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We propose an original spatio-temporal deconvolution approach for perfusion-weighted MRI applied to
cerebral ischemia. The regularization of the underlying inverse problem is achieved with spatio-temporal
priors and the resulting optimization problem is solved by half-quadratic minimization. Our approach
offers strong convergence guarantees, including when the spatial priors are non-convex. Moreover,
experiments on synthetic data and on real data collected from subjects with ischemic stroke show signif-
icant performance improvements over the standard approaches—namely, temporal deconvolution based
on either truncated singular-value decomposition or ‘2-regularization—in terms of various performance
measures.
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1. Introduction

With the growing development of multicomponent-imaging for
biomedical practice, image data-structures usually combine spatial
components with components of a different nature (e.g., spectral
Toronov et al., 2007, temporal Jähne, 1993, tensorial LeBihan
et al., 2001, or colorimetric Brekke et al., 2006). Simple processing
techniques consider the spatial components independently, but
more accurate results can be achieved by joint approaches which
consider the spatial components simultaneously along with their
dependencies. Such joint approaches have been proposed in func-
tional MRI for image restoration (Descombes et al., 1998), in con-
trast-enhanced MRI for spatio-temporal reconstruction (Schmid
et al., 2006), in diffusion-tensor imaging for tensor-field denoising
(Heim et al., 2007), and in imaging spectroscopy for classification
and segmentation (Plaza et al., 2009).

In this paper, we propose a joint approach for the temporal
deconvolution problem that arises in cerebral perfusion-weighted
imaging (PWI) of acute ischemic stroke—in the western world,
stroke represents a real public health issue for it is the second lead-
ing cause of death (Donnan et al., 2008). The amount of tissue dam-
age caused by acute ischemic stroke is a continuum between
irreversibly damaged tissues (infarct core) and benign oligemia.
Within this continuum, the tissues in the penumbra (magnetically
silent, yet possibly viable tissues) present a risk of infarction but
may recover proper irrigation using specific therapeutics. The clin-
ical challenge lies in a two-class classification problem: identifying
viable tissue regions from infarct core to aid clinical decision-mak-
ing and to improve long-term patient outcome. PWI provides crit-
ical real-time information about ongoing tissue injury by tracking
the first pass of an injected contrast-agent (e.g., gadolinium) using
T2⁄-weighted MRI. The data consists of the temporal signals of con-
trast-agent concentration in the voxels of a volume of interest.
After deconvolution, these signals are post-processed to obtain
maps of perfusion parameters which are used for interpretation;
typical parameters are the cerebral blood volume (CBV), the cere-
bral blood flow (CBF), the mean transit time (MTT) and the time-
to-peak of the residue function (T max) (Østergaard et al., 2009;
Ritzenthaler et al., 2011). Several processing techniques have been
proposed to generate perfusion-parameter maps. They are based
on the deconvolution of the concentration signals by the local
arterial input function (AIF) to account for the dispersion of the in-
jected bolus and for individual differences. In this context, the most
popular deconvolution method is based on truncated singular
value decomposition (TSVD) (Østergaard et al., 1996b,a). However,
state-of-the-art TSVD techniques for PWI do not exploit the
spatio-temporal nature of the data (Østergaard et al., 1996b;
Østergaard et al., 1996a; Andersen et al., 2002; Wu et al., 2003;
Calamante et al., 2003; Mouridsen et al., 2006); they treat each
concentration signal independently from the others, thus
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neglecting the spatial correlation due to the non-random organiza-
tion of microvascular circulation in the brain. Efforts have been
made recently to fill this gap: spatially-correlated image models
have been used in perfusion CT quantification of rectal tumors
and in cardiovascular perfusion MRI (He et al., 2010; Schmid,
2011) (these methods are reviewed in Section 3). Yet these ap-
proaches do not have strong convergence guarantees—namely,
convergence of the iterates to a critical point of the cost function
for the deterministic approach in He et al. (2010), and equilibrium
of the Markov chain for the stochastic approach in Schmid
(2011)—which is important for clinical applications of perfusion
quantification.

