβ0

(1+ ε)σ−1

)

, (51)

and thus K (ε′)� C exp(Hcβ0), where the constant C is a function of ε and σ . In other words,
the minimum length of the temperature stages for near log-optimal convergence increases
exponentially with the critical depth of the energy landscape and with β0.

3.3 Practical considerations

The generation of a realization of a continuation chain SC(�, (Uβ), (qβ), (βn)) is the same
as that of an annealing chain SA(�,U, θ, (βn)), but with U and θ respectively replaced by
Uβn and qβn . For a piecewise-constant cooling sequence (βσ,Kn )n∈[[1,σK ]] with σ stages of
length K , the construction is the following:

pick an initial state x0 ∈ �;
for i = 1 to σ do
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set β ←− βσ,K(i−1)K+1;
for j = 1 to K do

set n←− (i − 1)K + j ;
draw a state y from the probability distribution qβ(xn−1, · ) on �;
set xn ←− xn−1;
set δ←− Uβ(y)−Uβ(xn−1);
if δ � 0 then set xn ←− y;
else set xn ←− y with probability exp(−βδ);
end(if)

end(for)
end(for)

The time-complexity of SC is governed by the evaluation of the energy difference Uβn(y)−
Uβn(xn−1) that takes place at each iteration. Yet, regarding performance, everything is about
smart design of the continuation and communication schemes, which is application-depen-
dent. Although not necessary, the choice of (Uβ)β and (qβ)β can be guided by the objective
of keeping the average time-complexity of computing Uβ(y) − Uβ(x) for (x, y) ∈ �(qβ)
of the same order as that of computing U (y)−U (x) for (x, y) ∈ �(q). In this case, putting
aside possible updating operations at the beginning of each constant-temperature stage, SC
with piecewise-constant cooling has the same time-complexity as SA.

The performance of an SC algorithm is also strongly influenced by the tuning of its cool-
ing schedule. In most practical situations, it is not possible to obtain good estimates of the
bounds on the constants A and B in the cooling sequence (46) suggested by theory—at least
not within a reasonable amount of computation time. Generally, the number σ of constant-
temperature stages is fixed in advance and the length K of each stage is fixed by the available
computing resources. We can then rewrite (46) as

βσ,Kn = βinf

(
βsup

βinf

) 1

σ − 1

⌊ n − 1

K

⌋

, (52)

which leaves us with the problem of finding appropriate values for the initial and final inverse
temperatures βinf and βsup. To do so, we can consider the following heuristics borrowed from
the practice of SA.

1. Most transitions should be accepted at the beginning of the optimization process; that
is, letting (Xn)n be the homogeneous Markov chain with transition matrix Qβinf , the
acceptance rate

∑

x∈�
νβinf (x)

∑

y∈�\{x}
Qβinf (x, y) = plim

M→+∞
1

M

M∑

n=1

1l{Xn �=Xn−1}

should be close to one. (The probability limit exists if Qβinf is irreducible.)
2. If a global minimum x† of the target energy U is reached by the end of the optimization

process, then the probability to leave x† by moving uphill should be negligible; that is,
∑

z∈� :U (z)>U (x†)

Qβsup(x
†, z)

should be close to zero. Of course, in practice, we don’t know any ground state of U ,
and x† is replaced with a local minimum computed deterministically.
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Accurate methods to estimate βinf and βsup according to the above criteria can be found
in [51], but they are time-consuming. Besides, high accuracy is usually unnecessary, as
exponential cooling is not greatly affected by excessively high initial temperatures or by
excessively low final temperatures. The truth is that, as long as the horizon σK is large
enough, correct orders of magnitude are satisfactory and hence fast approximate estimation
methods are sufficient. In this spirit, we propose to select βinf and βsup so that the uphill
acceptance rates (that is, the ratios of the number of accepted uphill moves to the number of
proposed ones) at the beginning and at the end of the optimization process are close to some
given values χβinf and χβsup . For this purpose, the initial energy landscape (�,Uβinf , qβinf ) is
approximated by the infinite-temperature energy landscape (�,U0, q0), and the final energy
landscape (�,Uβsup , qβsup) is approximated by the target energy landscape (�,U, q). The
procedures are the following; they are used in our experiments in Sect. 4.

