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Diffusion tensor magnetic resonance imaging (DT-MRI) is becoming a prospective imaging technique in
clinical applications because of its potential for in vivo and non-invasive characterization of tissue orga-
nization. However, the acquisition of diffusion-weighted images (DWIs) is often corrupted by noise and
artifacts, and the intensity of diffusion-weighted signals is weaker than that of classical magnetic reso-
nance signals. In this paper, we propose a new denoising method for DT-MR], called structure-adaptive
sparse denoising (SASD), which exploits self-similarity in DWIs. We define a similarity measure based

g?%’fﬁ:i:)d:tensor MRI on the local mean and on a modified structure-similarity index to find sets of similar patches that are
Denoising arranged into three-dimensional arrays, and we propose a simple and efficient structure-adaptive win-

dow pursuit method to achieve sparse representation of these arrays. The noise component of the result-
ing structure-adaptive arrays is attenuated by Wiener shrinkage in a transform domain defined by two-
dimensional principal component decomposition and Haar transformation. Experiments on both syn-
thetic and real cardiac DT-MRI data show that the proposed SASD algorithm outperforms state-of-the-
art methods for denoising images with structural redundancy. Moreover, SASD achieves a good trade-
off between image contrast and image smoothness, and our experiments on synthetic data demonstrate
that it produces more accurate tensor fields from which biologically relevant metrics can then be

Block matching
Structure-adaptive grouping
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computed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic resonance imaging (MRI) has benefited from many
technological developments since its advent in the 1970s. However,
the fundamental trade-offs between image resolution and signal-to-
noise ratio (SNR) on the one hand, and between physiological and
clinical constraints on acquisition speed on the other hand, often
translate to spurious artifacts such as noise, partial volume, and bias
field (Basser and Pajevic, 2000; Farrell et al., 2007). An eloquent
example is diffusion-tensor MRI (DT-MRI), which has become quite
popular over the last decade because of its potential for in vivo and
non-invasive characterization of the three-dimensional (3D) fiber
architecture of anatomical organs (Behrens et al., 2003; Bondiau
et al.,, 2008; Clatz et al., 2005; Delingette et al., 2012; Deriche et al.,
2009; Descoteaux et al., 2009; Durrleman et al., 2011; Fillard et al.,
2011; Galanaud et al., 2010; Galban et al., 2005; Guevara et al.,
2011; Le Bihan, 2003; Lenglet et al., 2009; Messe et al., 2011; Mori
et al., 2009; Rohmer et al., 2007; Smith et al., 2006; Wakana et al.,
2004; Wu et al., 2006). The effects of Rician noise on DT-MRI are se-
vere because of the inherent nature of the imaging process—the
higher the tissue anisotropy, the lower the intensity in the
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diffusion-weighted images (DWIs), and hence the higher the sensi-
tivity to noise (Awate and Whitaker, 2007).

Denoising magnetic resonance images is an important problem; the
most popular approaches are Bayesian statistic approaches (Awate and
Whitaker, 2007; Basser and Pajevic, 2003; Lu et al., 2006), PDE-based
approaches (Chen and Edward, 2005; Fillard et al., 2007), wavelet-
based methods (PiZurica et al., 2006; Yu et al., 2009), methods based
on spatial correlation (Barash and Comaniciu, 2004; Kervrann and
Boulanger, 2006; Manjén et al., 2008), and sparse representation deno-
ising (Chatterjee and Milanfar, 2009; Donoho et al., 2006; Elad and
Aharon, 2006; Varshney et al., 2008). No particular method shows
good performance for all relevant aspects of MRI, including bias
reduction, artifacts removal, structure- and edge-preservation, and
good generality/reliability trade-off.

Buades et al. (2005) surveyed spatial correlation techniques and
proposed the so-called non-local means (NL-means) method which
is based on the assumption that natural images usually have struc-
tural redundancy. The underlying idea is that any pixel has similar
pixels that are distributed not only in its local neighborhood but
also in the whole spatial domain of the image, which allows to ac-
count for the global information associated with large structures,
and hence to overcome the limitations of local search. The NL-
means approach has been applied to denoising (Boulanger et al.,
2010; Brox et al.,, 2008; Katkovnik et al., 2010; Katkovnik and
Spokoiny, 2008), super-resolution restoration (Manjon et al.,
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2010; Rousseau, 2010), compressed sensing (Danielyan et al.,
2010; Marim et al., 2010) and inpainting (Elad et al., 2005). NL-
means detects pixel similarity by exploring patch similarity for
better robustness to noise, and similar patches can be grouped to-
gether to achieve sparse representation in a suitable transform do-
main in which denoising reduces to a shrinkage operation.
Therefore, non-local self-similarity and sparse representations are
key elements of state-of-the-art filtering algorithms.

The similarity measure used in NL-means evaluates the correla-
tion between patches globally via the standard Euclidean distance
and neglects the local consistency between a patch and its center
pixel. In particular, in the case where different patches are close
in terms of Euclidean distance but have center pixels with quite
different values, the standard similarity measure may cause a loss
of fine structures and edge blurring - the same behavior is ob-
served when the number of patches similar to the reference patch
is too small. Alternatively, the block-matching algorithm (BM3D)
proposed by Dabov et al. (2007), which exploits a specific non-local
image model by grouping similar patches and by collaborative fil-
tering, is another interesting denoising approach. The BM3D filter
stacks similar two-dimensional (2D) image patches into 3D arrays
which are processed in a 3D transform domain to attenuate the
noise component. However, patches containing fine image details
or singularities or sharp edges are examples where a non-adaptive
transform is not able to produce good sparse representations (Foi
et al., 2007; Hammond and Simoncelli, 2008; Sikora and Makai,
1995); for such patches, the filter may introduce artifacts around
discontinuities where the visual attention is often mainly focused.