Our contributions are the following: (i) we propose a theoreti-
cally grounded spatio-temporal model for the PWI deconvolution
problem, (ii) we provide a globally convergent algorithm to solve
the associated optimization problem, and (iii) we show that our
approach outperforms the standard (temporal-only) deconvolution
methods using both synthetic and real data. Our experiments dem-
onstrate that the proposed method gives more accurate estimates
of the residue functions than do the reference TSVD approach
(Østergaard et al., 1996b,a) and temporal-only regularization—this
is all the more true when the signal-to-noise ratio (SNR) is low, as
is the case in necrotic and partially damaged tissues. In the syn-
thetic data case, the validation is performed in terms of the peak
SNRs of the computed residue functions and of the estimated
CBF, MTT and T max maps. In the real data case, we perform a recei-
ver operating characteristic (ROC) analysis using final infarct re-
gions delineated from follow-up imaging one month after the
stroke.

The paper is organized as follows. Section 2 outlines the medical
application field, Section 3 reviews spatio-temporal image models
in the context of PWI, and Section 4 describes the theoretical back-
ground for perfusion parameter estimation. Our spatio-temporal
model is presented in Section 5, where the PWI deconvolution
problem is formulated in terms of the minimization of a specific
cost function, and Section 6 is devoted to the construction of the
optimization algorithm along with the study of its convergence
properties. Section 8 describes the experimental setup and the cri-
teria considered for performance evaluation. Our experiments on
synthetic and real data are presented in Section 9, followed by con-
cluding remarks.
2. Medical context

Blood flow is critical to the functioning of any organ for it pro-
vides oxygen and essential nutrients. In the case of blood flow dis-
ruption in the brain, cerebral autoregulation seeks to maintain the
circulation by altering either the blood flow or the blood volume,
or both. There are some well-defined thresholds on the CBF in nor-
mal, partially damaged and necrotic tissues. For instance, in the
gray matter, the CBF ranges between 50 and 60 mL/100 g/min in
normal tissues (Gonzalez, 2006) and falls below 20 mL/100 g/min
in damaged regions. Severe reduction of the blood flow in a vessel,
or ischemia, is often caused by thrombosis or arterial embolism; it
leads to an interruption of the oxygen supply of the tissue perfused
by the clotted vessel and subsequently to a stroke. Consequently,
the primary goal of acute stroke treatment is to restore normal
blood flow as soon as possible. This is performed by the use of
thrombolytic drugs which must be administered as soon as possi-
ble to ensure the best chance of restoring the function of the dam-
aged tissues. Since the use of such drugs is contraindicated in
hemorrhagic stroke, early and accurate diagnosis is extremely
important.

PWI is used in combination with other imaging techniques
for guiding therapeutic decisions. It allows to determine which
areas of the brain are irreversibly injured from a stroke and
which areas remains at risk. By way of illustration, Fig. 1 shows
parameter maps extracted from a PWI exam of the brain of an
80-year-old male stroke patient (a CT angiography scan indi-
cated an occlusion of the sylvian segment of the middle cerebral
artery on the right side). The T max map reveals a damaged region
that corresponds to the most severely affected tissues, which is
also clearly visible in the MTT map. The interpretation of these
parametric maps guides the recanalization of the occluded
vessel.

PWI can be performed with or without contrast agent
(Luypaert et al., 2001). PWI with contrast agent often uses gad-
olinium-based tracers and is generally preferred over PWI with-
out contrast agent for its lower sensitivity to motion and its
higher SNR. Both spin echo (SE) and gradient echo (GRE) se-
quences have been applied successfully to PWI, but GRE is used
more frequently because it yields higher SNR (Heiland et al.,
1998; Wintermark et al., 2005). Perfusion signals vary over a
5–10 s period once the contrast-agent is released into the brain
tissues (which occurs 7–10 s after intravenous injection). There-
fore, fast imaging is required for accurate perfusion measure-
ments with sufficient time resolution. The PWI processing
pipeline is the following: first, the imaging sequence captures a
temporal series of perfusion volumes which constitutes a 4-D
spatio-temporal data-structure; second, the data structure is
used to generate functional maps of the in vivo hemodynamics
of the brain (Rosen et al., 1991), some examples of which are
displayed in Fig. 1; and third, the functional maps are used to
measure and to characterize the physiological parameters of
interest.
3. Related work

Spatio-temporal image models have been introduced recently
in the context of perfusion parameter estimation (He et al., 2010;
Schmid, 2011). These methods are briefly described below with
an emphasis on the differences with our approach.