1. The estimation of βinf uses the Markov chain (Xn)n defined by the communication
matrix q0: given M ∈ N

∗, generate a finite-time realization (xn)n of (Xn)n with exactly
M uphill moves with respect to U0 (that is, M pairs (xnk , xnk+1) of successive states
such that U0(xnk ) < U0(xnk+1), k ∈ [[1,M]]), and set βinf to be the solution of

M∑

k=1

exp
(− β(U0(xnk+1)−U0(xnk ))

) = Mχβinf , (53)

which can be determined by any standard root-finding method.
2. Similarly, βsup is estimated from a realization (yn)n of the Markov chain with transition

matrix q by considering the M first uphill moves (ynk , ynk+1) with respect to the target
energy U ; that is, βsup is set to be the solution of

M∑

k=1

exp
(− β(U (ynk+1)−U (ynk ))

) = Mχβsup . (54)

Note that looking only for estimates with correct order of magnitude gives some latitude
in choosing χβinf and χβsup . From our own experience, taking χβinf ∈ [0.7, 0.9] and χβsup ∈
[10−4, 10−3] gives exponential cooling schedules with similar performance independently of
the application (provided the horizon σK is sufficiently large). The number M of considered
uphill moves can be set in accordance with the size of the optimization problem; for instance,
choosing M of the order of 100d is suitable for the case where� is a d-dimensional product
space included in R

d .

4 Application to graph drawing

This section is devoted to the application of SC to the optimization issue associated with
the graph-embedding approach of Kamada and Kawai [34]. The problem is formulated in
Sect. 4.1 and the proposed SC algorithm is described in Sect. 4.2. Experimental results are
given in Sect. 4.3.

4.1 Formal statement of the problem

Let G = (V, E) be an undirected, connected graph with vertex set V and edge set E ⊆ CV
2 ,

where CV
2 denotes the set of 2-subsets of V . Let L = [[1, L]]2 be a 2-D square lattice of size

L � |V|, and let � = LV be the set of maps from V to L, that is, the set of straight-line
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drawings of G on L. The objective is to find a global minimum of the energy U : � → R

defined by

U (ϕ) =
∑

{u,v}∈CV
2

(∥
∥ϕ(u)− ϕ(v)∥∥

dG(u, v)
− λ

)2

, (55)

where ‖ · ‖ is the standard Euclidean norm, dG(u, v) is the graph-theoretic distance between
vertices u and v (that is, the length of the shortest paths in G between u and v), and the
constant λ is the ideal length of an edge in the drawing. A typical choice for λ is

λ = L + 1

diam(G)
, (56)

where diam(G) stands for the diameter of G.
The above energy U is a particular case of the raw stress criterion associated with

least-squares multidimensional scaling (see, for instance, [5]). Indeed, given an arbitrary
permutation (v1, . . . , v|V|) of V , we have

U (ϕ) =
∑

1 � i< j � |V|
wi j

(
λi j − δi j (ϕ)

)2
, (57)

where wi j = 1/d 2
G(vi , v j ), λi j = λ dG(vi , v j ), and δi j (ϕ) = ‖ϕ(vi ) − ϕ(v j )‖. From

[26,55], we know that the extension of (57) to (Rp)V generally has non-global minima and
that the associated local minima issue is severe when the dimensionality p is small, as it is
in our case.

4.2 Specification of the algorithms

Here, we describe our choices for the annealing algorithm SA(�,U, θ, (βn)) and for the
continuation algorithm SC(�, (Uβ), (qβ), (βn)) used in our experiments. We start with the
communication matrix θ of the annealing algorithm and we continue with the description of
the continuation scheme (Uβ)β . Then, we discuss the design of the communication scheme
(qβ)β , whose definition involves θ and whose choice is implicitly guided by that of (Uβ)β .
We end this section with the specification of the functions controlling the continuation and
communication schemes.