We propose a 3D structure-adaptive sparse denoising (SASD)
algorithm for DT-MRI which we apply to human cardiac DWIs.
Our method can be decomposed into four steps. First, we form
groups of similar patches in the DWI to be denoised using a mod-
ified structure-similarity index. Second, each set of similar patches
is arranged into a 3D array, and a structure-adaptive window pur-
suit method is used to adapt to the local image features. Third, the
resulting structure-adaptive 3D arrays are denoised by Wiener
shrinkage in the transform domain defined by 2D principal compo-
nent analysis in the image domain and Haar transformation in the
third dimension. Finally, the noise-free DWI estimate is obtained
by weighted averaging of the denoised structure-adaptive patches.

The paper is organized as follows. Section 2 describes the SASD
algorithm and its main components, including the definition of the
proposed similarity measure, the design of the structure-adaptive
window pursuit method, and the Wiener filtering operation in
the transform domain. The experimental setup is discussed in Sec-
tion 3, and our results are presented in Section 4, where our ap-
proach is compared to state-of-the-art denoising methods,
namely, Bayesian least-squares Gaussian scale mixture (BLS-
GSM) (Portilla et al., 2003) and Field of experts (FOE) (Roth and
Black, 2005). Concluding remarks are given in Section 5.

2. Methodology

In a nutshell, the proposed approach is inspired by the NL-
means method to filter sparse local representations of the image
to be denoised. Therefore, we describe the standard NL-means
method in Section 2.1 prior to our SASD algorithm in Section 2.2.

2.1. Standard NL-means

The NL-means method is based on pointwise estimation: a gi-
ven pixel is denoised by weighted averaging of the pixels with sim-
ilar neighborhoods in the noisy image. Let Y = {Y(i); i € Q} be an
image to be denoised, where i is the pixel index (€2 is the spatial

image domain) and Y(i) is the gray level intensity at pixel i. The
NL-means estimate of Y is defined by the weighted average

NL(Y(i)) = Y _w(i.)Y(), (1)

jeQ

where w(i, j) measures the similarity between pixels i and j and be-
tween their neighbors (the w(i,j)’s are in (0,1) and satisfy
>-w(i,j) = 1 for all i). Given a neighborhood system {N;;i € Q} (N;
denotes the subset of @ that contains the neighbors of pixel i),
the weights w(i, j) are computed as follows:

1wl

w(i,j) = mexp w? (2)

where Y(Ni) denotes the patch centered in pixel k (N is a rectangu-
lar pixel region centered on k), Z(i) is a normalization factor, and h
controls the decay of the exponential function (this smoothing
parameter is set equal to on, where ¢ is the standard deviation of
the noise and n is the patch size).

The standard similarity measure (2) only uses the standard
Euclidean distance between patches and hence does not account
for the local consistency between pixels and their neighbors. Con-
sequently, two patches Y(N;) and Y(N;) can be similar in terms of
Euclidean distance even though Y(i) — Y(j) is large, and thus it
can happen that w(i, j) is large for patches centered on pixels with
very different values. Furthermore, in the case of a reference patch
having a very small number of similar patches, the constraint that
the sum of the w(i,j)’s over j must be equal to one gives non-neg-
ligible weights to dissimilar patches, which produces distortion in
the denoised image. Consequently, NL-means denoising based on
the similarity measure (2) does not properly recover image details
such as fine structures and tends to blur edges.

2.2. Structure-adaptive sparse denoising

The above discussion on NL-means suggests two immediate le-
vers for improving patch-based denoising: first, the patch-similar-
ity measure should ensure local consistency, and second, the
weights used for averaging should preclude dissimilar patches. Be-
sides, when using patches of fixed shape and size, the performance
is limited by the lack of sparsity around singularities or edges,
which translates to ringing artifacts in the denoised estimates.
Hence the idea to replace the usual fixed-size rectangular patches
with structure-adaptive patches for more effective sparse repre-
sentation and thus better quality estimates.

This leads to the proposed SASD algorithm schematized in
Fig. 1. This algorithm relies on a new constrained similarity mea-
sure for patch matching - the structural similarity (SSIM) index -
and on a new structure-adaptive window (SAW) pursuit method,
both of which use the non-stationary degree (NSD) operator of
Liu et al. (1995). The SSIM index and the SAW pursuit method
are the building blocks to form structure-adaptive 3D arrays of
similar patches, which are then denoised in the domain of a 3D
separable transform that promotes sparsity. (This transform is de-
fined as follows: the structure-adaptive patches of a given group
are projected onto principal components, and a 1D Haar transfor-
mation is performed in the dimension along which the patches
are stacked.) We proceed with the formal presentation of the SASD
approach, leaving the descriptions of the similarity measure and
the SAW pursuit method to Sections 2.2.2 and 2.2.3, respectively.
The full algorithm is given in Section 2.2.4.

2.2.1. Formal description of SASD
The core of the SASD method consists in performing the
following three steps for each pixel i. We assume that the patches
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Fig. 1. Schematic representation of the SASD algorithm (R stands for the current reference patch).

are defined on square regions of size n, and we denote by N, the set
of pixels of the patch centered on pixel k.

First, the set Qy, of patches similar to the reference patch Y(N;)
is formed using the proposed similarity measure, and the ele-
ments of Q, are stacked into a 3D rectangular array
Syovy = {Y(N;j) : j € Qy,}. This array is of size n x n x |Qy,|, and
Qy, is defined by

Y(N)
Y(N;j)

U<

QNi—{jEQ

<% and v <SSIM(D(N;),D(N;)) }

3)
where Y(N;) is the mean of Y in N;, D is the NSD operator,
and pu, ve€ (0,1) are given thresholds (the rationale for this
choice is given in Section 2.2.2, where we also discuss the setting
of 1 and v).

Second, the structure-adaptive neighborhood N* of pixel i
(which is a subset of N;) is computed by SAW pursuit and is used
as a template for creating a structure-adaptive set of patches

Sf{?N,-) = {Y(N]-SA); je QN,}. where N} CN; is the translation of

N:* by j — i (in pixel coordinates).