In He et al. (2010), He et al. model the 4-D spatio-temporal
data-structure as a piecewise-smooth function without distinction
between spatial and temporal components. They use two regular-
ization terms: the first one penalizes the gradient within homoge-
neous 4-D regions and the second one penalizes the edge-field
representing the boundaries between these regions. Their ap-
proach is inspired from that of Mumford and Shah (1989), but is
eventually quite different from it and has no convergence guaran-
tee. By contrast, our method—described in the next three sections—
has the following advantages: (i) it distinguishes the temporal
dimension from the spatial dimensions, which allows to adjust
the strength of the regularization in the spatial domain indepen-
dently from that in the temporal domain; and (ii) it provides strong
convergence guarantees.

In Schmid (2011), Schmid models the spatial dependencies be-
tween contrast-agent concentration signals via a Bayesian model,
and he proposes to sample the resulting posterior distribution
using a Markov chain Monte Carlo (MCMC) method. This stochas-
tic approach is intrinsically different from ours, which is
deterministic, and is computationally much more expensive. To
fix ideas, the computation time reported in Schmid (2011) is 3–
5 min for processing a 108 � 256 slice on a standard quad-core
PC without parallelization, whereas the Matlab implementation
of our algorithm takes about one minute to process an entire
128 � 128 � 20 volume on a single core of a machine with an In-
tel Core 8 CPU (2.20 GHz) and 8 GB of RAM. Besides, there is no
practical bound on the mixing time of the Markov chain gener-
ated by the MCMC algorithm proposed by Schmid, which makes



Fig. 1. Examples of perfusion parameter maps. The ischemic stroke lesion is pointed out by arrows.

Table 1
Variables of the temporal contrast-agent concentration model given in (1).

Variable Known Unit Denomination

Cv(t) Yes mM Average contrast-agent concentration
qv Yes g/cm3 Mean density
CBFv No cm3/100 g/s Blood flow
Ca(t) Yes mM Arterial input function
Rv(t) No No unit Residue function
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the computation time very difficult to control. Our approach does
not have this drawback: the computation time is efficiently
controlled by adjusting the upper bound on the difference be-
tween subsequent iterates which is used for stopping the
algorithm.

4. Data formation model

4.1. Noise-free model

We use the standard perfusion model proposed in Østergaard
et al. (1996b). More precisely, the temporal signal Cv of the aver-
age contrast-agent concentration in a volume element v is ob-
tained by convolving the AIF Ca with the residue function Rv
representing the fraction of contrast agent still present in the cap-
illaries in v:

CvðtÞ ¼ aqvCBFv

Z t

0
CaðsÞRvðt � sÞ ds; ð1Þ

where qv is the brain tissue density in v, CBFv the regional blood
flow in v, and the constant a depends on the hematocrit levels in
the arteries and in the capillaries. Strictly speaking, a is a function
of v, but this dependency is usually ignored because it cannot be
determined in practice (Schreiber et al., 1998).

Eq. (1) is central for determining perfusion parameters in cere-
bral tissues—its variables are summarized in Table 1. The objective
is to estimate the signal CBFv � Rv by deconvolving its observation
Cv for each voxel v in a volume of interest. Given such an estimate,
CBFv is obtained by setting t = 0 (as Rv (0) = 1), and we can compute
the MTT using the central volume theorem (Meier and Zierler,
1954):
MTTv ¼
CBVv

CBFv
with CBVv ¼

R1
0 CvðtÞdtR1
0 CaðtÞdt

: ð2Þ
These parameters are supplemented by Tmax
v —the time needed for

the arterial blood to arrive in v—which is obtained by tracking the
maximum of the estimate of CBFv � Rv . We refer to Fieselmann
et al. (2011) for more details on the meaning and the computation
of perfusion parameters.
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4.2. Noise statistics

In practice, the observation of the contrast-agent concentration
signal Cv is obtained from the MR signal Sv in voxel v by assuming a
linear relationship with the change in the transverse relaxation
rate (Østergaard et al., 1996a):

DvðtÞ ¼ �
j
TE

ln
SvðtÞ
Svð0Þ

� �
; ð3Þ

where Dv denotes the observation of Cv, j is a constant, and TE is the
echo time. Fig. 2 displays typical observations of contrast-agent
concentration signals along with gamma-fits.