4.2.1 The annealing communication matrix

The design of a communication mechanism for SA must balance two conflicting objectives.
On the one hand, the annealing chain should mix rapidly at high temperatures to ensure
efficient exploration of the state space, which calls for large communication neighborhoods.
On the other hand, it is desirable that the acceptance rate remains significant in the low
temperature regime, which requires small communication neighborhoods. Another way of
seeing things is that the larger the set of possible moves, the less numerous and the better
the local minima of the energy landscape, but the less mobile the annealing chain at mid and
low temperatures.

We propose to consider a single-vextex updating dynamics in which the amplitude of the
vertex moves obeys a Rayleigh distribution. More specifically, the neighbors of a given lay-
out ϕ are the layouts that differ from ϕ by the location of a single vertex, and the difference
vector between the candidate and the current positions of a vertex is of the form
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δ(r, ω) = ([r cosω], [r sinω]), (58)

where [ · ] denotes the nearest integer function, the angle ω is a sample from the uniform
density on [0, 2π], and the radius r is a sample from the density

fR : r ∈ R+ �−→ πr

2R2 exp

(−πr2

4R2

)

, (59)

where the mean value R is fixed. The balance between rapid mixing at high temperatures and
reasonable mobility at low temperatures is achieved by adjusting R. However, the optimal
value R† of R cannot be predicted in advance because of its intricate dependance on the
graph G to be drawn (R† also depends on the lattice size L and on the ideal edge-length λ).
In fact, the only way to estimate R† is by trial and error, which is prohibitive in terms of
computation time.

In practice, the generation of a new candidate solution ψ from ϕ is performed as follows:

set ψ ←− ϕ;
select a vertex v ∈ V uniformly at random;
draw r from fR ;
draw ω from the uniform density on [0, 2π ];
if ϕ(v)+ δ(r, ω) ∈ L then

set ψ(v)←− ϕ(v)+ δ(r, ω);
end(if)

The corresponding communication matrix is clearly symmetric and irreducible; we denote
it by θR . Formally, θR is of the form of (3) with c = |V| and with neighborhood system and
weighting function respectively given by

N (ϕ) = {
ψ ∈ � ∣

∣ ∃! v ∈ V, ψ(v) �= ϕ(v)} (60)

and �({ϕ,ψ}) =
∫

S((ψ−ϕ)(v))
fR(‖s‖)
‖s‖ ds, (61)

where S(a) denotes the unit square in R
2 centered at point a, and v is the (unique) vertex at

which ϕ and ψ differ.

4.2.2 The continuation scheme

We define the continuation scheme (Uβ : �→ R)β from the target energy U (55) by simply
making the ideal edge-length vary with β, that is,

Uβ(ϕ) =
∑

{u,v}∈CV
2

(∥
∥ϕ(u)− ϕ(v)∥∥

dG(u, v)
−(β)

)2

, (62)

where the control function  : R+→ (0, λ] increases monotonically to λ. The main feature
of this scheme is the implicit control of the amplitude of candidate vertex moves. Indeed,

Uβ(ϕ) ∝ U �

(
λ

(β)
ϕ

)

, (63)

where U � is the extension of U to (R2)V . Therefore, moving a vertex location by a distance
r when considering Uβ is equivalent to a move of length λ r/(β) from the standpoint of
the target energy. In particular, using (62) together with the communication mechanism θR
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defined in Sect. 4.2.1 amounts to considering the target energy and replacing the mean R of
the proposed displacement amplitudes by the “effective mean”

Rβ = λR

(β)
. (64)

4.2.3 The communication scheme

Intuitively, the communication scheme (qβ : �2 → [0, 1])β should allow balanced explora-
tion of the state space at the beginning of the SC process, and it should favor moves towards
nearby minima by the end of the SC process. A simple and efficient way to get this behavior
is to design two communication matrices q and q that are respectively adapted to the high-
and low-temperature regimes, and to control the probability of choosing one over the other
as a function of β; that is,

qβ = (1−�(β)) q +�(β) q, (65)

where �(β) is the probability of choosing q rather than q to generate a new candidate solu-
tion. (An alternative is to design different communication matrices and to select the current
communication matrix adaptively [2], but this approach does not fit into the SC framework
and does not come with a convergence guarantee.) We impose that the control function
� : R+→ [0, 1] is monotonically increasing and that �sup := limβ→+∞�(β) < 1. It
is then easily seen that assumptions (A1)–(A3) in Propositions 2 and 3 hold—and hence
that Theorem 2 applies—if the following conditions are satisfied: (i) q is irreducible, (ii)
q(x, x) > 0 for all x , (iii) �(q) is symmetric, and (iv) �(q) ⊆ �(q).