Third, the noise component in Sy,  is attenuated after a 3D
transformation which consists in first decomposing Sy}, in a
2D principal component (PC) basis and then performing a 1D
Haar wavelet transform along the dimension perpendicular to
the stacked PCs (we use PC bases because they are more adap-
tive to image features than a fixed dictionary and because they
do not require its construction). The actual denoising is per-
formed by Wiener filtering of the PC projection coefficients in
the wavelet domain, and a subsequent 3D inverse transforma-
tion gives a structure-adaptive set of patch estimates

Sy = {X(st*‘); je QN,-}- Formally, letting I'sp and I';; be the
direct and inverse 3D transforms, we have
SA — SA
SX(N,-) = Fas (W(F3D (SY(N,-))>)7 (4)

where W denotes the Wiener filtering operator - Wiener denois-
ing is an element-by-element multiplication of the Fourier spec-

trum of I'sp (S,S,’(‘Ni)), say Tsp (S‘S,’(‘NI_)>, by

2
T SA
T (80|
T
T SA
(st )| o
where ¢ is the noise standard deviation.

Once the above steps have been performed for all pixels, the
denoised DWI, say X, is obtained by cumulative weighted average
of the structure-adaptive denoised patches, that is,
Kl = =2 5o, WOXi (N

ZieQZjeQNiW(i)Xj(k) ’

where X (NJ-SA) denotes the value of the pixel in X(NJSA) that corre-

sponds to pixel k in the whole image (by convention, we set

(6)

X (N]'.SA) = 0 if such a pixel does not exist), and where the indicator

function y; is defined by y;(k) = 1 if pixel k is in N;*, 0 otherwise. The
weights w(i) are given by

w(i) = m if Ne(i) > 1, (7)
1 otherwise,

where Nc(i) denotes the number of “effective” PCs representing
Y(N;); more precisely, letting V(i) = {Vy(i), ..., Vi(i)} be the PC basis
associated with Sf,’?N,) and (o (i), .. ., ak(i)) be the coordinate vector
of Y(N*) in V(i), Nc(i) is the smallest integer p such that
p
Y(NfA) > oui)Vili)|| < no. (8)
k=1 2

2.2.2. A new similarity measure

We propose to improve the robustness of patch-similarity mea-
surement in two ways: first, we increase the performance of the
SSIM index of Wang et al. (2004) by using the NSD operator of
Liu et al. (1995), and second, we select similar patches by thres-
holding this new index and by placing bounds on the mean of
the candidate patches. Another advantage of this patch selection
scheme is that it limits the sizes of the groups of similar patches,
thereby reducing the computational burden.
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The SSIM index measures the similarity between two patches x
and y as follows:

(2pxtly + C1)(20%y + G)

SSIM(x,Y) =
*Y) (12 + 18 +C1) (02 + 0% + Cy)’

9)

where (i and gy are the means of x and y, 62 and ¢% are the vari-
ances of X and y, and oy is the covariance between x and y. The role
of the constants C; and G, is to avoid instability when the means pix
and py or the variances o2 and ¢% are close to zero. The problem
with this index is that its sensitivity to noise is too high for our
application (we made this observation by comparing SSIM index
maps obtained from simulated cardiac DWIs with and without
noise). Therefore, since structural image characteristics usually take
the form of non-stationary points (i.e., edges), we propose to apply
the SSIM index to the NSDs D(x) and D(y) of x and y, that is,

(2 Up Uy + C1)(20pxpy) + C2)

SSIM(D(x),D(Y)) = . 10
(B). DY) (:u%)(x) + :uZD(Y) + Cl)(o'zn(x) + GZD(Y) +G) (10)

The NSD operator D is defined by

D(x) = (X« )+ h) = (X h h)?, (11)

where x denotes the 2D convolution operator and h is a rectangular
filter of size M x M:
. N . L1 i

h(i,j) = g(i)g(j), with g(i)= Mrect (M) (12)
The NSD of a second-order stationary signal is zero, whereas if the
input signal is not second-order stationary, the NSD detector gives
high output values at discontinuity locations. In other words, NSD
detection gives prominence to the structural characteristics of the
input image.

In Coupé et al. (2008), the selection of the patches Y(N;) similar
to a reference patch Y(N;) is performed by upper and lower bound-
ing the mean and the variance of Y(N;). As the example in Fig. 2
shows, the local mean and variance are simple estimators that al-
low to discriminate different tissue classes and to detect edges, but
the local variance is very sensitive to noise. Compared to the local
variance, the NSD detector has better edge-enhancement capabili-

ties, and it is more immune to noise because it filters the signal be-
fore computing the variance (the NSD detector that produced the
images in Fig. 2d and h is defined by the 3 x 3 rectangular filter).
Consequently, we propose the following new similarity measure:

1 YN) _ 1

L. = if u < <+
wiij) =370 " H
0 otherwise,

and v < SSIM(D(N;), D(N;)),

(13)
where the parameter ¢ € (0, 1) sets the bounds on the local mean ra-
tio,and v € (0, 1) is the lower threshold for the NSD SSIM index. (Note
that setting Z(i) = 0°Nc(i) if Nc(i) > 1 and Z(i) = 1 otherwise gives the
weights defined in (7).) The parameters ¢ and vconstrain the range of
acceptable variations of the local mean and the range of possible sim-
ilarity values. When p and v tend to zero, the constraints vanish and
all the neighborhoods N; equally contribute to w(i, j).

Conversely, the closer ¢ and v are to one, the more restrictive
the constraints, and the less numerous the number of selected
patches (and hence the less the amount of filtering). To fix ideas,
we set 4 =0.7 and v=0.1 in our experiments, which is a good
trade-off between denoising quality and computation time.