According to Gudbjartsson and Patz (1995), Sv(t) is the realiza-
tion of a random variable

XvðtÞ � RiceðAvðtÞ;rÞ; ð4Þ

where Av (t) is the intensity in the absence of noise and r is the stan-
dard deviation of the Gaussian noise in the real and imaginary parts
of the complex MR signal (we assume that r does not vary with
time). It can be observed that X � Riceðm;rÞ is approximately
Gaussian with mean m and standard deviation r if m P 3r, and that
lnX is approximately Gaussian with mean ln(m) and standard devi-
ation r/m if m P 10r. Therefore, if Av(t) P 10r for all t P 0, we can
use the model

DvðtÞ ¼ �
j
TE

ln
AvðtÞ
Avð0Þ

� �
þ fvðtÞ þ fvð0Þ

� �
; ð5Þ

where fv (t) is the realization of a random variable
YvðtÞ � N ð0;r2=A2

vðtÞÞ, or equivalently,

DvðtÞ ¼ CvðtÞ þ gvðtÞ; ð6Þ

where gv (t) is the realization of a random variable

ZvðtÞ � N ð0; 12
vðtÞÞ with 12

vðtÞ / r2 1

A2
vðtÞ
þ 1

A2
vð0Þ

 !
: ð7Þ

In the case of our application, Av (t) P 10r for all the voxels in
the background and independently of the sample time, which jus-
tifies the approximation of the noise by Gaussian random vari-
ables. The validity of this approximation is also supported by (i)
the graphical comparison of the histogram of the noise in healthy
tissues with a Gaussian distribution, as depicted in Fig. 3, and by
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5. Construction of the cost function

This section is devoted to the construction of the cost
function whose global minima define the set of solutions to our
spatio-temporal reconstruction approach to PWI; so we naturally
begin with the discretization of the data formation model (Sec-
tion 5.1). The proposed cost function is the sum of a data-fidelity
term, a temporal-regularization term and a spatial-regularization
term which are successively described in Sections 5.2, 5.3 and 5.4
along with compact notations that will be used in the sequel. The
global expression of the cost function is given in Section 5.5,
where we also establish useful properties for studying the conver-
gence of the proposed optimization algorithm.

5.1. Discretization

The spatial domain is partitioned into a set of voxels {vk;
k 2 s1,Kt} (sa,bt is a shorthand notation for fn 2 Z ja 6 n 6 bg),
and the contrast-agent concentration signals Cv1 ; . . . ;CvK associated
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with these voxels (see (1)) are sampled with a temporal sampling
period Dt. The temporal samples are indexed by n, and we let N
denote the number of samples of each signal Cvk

. For simplicity,
we set Ck :¼ Cvk

;Rk :¼ Rvk
and Fk :¼ CBFvk

for all k. Then, letting
tn :¼ nDt for all n, the discrete signal (Ck(tn))n2s1,Nt associated to a
voxel vk is defined by

CkðtnÞ :¼ Cvk
ðnDtÞ ¼ aqkFk

Z nDt

0
CaðsÞRkðnDt � sÞ ds: ð8Þ

We consider the discrete data formation model defined by the trap-
ezoidal approximation to this integral: since Ca(0) = 0 and Rk (0) = 1,
we have

Ckðt1Þ� 1
2aqkFkDtCaðt1Þ;

8n2 s2;Nt; CkðtnÞ�aqkFkDt
1
2CaðtnÞ þ

X
i2s1;n�1t

CaðtiÞRkðtn� tiÞ
 !

;

8>><>>:
ð9Þ

or, equivalently, in matrix notation,
ck � aqkFkDtCark ð10Þ

with ck = [Ck(t1), . . . , Ck(tN)]T, rk = [1, Rk(t1), . . . , Rk(tN�1)]T and

Ca ¼

1
2 Caðt1Þ 0 0 � � � 0
1
2 Caðt2Þ Caðt1Þ 0 � � � 0
1
2 Caðt3Þ Caðt2Þ Caðt1Þ � � � 0

..

. ..
. ..

. . .
. ..

.