A natural choice for q is the site-by-site communication mechanism θR defined in
Sect. 4.2.1 with R large enough to ensure rapid mixing at high temperatures. Note that
care must be taken when using the continuation scheme (62), since in this case we have to
think in terms of the effective mean Rβ (64); in our experiments, R is chosen so that the
proposed vertex move at the beginning of the SC process have a mean amplitude of L/10 (as
discussed in the next section).

Concerning the choice of q, the only constraint is�(q) ⊆ �(θR), and hence any site-by-
site communication strategy is appropriate. We propose to use a mechanism similar to θR ,
except that the angle ω is computed deterministically so as to move towards a minimum of
the 2-D function obtained by viewing the target energy U as a function of ϕ(v) only. More
precisely, given the current solution ϕ together with the vertex v subject to potential move,
we consider the function

Wϕ,v : a ∈ R
2 �−→ U �

(
ϕv,a

)
, (66)

where ϕv,a : V → R
2 is given by

ϕv,a(u) =
{

a if u = v
ϕ(u) if u �= v.

(67)

Drawing inspiration from the vertex repositioning method of Kamada and Kawai [34], we
approach a minimum of Wϕ,v by following the Newton search direction δN(ϕ, v) defined by

∇2Wϕ,v(ϕ(v))δN(ϕ, v) = −∇Wϕ,v(ϕ(v)), (68)

where ∇2Wϕ,v and ∇Wϕ,v respectively stand for the Hessian matrix and the column gradi-
ent-vector of Wϕ,v .
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To sum up, then, a candidate layout ψ is drawn from the probability distribution qβ(ϕ, · )
on � as follows:

set ψ ←− ϕ;
select a vertex v ∈ V uniformly at random;
draw r from fR ;
draw p from the uniform density on [0, 1];
if p � �(β) then

draw ω from the uniform density on [0, 2π ];
if ϕ(v)+ δ(r, ω) ∈ L then

set ψ(v)←− ϕ(v)+ δ(r, ω);
end(if)

elseif det∇2Wϕ,v(ϕ(v)) �= 0 and ∇Wϕ,v(ϕ(v)) �= 0 then
set (a1, a2)←− rδN(ϕ, v)

/‖δN(ϕ, v)‖;
set a←− ([a1], [a2]);
if ϕ(v)+ a ∈ L then

set ψ(v)←− ϕ(v)+ a;
end(if)

end(if)

4.2.4 The control functions

We simply take the control function  of the continuation scheme to increase linearly with
the inverse temperature: given λinf ∈ (0, λ), we set

(β) = λinf + (λ− λinf )
β − βinf

βsup − βinf
, (69)

where βinf and βsup are the initial and final inverse temperatures of the cooling sequence
(52). Therefore, according to (64), the mean amplitude Rβ of the proposed vertex moves
decreases inversely linearly with β. We choose the parameter R of the high-temperature
communication matrix (q = θR in (65)) so that Rβinf is equal to L/10, that is,

R = L

10

λinf

λ
. (70)

Besides, since Rβsup = R, the mean amplitude of the proposed vertex moves at the end of the
SC process can be freely chosen by adjusting λinf ; we set λinf = λ/10 so that Rβsup = L/100.
For a cooling sequence of the form of (52), the resulting expression of Rβ as a function of
the iteration index n depends on the initial to final temperature ratio βsup/βinf , which in turn
depends on the graph to be drawn. For instance, for the test graphs used in our experiments,
βsup/βinf lies between 103 and 104 and the mappings n �→ Rβn associated with these two
values are shown in Fig. 2a (we took (σ, K ) = (N , 1) to simplify the representations). It
should be stressed that our SC algorithm is not sensitive to the choice of  as long as Rβn

decreases smoothly with n. For example, the performance is the same when Rβn decreases
linearly with n or when Rβ decreases linearly with increasing temperature. We will not
discuss this aspect further.