2.2.3. Structure-adaptive patches

A natural idea to improve the performance of patch-based
denoising is to use structure-adaptive patches rather than fixed-
size rectangular ones. Indeed, structure-adaptive patches allow lo-
cal adaptation to image features, so that the true signal is nearly
homogeneous in such regions, which improves the sparsity of the
3D arrays and eases the denoising process. To efficiently construct
such patches, we propose a structure-adaptive window pursuit
method that uses NSD detection to find the boundary points. This
method, which we call NSD-SAW for non-stationary degree struc-
ture-adaptive window, is schematized in Fig. 3. For each consid-
ered direction away from the center pixel i, we take the first
pixel whose NSD value is greater than some given threshold 7 as
a boundary point of the structure-adaptive window. The different
steps of NSD-SAW are given below (the 2-D NSD map of the whole
image to be denoised is precomputed, and given an ordered set
O = (ig, iy, .. ., i) Of pixel indexes, we let NSD(®) be the ordered
set (NSD(ig), NSD(i1), ..., NSD(i,)) of associated NSD values).

Fig. 2. Local mean, local variance and NSD of a simulated cardiac DWI: (a and e) the noise-free and noisy DWIs (Rician noise, ¢ = 30); (b and f) the local means of (a and e),

respectively; (c and g) the local variances; and (d and h) the NSD maps.
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Fig. 3. Schematization of the NSD-SAW method.

(1) Fix an n x n square patch (with n odd) centered on i. Define
the set of search directions as {0, =(k — 1)n/4; k=1, ...,8}.

(2) For each k, extract the set of pixels in the direction of 0
starting from ip, and use the successive NSD values of these
pixels to form the 1D signal NSD(®(k)), @(k) = (io, i1(-
K. ... it ya(K)):

(3) Select the boundary points i(k) in each direction as follows:
if all the values in NSD(®(k)) are smaller or equal to 7, then
the boundary point in the direction of 6, is the boundary of
the square patch;
otherwise, pick the closest pixel i to iy such that i € ©F and
NSD(i) > t.

Fig. 4 illustrates NSD-SAW at work in a cardiac DWI. We can see
from Fig. 4a and b that the NSD map of the 21 x 21 patch shown in
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Fig. 4c has a peak-shaped bulge along the edge. The boundary point
in the 1 /2 direction is ig(3); this is the non-stationary points with
NSD greater than 7 = 300 that is the closest to ip. In the 37/2 direc-
tion, there is no non-stationary point, and thus the boundary point
i10(7) is the boundary of the patch. As shown in Fig. 4d, no matter
where the center pixel is located, NSD-SAW can find a homoge-
neous structure-adaptive neighborhood in coherence with image
edges and structures.

2.2.4. Implementation of the SASD algorithm

The SASD algorithm is given below. To reduce the computation
time, we restrict the locations of the centers of the reference
patches to a set Q; C Q2 obtained by downsampling the regular grid
supporting the image to be denoised. Therefore, if the image size is
N x N and the downsampling factor in the horizontal and vertical
directions is s, the number of processed patches is approximately
N?/s2. Furthermore, the search for similar patches can be restricted
to a region centered on the center pixel of the reference patch and
whose shape and size are fixed in advance.

(1) For each pixel i € Q;, perform the following steps.

(a) Search for the set of square patches similar to Y(N;) in the
search region centered on pixel i, that is, construct the
set Qy, defined in (3), and form the 3D rectangular array
Sy, = { Y(N:); je QN,}-

(b) Compute the structure-adaptive neighborhood N* of
pixel i using the NSD-SAW method and extract the
structure-adaptive 3D array Sy, {Y(N].SA); je QN,}
from Sy,).

A io3)
\

\
\

—@— NSD

—*— graylevel

i1067),

15 20

o
)]

(d)

Fig. 4. Structure-adaptive window search in a cardiac DWI: (a) NSD map of the 21 x 21 patch shown in (c); (b) NSD profiles in the vertical direction (red curve) and associated
patch intensity profiles (green curve); (c) computed structure-adaptive window; (d) examples of structure-adaptive neighborhoods. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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(c) Decompose Sy(y, into a PC basis V(i) = {V4(i), ..., Vi(i)}:
PCA(SHhy, ) = {010, - (i)); € i},

where (21(j), ..., o(j)) is the coordinate vector of Y(N;*) in

V(i).

(d) Compute the weight w(i) defined in (7).

(e) Compute I'sp(Syly,) by Haar transformation of
PCA(Syly,) in the dimension indexed by j:

Tao(S)) = (@), () J € O},

where, for any k € {1,...,K}, the signal (d(1),...,0(|Qy1))

is the 1D discrete Haar wavelet transform of

(o(1), .., o (120, 1))-

(f) Denoise I'sp <S‘5,’(‘Ni>) by Wiener filtering and obtain the
denoised estimate Sy of Syjy, by 3D inverse transfor-
mation (see (4) and (5)).

(2) Compute the denoised DWI estimate X by weighted averag-
ing of the denoised structure-adaptive patches in (. Sy,

with the w(i) ’s (see (6)).

3. Experimental setup
3.1. Simulated data

Since real noise-free cardiac DWIs cannot be obtained by real
DT-MRI acquisitions, we simulated biologically informed DWIs
based on physical measures from polarized light imaging (we used
the simulation method proposed in Wang et al. (2012)). The
simulated DWIs - an example of which is displayed in Fig. 5a -
reveal the left and right ventricles of a human heart and contain
various textures and fine structures. They form a set of realistic
short-axis cardiac images (size 256 x 256, intensity range

Noise-free

BLS-GSM

(c)

[0,205]) corresponding to 12 diffusion gradient directions. This
set will be used to assess the performance of our SASD algorithm
both qualitatively and quantitatively.

3.2. Real data

Our real data comes from an ex vivo human heart; they were
acquired in the Hospital of Neuro-Cardiology in Lyon (France).
The heart was placed in a plastic container and fixed by hydrophilic
gel to maintain a diastolic shape. The data were acquired with a
Siemens Avanto 1.5T Scanner, using a diffusion spin-echo EPI se-
quence with 30 diffusion gradient directions and a single excita-
tion. We used a large number of sensitizing directions because
previous studies (Frindel et al., 2009; Kingsley, 2006a) have shown
that it improves the precision of DT-MRI measurements by reduc-
ing the rotational variance due to noise propagation. Each diffu-
sion-weighted volume consists of 52 contiguous axial slices of
size 128 x 128 (the spatial resolution is 2 x 2 x 2 mm?).

3.3. Performance evaluation
In the case of the simulated data, the images to be denoised are
obtained by adding Rician noise to the simulated noise-free DWIs,

and the quality of the denoised estimates is evaluated via the PSNR
and the mean SSIM (MSSIM) defined by

PSNR = 20 - log;, L - and
[x-x],
MSSIM = LZSSIM (X(N,-),X(N,-)), (14)
€] ieQ

where L is the width of the pixel intensity range, and X and X de-
note the noise-free DWI and its denoised estimate, respectively. In

SASD

Fig. 5. Denoising of a simulated DWI: (a) noise-free image; (b) noisy image (noise-free + Rician noise with standard deviation ¢ = 20); (c-e) images denoised with the BLS-

GSM, FOE and SASD algorithms.
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the case of the real cardiac data, we assess the denoised DWIs with
the SNR and the contrast-to-noise ratio (CNR) defined by

SNR = 20 - logy, (ﬁ“—M> and CNR = £ —F, (15)
A A

where py and pa are the mean intensities in the region of the myo-
cardium and in the background air region, respectively, and oy is
the standard deviation of the noise in the air region.

When denoising DWIs, image details of clinical importance are
liable to be damaged. Inappropriate denoising can discard or alter
these details, which leads to erroneous calculation of diffusion
tensors that may affect myocardial fiber reconstruction and patho-

Table 1

logical analysis (Assemlal et al., 2011; Peyrat et al., 2007).
Consequently, to get further insights into the performance of the
denoising methods, we consider: (i) common metrics such as
the fractional anisotropy (FA), the mean diffusivity (MD), and the
coherence index (CI); (ii) the mean frobenius distance between
tensor-fields associated with noise-free and denoised DWIs (the
diffusion tensors are computed from the DWIs using unweighted
linear least square (Kingsley, 2006b)); (iii) fiber angles; and (iv) fi-
ber architectures obtained by tractography. FA measures the confi-
dence in the diffusion direction of water molecules (Basser and
Pierpaoli, 1996) - it ranges from O (perfectly isotropic diffusion)
to 1 (fully anisotropic diffusion) - MD measures average molecular

Denoising performance in terms of PSNR(dB) and MSSIM for different noise levels (the data is the DWI shown in Fig. 5a corrupted by Rician noise with standard deviation o).

4 5 10 20 30

Index PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM
Noisy image 30.00 0.501 23.98 0.387 20.48 0315 18.04 0.261 14.48 0.182
BLS-GSM 38.24 0.974 31.76 0.942 29.46 0.910 28.15 0.888 25.64 0.823
FOE 38.48 0.979 34.02 0.951 31.88 0.926 29.86 0.907 25.03 0.813
SASD 38.81 0.986 34.83 0.966 32.85 0.947 30.73 0.926 27.87 0.882

Noise-free

BLS-GSM FOE

(f)

Fig. 6. Diffusion-tensor fields computed from (a) the noise-free simulated DWIs, (b) the noisy DWIs, and (c-e) the DWIs denoised by BLS-GSM, FOE and SASD. f displays

enlargements of the region delimited by the red rectangle in Fig. 6a.
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motion (Kingsley, 2006a), and CI estimates fiber coherence by - denoted by El - is that between the fiber and the section plane
comparing the principal eigenvector directions of nearby voxels (that is, the x-y plane), and the azimuth angle - denoted by
(Basser and Pajevic, 2000). The fiber angles are evaluated in terms Az - is that between the projection of the fiber on the x-y plane
of azimuth and elevation angles (Jouk et al., 2000) and displayed and the x-axis. We use the DEC that assigns colors to the principal
using a directionally encoded colormap (DEC). The elevation angle eigenvectors of a tensor field as follows: the components of the

(d)

Fig. 7. Index maps obtained from the noise-free simulated DWIs (left), the noisy DWIs (middle), and the DWIs denoised by SASD (right): (a) FA, (b) MD, (c) Az, and (d) EI.
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Table 2

Denoising performance in terms of mean Frobenius distance and MSE on standard indexes (the data is the DWI shown in Fig. 5a corrupted by Rician noise with standard deviation

o =20).

Frob. dist. FA MD (103 mm?/s) Azimuth (°) Elevation (°) Cl

Noisy 0.116 0.083 0.034 18.891 5.261 0.185
BLS-GSM 0.078 0.078 0.028 15.214 5.783 0.087
FOE 0.067 0.053 0.021 14.650 3.837 0.102
SASD 0.063 0.048 0.019 13.502 3.742 0.064

Fig. 8. Denoising of a simulated DWI for different noise levels: (a) images corrupted by Rician noise with standard deviation ¢ = 10, 30, 40 and 50 and (b) corresponding

denoised estimates computed by SASD. The case ¢ = 20 is displayed in Fig. 5.

eigenvectors are encoded into the red, green, and blue channels of
the RGB color system, and the saturation is proportional to FA.

The performance of our SASD algorithm is compared to that of
two advanced denoising methods, namely, Bayesian Least-Squares
Gaussian Scale Mixture (BLS-GSM) (Portilla et al., 2003) and Fields
of Experts (FOE) (Roth and Black, 2005), which produce state-of-
the-art denoising performances. For suitable comparison, each
method is run with the values of the parameters that produce
the best solution in terms of the performance criteria described
above, and these parameters are kept the same for all the experi-
ments presented in the next section. The SASD algorithm uses
patches of size 11 x 11, search regions of size 41 x 41 (the search
region of a reference patch Y(N;) is the set of possible locations of
the center pixels of the patches that are examined to construct
Qy,), and a downsampling factor s = 2. The NSD-SAW method uses
a rectangular filter h of size 3 x 3 for computing the NSD maps and
a threshold 7 =400 for detecting the boundaries along the radial
lines. The BLS-GSM algorithm uses Daubechies wavelets with a
7 x 7 window size, 4 scales and 8 directions, and the FOE algorithm
uses 24 filters with a window size of 5 x 5 and a learning rate of
0.2.