The choice of the control function � of the communication scheme is slightly more
delicate, since encouraging deterministic moves towards local minima too early in the
optimization process is a waste of computation time. In order to delay the impact of the
semi-deterministic communication mechanism q , we propose to take
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Fig. 2 a Effective mean of the
length of the proposed vertex
moves and b control function of
the communication scheme as
functions of the iteration index
for βsup/βinf = 103 (dashed

lines) and βsup/βinf = 104 (solid
lines)

L/10

L/100

R n

N /2 nN/4 3 4N/

(a)

n

N /2 nN/4 3 4N/

0.8

0

(b)

Fig. 3 Graph G1: replicas of the
Grötzsch graph connected via the
leaves of the 3-star graph

G1

�(β) = �sup
β2 − (βinf )

2

(βsup)2 − (βinf )2
(71)

with�sup ∈ (0, 1). The parameter�sup is set to 0.8 in our experiments, but any value greater
than 1

2 is good. The mappings n �→ �(βn) corresponding to βsup/βinf = 103 and 104 are
shown in Fig. 2b

4.3 Experimental results

To investigate the behavior of the SA and SC algorithms described in Sect. 4.2, we purposely
selected five test graphs that challenge both the Kamada–Kawai algorithm and SA. These
connected, undirected graphs are shown in Figs. 3, 4 and 5 (the layouts were produced by
our SC algorithm). Graph G1 is obtained by duplicating the Grötzsch graph two times and
by merging a degree-3 vertex in each of the three resulting identical graphs with a leave of
the claw graph. Graphs G2–G5 are from the 12th and 13th graph drawing contests held in
conjunction with the 2005 and 2006 International Symposiums on Graph Drawing. These test
graphs have varying number of vertices, varying average vertex-degree and varying diameter;
their basic characteristics are summarized in Table 1.
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G2 G3

Fig. 4 Graphs G2 and G3: graphs 4 and 1 of the 12th graph drawing contest held in conjunction with the
2005 graph drawing symposium in Limerick, Ireland

G4 G5

Fig. 5 Graphs G4 and G5: graphs 4 and 2 of the 13th graph drawing contest held in conjunction with the
2006 graph drawing symposium in Karlsruhe, Germany

Table 1 Number of vertices, number of edges, average vertex-degree and diameter of the test graphs displayed
in Figs. 3, 4 and 5

Gi = (Vi ,Ei ) G1 G2 G3 G4 G5

|Vi | 34 36 97 143 92

|Ei | 63 108 223 194 133

2|Ei |/|Vi | 3.71 6 4.60 2.71 2.89

diam(Gi ) 6 4 13 18 16

We consider the following algorithms:

1. the enhanced version of the Kamada–Kawai algorithm—denoted by KK—mentioned in
[6] and described in [29, §4.2];
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2. the annealing algorithm SAR := SA(�,U, θR, (βn)) with R = L/10 and with R =
L/100;

3. the SC algorithm with temperature-dependent energy and fixed communication SC1 :=
SC(�, (Uβ), θL/100, (βn));

4. the SC algorithm with temperature-dependent energy and temperature-dependent com-
munication SC2 := SC(�, (Uβ), (qβ), (βn)).

The values L/10 and L/100 of the parameter R of the SA algorithm coincide with those of
the mean amplitude of the proposed vertex moves at the beginning and at the end of the SC
algorithms—from our experience, the performance of SA decreases when R lies outside of
the range [L/100, L/10]. In all cases, the lattice size L is set to 103 and the ideal edge-length
λ is defined as in (56). The cooling sequence of the SA and SC algorithms is of the form of (52)
with horizon σK = 5 · 103|V| divided into σ = 250 constant-temperature stages of length
K = 20|V|. The initial and final inverse temperatures βinf and βsup are estimated by means
of the fast approximate methods proposed in Sect. 3.3 with χβinf = 0.8, χβsup = 5 · 10−4,
and M = 100|V|.