4. Results and discussion
4.1. Denoising of the simulated DWIs

4.1.1. Comparison of BLS-GSM, FOE and SASD

Fig. 5 shows the denoising results for the simulated DWI asso-
ciated with the first diffusion direction. The image to be denoised
is displayed in Fig. 5b; it was obtained by adding Rician noise with
standard-deviation ¢ = 20 to the noise-free image shown in Fig. 5a

(this noise component significantly affects the fine structures). The
solution obtained by BLS-GSM is over-smoothed (Fig. 5¢), and the
output of FOE has chessboard artifacts pointed out by the arrows
in Fig. 5d. By contrast, SASD shows good edge- and smoothness-
preservation properties (the arrows in Fig. 5e indicate smooth re-
gions that are well-recovered by SASD but that BLS-GSM and FOE
fail to denoise properly), and it does not introduce spurious arti-
facts. Table 1 compares the results of the three methods in terms
of PSNR and MSSIM for different values of the noise standard devi-
ation. The SASD algorithm always produces the best results, and
the associated performance improvement increases with increas-
ing noise level.

Fig. 6 shows the diffusion tensor fields computed from (a) the
noise-free simulated DWIs, (b) the DWIs with Rician noise with
standard-deviation ¢ =20, and (c-e) the DWIs denoised by the
competing algorithms. To facilitate visualization and comparison,
the tensors are rendered as ellipsoids with colors specified by the
DEC, and enlargements of the region delimited by the red rectangle
in Fig. 6a are displayed in Fig. 6f (we used a downsampling factor of
3 for Fig. 6a—e and a downsampling factor of 2 for Fig. 6f). Compar-
ing the tensor fields computed from the noise-free and noisy DWIs,
we observe that the noise induces a swelling effect and perturbs
the diffusion directions, which in turn translates to errors when
estimating diffusivity parameters (this latter point is illustrated
in Fig. 7 and discussed next). The three denoising algorithms allow
to reduce the swelling effect and to recover the original diffusion
directions, but BLS-GSM and FOE tend to amplify the swelling ef-
fect at edge locations. Looking at the enlargements in Fig. 6f, we
see that the tensors computed from the denoised DWIs obtained
by SASD are more faithful to the original tensors in terms of both
anisotropy and direction.
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c)

Fig. 9. Diffusion-tensor fields computed from (a) the noisy DWIs and (b) the DWIs denoised by SASD for ¢ = 30 (left), 0 = 40 (middle) and ¢ = 50 (right). (c) Enlargements of
the region delimited by the red rectangle in (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We also computed different index maps (FA, MD, Az and El)
from the three tensor fields associated with (i) the noise-free sim-
ulated DWISs, (ii) the noisy DWIs (o = 20), and (iii) the DWIs deno-
ised by SASD. These maps are displayed in Fig. 7. Note that the FA
and MD maps obtained from the noise-free DWIs have low inten-
sity regions corresponding to small elevation angles in the middle
myocardium; this is due to the fact that diffusion is weak in the
middle myocardium of the human heart. In the noisy case, the in-
dex maps have a granular aspect that corrupts fine structures and
impedes the delineation of homogeneous regions. This drawback is
eliminated by denoising the DWIs by SASD: the index maps ob-
tained from the denoised DWIs have very few artifacts and are very
close to that in the noise-free case.

In addition to the PSNR and the MSSIM, we can quantify the ef-
fects of denoising by means of the mean Frobenius distance - the
Frobenius distance between two tensors T; and T, is given by
dp(Ty, T,) = (Trace((T; — T5)?))!? - and of the mean-square error
(MSE) on FA, MD, Az, El, and CI. Table 2 gives the results for the

case of a Rician noise with standard deviation ¢ = 20. The denoising
algorithms reduce the effect of the noise in terms of all the perfor-
mance metrics considered, and SASD gives the best results in all
cases. In other words, of the three denoising algorithms, SASD pro-
duces the best DWI in terms of fidelity to the noise-free tensor-
field.

4.1.2. Performance of SASD versus noise level

To assess the performance of our SASD method as a function of
the noise level, we consider the denoising of DWIs corrupted by Ri-
cian noise with standard deviation ¢ € {10, 20,30, 40, 50}. Fig. 8
shows the estimates produced by the same SASD algorithm as in
Section 4.1.1 for ¢ = 10, 30, 40 and 50 (the estimate corresponding
to o =20 is displayed in Fig. 5e). Predictably, fine structures and
texture information progressively disappear from the denoised
estimates as ¢ increases (see, for instance, the regions pointed
out by the arrows). The details are very well preserved for ¢ = 10
and o = 20. When ¢ = 30 and o = 40, some of the detail information
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(e) (f)

Fig. 10. DT-MRI index maps computed before (a-d) and after (e-h) denoising by SASD for ¢ = 50: (a and e) FA maps; (b and f) MD maps; (c and g) Az maps; (d and h) El maps.

(9) (h)

Table 3
Denoising performance of SASD - evaluated in terms of mean Frobenius distance and MSE on standard indexes - as a function of the noise level (the results for ¢ = 20 are given in
Table 2).
Frob. dist. FA MD (103 mm?/s) Azimuth (°) Elevation (°) Cl
o=30 0.194 0.163 0.075 24.390 7.853 0.279
SASD 0.091 0.070 0.031 16.018 5.354 0.079
o =40 0.275 0.236 0.119 31.325 10.689 0.404
SASD 0.126 0.091 0.044 18.830 6.576 0.091
o =50 0.315 0.270 0.135 38.238 13.347 0.517
SASD 0.166 0.114 0.061 21.035 7.475 0.101

is lost, but the denoised estimates remain satisfactory, as the prin-
cipal structures and some textures are preserved. On the other
hand, for ¢ = 50, the information loss caused by noise is too impor-
tant to properly recover fine structures or textured regions. This
simulation shows that SASD can achieve accurate recovery up to
o =L[5 (L is the width of the intensity range of the noise-free DWIs,
which is about 200 here).