For each graph Gi , i ∈ [[1, 5]], each algorithm is run 100 times starting from the elements
of a same set of randomly generated layouts. The performance is measured by the averages
of the Kamada–Kawai energy (55) and of the maximum-to-minimum edge-length ratio over
the drawings ϕ1, . . . , ϕ100 produced by the different runs, that is, by

U = 10−2
100∑

i=1

U (ϕi ) (72)

and � = 10−2
100∑

i=1

max{u,v}∈E
∥
∥ϕi (u)− ϕi (v)

∥
∥

min{u,v}∈E
∥
∥ϕi (u)− ϕi (v)

∥
∥
. (73)

We also consider the number of edge-crossings, which is an important aesthetic criterion for
graph layout, although the Kamada–Kawai energy sacrifices it for symmetry. Edge-length
dispersion, on the other hand, is left aside because it was not found to be discriminating.
Obviously, the smaller U , � and the average number of edge-crossings, the better.

Before proceeding with the discussion of our results, let us remark that the quality of the
layouts produced by the annealing algorithm SAR is sensitive to the choice of the parameter
R. This is exemplified in Fig. 6, which displays the average final energy level U obtained
with SAR as a function of R for the graphs G1 and G2. Consequently, for proper com-
parison, we also include the best results obtainable by SA, that is, those produced by the
SA algorithm with the optimal value R† of R (R† = 26, 39, 71, 84 and 69 for G1, G2,
G3, G4 and G5, respectively). However, it is important to be clear that the estimation of
R† is unrealistic in practice. Indeed, the function R ∈ (0, L) �→ U (R) associated with
SAR has local valleys and hence, since the computational cost of a single evaluation of
U is that of annealing, the task of estimating R† is prohibitive in terms of computation
time.

Our results are summarized in Table 2, which gives the averages of the final energy level,
the maximum-to-minimum edge-length ratio and the number of edge-crossings for each algo-
rithm and each test graph. Note that the KK algorithm does not always converges and that
the associated average values in Table 2 are computed from the outputs of the convergent
runs only (KK oscillates in 2% of the cases for G1 and G3, and in 4, 6 and 5% of the cases
for G2, G4 and G5, respectively). We make the following observations.
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Fig. 6 Average final energy level
over 100 runs of SAR as a
function of R for the graphs G1
and G2
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Table 2 Average results over 100 runs of the competing algorithms: Kamada–Kawai (KK), SA with mean
vertex-move amplitude equal to L/10 and L/100 (SAL/10 and SAL/100), SA with optimal mean vertex-move
amplitude (SAR† ), SC with temperature-dependent energy and fixed communication (SC1), and SC with
temperature-dependent energy and temperature-dependent communication (SC2). Given are the averages of
the final energy level, the max-to-min edge-length ratio and the number of edge-crossings for each test graph

Algorithm G1 G2 G3 G4 G5

Average final energy level U (×10−5)

KK 7.311 61.429 9.654 11.388 10.008

SAL/10 7.394 57.107 8.942 9.573 9.636

SAL/100 7.178 57.100 9.510 11.447 9.771

SAR† 7.140 56.771 8.736 9.403 9.547

SC1 7.144 56.785 8.700 9.306 9.520

SC2 7.130 56.716 8.606 9.086 9.427

Average max-to-min edge-length ratio �

KK 2.55 4.30 4.30 3.85 2.93

SAL/10 3.07 3.18 6.37 4.81 4.10

SAL/100 2.43 2.83 3.96 3.51 2.85

SAR† 2.50 2.66 4.99 4.77 3.41

SC1 2.51 2.64 3.90 3.83 2.88

SC2 2.46 2.55 3.67 3.73 2.76

Average number of edge-crossings

KK 54 252 136 18 46

SAL/10 50 209 128 21 40

SAL/100 52 237 132 15 41

SAR† 51 212 127 15 38

SC1 50 211 128 14 40

SC2 50 209 127 14 38
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Final energy level

Predictably enough, the optimally tuned annealing algorithm SAR† outperforms KK for all
test graphs. However, the performance of SA can vary significantly with the mean vertex-
move amplitude R (as is the case for G3 and G4) and SA can even perform worse than the
KK algorithm for plausible values of R (as happens for G1 with R = L/10 and for G4

with R = L/100). The SC algorithm SC1 obtained by making the energy in SAL/100 tem-
perature-dependent performs similarly to SAR† ; in other words, the proposed continuation
scheme—simple though it is—allows to circumvent the problem of selecting an appropri-
ate value for R. Moreover, the introduction of the temperature-dependent communication
mechanism further improves performance: the average energy level achieved by the full SC
algorithm SC2 is lower than those associated with SC1 and SAR† in all cases.

Maximum-to-minimum edge-length ratio

The average maximum-to-minimum edge-length ratio of the layouts produced by SA depends
strongly on R for all test graphs; it tends to decrease with increasing R because large ampli-
tude moves preclude fine edge-length adjustments. Quite surprisingly, SAR† does not always
perform better than KK according to this aesthetic criterion, as observed for G3, G4 and G5.
Since SAR† outperforms KK in terms of minimization of the Kamada–Kawai energy, this
shows that there exists low-energy drawings with unbalanced edge-length, and it is tempting
to conclude that the Kamada–Kawai energy does not control edge-length dispersion. But the
results produced by SC do not support this claim. Indeed, in our experiments, we observed
that SC systematically outperforms SAR† in terms of maximum-to-minimum edge-length
ratio, and that the improvement brought by SC tends to increase with the number of vertices.
For the examples considered here, the percentage decrease of � when using SC2 over SAR†

ranges from 1.6% for graph G1 to 26% for graph G3.

Number of edge-crossings

Depending on the graph structure, and just as for the two other performance measures, the
average number of edge-crossing of the layouts produced by SA can vary significantly with
R, as observed for G2 and G4. The drawings produced by SAR† have a smaller number of
edge-crossings than those generated by KK (the corresponding average percentage decrease
ranges from 5.5% for graph G1 to 17% for graph G5), but SAR† performs slightly worse
than SAL/10 in the case of G1 and G2. The full continuation algorithm SC2 outperforms all
three annealing algorithms in any case.

Summary

In summary, SC2 systematically outperforms the optimally tuned annealing algorithm SAR†

in terms of three standard aesthetic criteria (the Kamada–Kawai energy, the maximum-to-
minimum edge-length ratio and the number of edge-crossings), and SC2 always performs
better than SAL/10 and than SAL/100 in terms of the Kamada–Kawai energy. It may happen
that annealing produces better results than SC2 according to either edge-length dispersion
or edge-crossings, but not both (for instance, in the presented experiments, the layouts of
G1 and G4 produced by SAL/100 have smaller edge-length dispersion than those generated
by SC2). However, the performance difference in question is usually not significant and is
always balanced by the the two other aesthetic criteria.
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5 Conclusion

A natural generalization of SA is to allow the communication mechanism and the energy
function to be temperature-dependent in an attempt to speed up the optimization process;
we call the class of such algorithms SC. We derived simple sufficient conditions for the
global convergence of SC that drastically increase the flexibility in designing annealing-type
algorithms: the assumptions on the communication mechanism are weak, and, even more
interestingly, there is no condition on the speed of convergence of the energy towards the
target objective function. Besides, simple exponential cooling sequences with constant-tem-
perature stages of constant length make it possible for the convergence speed exponent of
SC to be arbitrarily close to the best exponent of SA over all possible cooling sequences.

On the practical side, good SC algorithm design means appropriate tuning of the cooling
schedule and clever temperature-parameterization of the communication mechanism and of
the energy function. We provided efficient generic methods for selecting the initial and final
temperatures of the cooling schedule, and we demonstrated the benefits of SC via an original
application to the optimization issue associated with the graph drawing approach of Kamada
and Kawai [34]. Our experimental results led to the conclusion that well-designed SC algo-
rithms can outperform SA with optimal communication setting without requiring additional
computational efforts. More generally, the flexibility and the favorable convergence proper-
ties of SC makes it potentially attractive for a wide range of difficult optimization problems.
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