The diffusion tensor fields computed from the noisy DWIs for
0 =30, 40 and 50 and from the corresponding SASD estimates
are shown in Fig. 9 (the results associated with ¢ = 20 are displayed
in Fig. 6). We can see from Fig. 9a that the importance of the swell-
ing effect and the disorder of the principal diffusion directions in-
crease with the noise level. By contrast, the tensor fields computed
from the denoised DWIs are well-organized, with a swelling effect
apparent only at the boundaries of the myocardium. For ¢ = 30,
most of the original diffusion directions are recovered and tensor
anisotropy is well-preserved. When the noise standard deviation
increases to 40 and then 50, the tensor fields computed from the
denoised DWIs get smoother, but the diffusion directions become
less faithful to the original ones. This is visible by comparing the
enlargements in Fig. 9c with the leftmost one in Fig. 6f.

Fig. 10 gives an idea of the performance of SASD under severe
noise (g = 50). The index maps computed from the non-processed
DWIs are very noisy: the fine structures and the smooth regions
are hardly visible. The maps obtained from the denoised DWIs
are way easier to interpret, although, compared to the case where
o =20 (see Fig. 7), some fine structures are lost. Table 3 gives the
mean Frobenius distance and the MSEs (FA, MD, Az, El and CI)
for o =30, 40 and 50 (the results corresponding to ¢ = 20 are given
in Table 2). The mean Frobenius distance and the MSEs computed

from the noisy DWIs increases as ¢ increases. Denoising the DWIs
using SASD reduces the mean Frobenius distance by a factor of
about 2, the MSEs on FA and MD by a factor between 1.7 and
2.7, the MSEs on the angles by a factor of about 1.6, and the MSE
on CI by a factor between 2.9 and 5.1.

4.2. Denoising of real cardiac DWIs

4.2.1. Comparison of BLS-GSM, FOE and SASD in terms of SNR and CNR

Examples of denoising real cardiac DWIs using the SASD, BLS-
GSM and FOE algorithms are illustrated in Fig. 11. The raw image
in Fig. 11a is a DWI of an ex vivo healthy human heart; the noise
component has an estimated standard deviation of ¢ =20.3 (to
be compared with the width of the unknown noise-free image,
which is about 200). The denoised estimates produced by the dif-
ferent algorithms are shown in Fig. 11b-d, and the performances
in terms of SNR and CNR are illustrated in Fig. 11e and f. Similarly
to what we observed for the simulated DWIs, BLS-GSM blurs the
edges and smoothes the fine structures, while FOE produces unde-
sirable artifacts, especially near the edges. Our SASD algorithm pro-
duces the best result, both qualitatively and quantitatively. Note
that the CNR in the denoised slices #11, 23, 26, and 29 is higher
than for the other slices because the associated original images
(i.e., before denoising) have higher CNR and higher structural
redundancy.

4.2.2. Diffusion-tensor analysis

Fig. 12 shows the diffusion-tensor fields of a slice of the left ven-
tricle of a human heart computed before and after denoising the
DWIs. The directions of the tensors computed from the raw DWIs



L. Bao et al./ Medical Image Analysis 17 (2013) 442-457 453

Raw BLS-GSM FOE SASD
(a) (b) (c) (d)
30 10
L A—F
28 oapessssoge 9 //I\\/ e
__ 26 8 AN /89?5
) ?F@#ﬁwré}@ o @;ﬂ\
x 24 —f— Original % 7 %
5 & BLS-GSM
22 ——— FOE 6
20 ——%—— SASD 5 . &\E, A E/E—‘H
18 4
10 15 20 25 30 10 15 20 25 30
Slice No. Slice No.

(e) (f)

Fig. 11. Denoising of a real cardiac DWI: (a) raw image (SNR=19.05dB, CNR=5.13) and images denoised by (b) BLS-GSM (SNR =24.97 dB, CNR =7.68), (c) FOE
(SNR = 25.18 dB, CNR=8.19), and (d) SASD (SNR = 28.22 dB, CNR =9.49). (e and f) The SNR and CNR values achieved for different DWIs of a cardiac diffusion-weighted
volume.

Fig. 12. Diffusion-tensor fields of a slice of the left ventricle of a human heart computed from (a) raw DWIs, (b) DWIs denoised by FOE, and (c) DWIs denoised by SASD. The
associated enlargements correspond to the region delimited by the red rectangle. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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(c)

Fig. 13. DT-MRI index maps of a healthy heart: (a) FA, (b) MD, and (c) representations of the fiber directions using the DEC. From left to right, the maps correspond to raw

DWIs and DWIs denoised by BLS-GSM, FOE and SASD.

Table 4
Number of well-defined tensors and statistics of FA, MD and CI computed from real cardiac DWIs and from the denoised estimates obtained by the three competing algorithms.
# of well-defined tensors FA MD (1073 mm?/s) cl
Mean Var Mean Var Mean Var

Raw DWIs 786 0.353 0.021 0.551 0.035 1.043 0.114
BLS-GSM 786 0.305 0.017 0.537 0.035 1.304 0.064
FOE 788 0.311 0.018 0.538 0.036 1.312 0.072
SASD 792 0.294 0.018 0.529 0.035 1.321 0.083

are noisy, and these tensors are not well organized in terms of
shape. Fig. 12a illustrates the swelling effect caused by noise,
which translates to an over-estimation of FA. Denoising the DWIs
by SASD improves the consistency of the direction and shape of
the tensors, and FOE does not perform as well as SASD in terms
of the organization of the principal diffusion directions and of
anisotropy preservation. Note that the diffusion-tensor field com-
puted from the DWIs denoised by BLS-GSM is not represented be-
cause it is even worse than that obtained from the FOE estimates.

Fig. 13 shows the FA, MD and directionality maps of the heart
slice considered in Fig. 12, before and after denoising by BLS-
GSM, FOE and SASD. The FA map computed from the raw DWIs
has a noticeable granular aspect, and the black spots in the myo-
cardium region correspond to tensors having a negative eigenvalue
(these spots also appear in the MD and directionality maps). Com-
pared to BLS-GSM and FOE, SASD not only reduces the number of
tensors having a negative eigenvalue, but also leads to more
regular index maps with less artifacts. This qualitative analysis is
confirmed by the quantitative results given in Table 4. We observe

that denoising increases the number of well-defined tensors (that
is, the tensors with positive eigenvalues) and the mean value of
Cl, and that it decreases the mean values of FA and MD. Again,
SASD yields the best improvement.

4.2.3. Fiber tracking

Fig. 14 shows the reconstructed fibers - using the DEC - of a
whole human heart before and after denoising with the SASD algo-
rithm; the associated quantitative measurements are given in Ta-
ble 5. Fiber tracking was performed using the following
thresholds: minimum FA of 0.05 (this threshold was set empiri-
cally to obtain an appropriate fiber density), minimum fiber length
of 5 mm, and maximum fiber angle of 60°. The fibers obtained by
tracking the raw tensors (that is, the tensors computed from the
unprocessed DWIs) are not well organized and are somewhat
irregular, whereas fiber tracking from the denoised tensors (that
is, the tensors computed from the denoised DWIs) results in
smooth and well-organized trajectories that are more consistent
with the fiber architecture of a healthy human heart (Lombaert
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(c)

(d)

Fig. 14. Myocardium fiber reconstruction. (a and c) Fibers tracked from raw tensors. (b and d) Fibers tracked from denoised tensors (i.e., computed from the DWIs denoised

by SASD).

Table 5
Quantitative analysis of the myocardium fiber architectures.

# of fibers Well-def. tensors FA MD (103 mm?/s) Fiber length (mm) Helix fiber angle (°)

Mean Var Mean Var Mean Var Mean Var
Raw DWIs 2551 33,741 0.237 0.006 0.649 0.045 36.116 304.020 7.638 3.823
SASD 2673 33,982 0.209 0.005 0.641 0.045 38.067 300.847 6.590 1.649

etal., 2012; Rohmer et al., 2007; Seemann et al., 2006). Fig. 14c and
d show a local fiber bundle in the middle myocardium - the arrows
point out erroneous trajectories resulting from the noise in the raw
DWIs. The tracking obtained from the denoised tensors is globally
much smoother than that performed from the raw tensors. Quan-
titatively, denoising the DWIs by SASD increases the number of fi-
bers by 4.8% and the mean fiber length by 5.4%, and it decreases the
variance of the helix fiber angle by 56.8% (this latter effect is due to
the fact that denoising attenuates the disturbance in the principal
diffusion direction field).

5. Conclusions

We proposed a new DWI denoising method, namely, structure-
adaptive sparse denoising (SASD), that collects adaptive similar
neighborhoods to increase redundancy and hence to facilitate the
removal of the noise. To avoid the drawbacks of standard similarity
measures, we have defined a new constrained similarity measure
based on the local mean and the SSIM index. We also proposed

to search for structure-adaptive neighborhoods in the reference
patches, which allows local adaptation to image features. The core
of SASD is the following: similar structure-adaptive neighborhoods
are grouped into 3D arrays that are denoised in a 3D transform do-
main using Wiener filtering. The 3D transformation consists in a
2D principal component (PC) decomposition in the image domain
- which concentrates the energy in a few coefficients - followed
by a 1D Haar wavelet transform in the third dimension.

The proposed SASD method is competitive and outperforms
state-of-the-art denoising methods. It presents good detail-preser-
vation properties and produces very few artifacts. Compared to
BLS-GSM and FOE, SASD effectively removes the noise component
in cardiac DWIs while preserving image contrast and fine struc-
tures. Our experiments show that SASD performs well for images
with sufficient structural redundancy and that it achieves a good
trade-off between image contrast and image smoothness. Further-
more, it is potentially very useful for cleaning highly corrupted
DWIs, which facilitates subsequent operations such as tensor field
analysis, fiber tracking, and clinical diagnosis in the cardiac
domain.
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A pertinent and persistent question about denoising is that of
the minimum detectable feature size. The answer is not simple,
as it depends on the precise definition of the features of interest
and on their redundancy. For instance, in pathological cases involv-
ing tissue lesions, the lack of redundancy in the neighborhoods of
the lesions may translate to lower denoising performance in these
injured regions (indeed, if it happens that a patch has no similar
patch, the denoising reduces to Wiener filtering). Nevertheless,
our experiments with simulated (biologically informed) DWIs
show that SASD achieves accurate recovery - the accuracy of the
estimates was measured in the image domain, in the tensor-field
domain and in parametric domains - up to a noise standard-devi-
ation equal to 20% of the width of the true intensity range. In addi-
tion, our experiments on real cardiac data show that tracking fibers
from the denoised DWIs leads to myocardium fibers that are more
regular and more conform to anatomical knowledge.

It should be stressed that we focused on 2D denoising because
we considered either 2D data or 3D data with a lower sampling
rate in the dimension perpendicular to the slices (in other words,
the spatial correlation is stronger in the 2D-slice domain than in
the remaining dimension). However, the performance can be im-
proved by extending the search for similar patches to adjacent
slices, and the proposed approach can also be extended to fully-
3D denoising (that is, using 3D patches) in the case of fully-3D data
acquisition. Besides, our SASD algorithm was initially motivated by
the denoising of cardiac DWIs, which is the reason why we only
considered additive Rician noise. Nevertheless, we did not make
any specific assumption on the organ to be imaged or on the noise
statistics, and thus SASD can be applied to other denoising prob-
lems involving additive noise. Future directions of research include
the study of the behavior of SASD in the presence of structured
noise (as in ultrasound images) and scan-rescan reproducibility.
We did not address the latter because our concern was with
ex vivo hearts (contrary to in vivo imaging, ex vivo scans do not
change over time except for the noise component); nevertheless,
although there is as yet no clinical application of in vivo cardiac
DT-MRI, some data are available for experimenting clinical cases
of healthy and failing human hearts (Lombaert et al., 2012,
20114, 2011Db).
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