1
2 CaðtNÞ CaðtN�1Þ CaðtN�2Þ � � � Caðt1Þ

0BBBBBBB@

1CCCCCCCA: ð11Þ
5.2. Data fidelity

As emphasized in Section 4.2, we assume that the data are cor-
rupted by additive Gaussian noise. Therefore, for each voxel
k 2 s1,Kt, we have the discrete temporal signal

dk ¼ ck þ gk; ð12Þ

where ck is defined in (10) and the components gk,1, . . . , gk,N of gk

are the realizations of identically distributed zero-mean Gaussian
random variables. Since our goal is to estimate the signals
Fkrk =: fk, a natural choice for the data-fidelity term is given by

Uðf 1; . . . ; f KÞ ¼
X

k2s1;Kt

kaqkDtCaf k � dkk2
2; ð13Þ

where k � k2 denotes the ‘2-norm. Assuming equality in (10), any
minimizer of U is a maximum-likelihood estimate of (F1r1, . . . ,
FKrK), but such solutions are unacceptable because the convolution
matrix Ca is ill-conditioned. This is a consequence of the particular
structure of Ca (triangular and almost Toeplitz) together with the
fact that the first few coefficients of the signal Ca(t1), . . . , Ca(tN) are
close to zero and that this signal is increasing on s1,n0t with
Caðtn0 Þ ¼ supn2s1;NtCaðtnÞ � Caðt1Þ.

For simplicity, we will use the following compact notation in
the remainder of the paper:

Uðf Þ ¼ kHf � dk2
2; ð14Þ

where f is the vertical concatenation of the fk’s, d is the vertical con-
catenation of the dk’s, and the ‘‘data-fidelity matrix’’ H is the block-
diagonal concatenation of the matrices aqkDtCa; that is,

f ¼

f 1

..

.

f K

0BB@
1CCA; d ¼

d1

..

.

dK

0BB@
1CCA and H ¼ aDt diag q1Ca; . . . ;qK Cað Þ

ð15Þ
(f and d are of size KN � 1 and H is of size KN � KN).
5.3. Temporal regularization

From a physiological standpoint, the true (continuous) residue
functions are smooth, which suggests to use ‘2-regularization
along the temporal dimension. Therefore, we define the
temporal-regularization term as the sum of the squared ‘2-norms
of the temporal-derivative signals:

Wtðf Þ ¼
X

k2s1;Kt

X
n2s2;Nt

fk;n � fk;n�1

Dt

� �2

; ð16Þ

where fk,n denotes the nth sample (or component) of fk. Besides the
fact that temporal ‘2-regularization is fully justified, it will be made
clear in Section 5.5 that it has two important advantages: first, it en-
sures the existence of a solution to our reconstruction problem, and
second, it guarantees that this problem is well-posed if the spatial-
regularization term is convex.

The compact expression of Wt is

Wtðf Þ ¼ kTf k2
2; ð17Þ

where the ‘‘temporal-differences matrix’’ T is defined by

T ¼ diag ðDt; . . . ;Dt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
K times

Þ with Dt ¼
1
Dt

�1 1
�1 1 0

. .
. . .

.

0 �1 1

0BBBB@
1CCCCA
ð18Þ

(Dt is of size (N � 1) � N and thus T is of size K(N � 1) � KN).

5.4. Spatial regularization

The construction of the spatial-regularization term is based on
the following observations: on the one hand, the time-concentra-
tion signals at some neighboring voxels vk and vl are similar if both
vk and vl belong to a healthy tissue region, and on the other hand,
these signals can be very different if either vk or vl or both are in a
damaged tissue region. In other words, we have to deal with two
opposed situations: (i) when Fkrk � Flrl, as observed in healthy tis-
sues, and (ii) when Fkrk,n is significantly different from Flrl,n for most
n, which occurs in damaged tissues or at the interfaces between
healthy and damaged tissues. This suggests to use discontinuity-
preserving regularization (rather than ‘2-regularization) in the spa-
tial domain. Another argument in favor of this choice is that piece-
wise-smoothness in the spatial domain is consistent with clinical
practice; indeed, brain tissues are usually classified by threshold-
ing perfusion parameters, which produces homogeneous spa-
tially-connected regions reflecting the cerebral hemodynamics.

Let N be a neighborhood system on the set of voxel indices—that
is, N ¼ fNðkÞ; k 2 s1;Ktg is a collection of subsets of s1,Kt such
that, for all ðk; lÞ 2 s1;Kt

2
; k R NðkÞ and l 2 NðkÞ () k 2 NðlÞ—and

let J ¼ fðk; lÞ 2 s1;Kt
2 j l 2 NðkÞg be the set of neighboring voxel

pairs. The proposed spatial-regularization term is of the form

Wsðf Þ ¼
X
ðk;lÞ2J

X
n2s1;Nt

w
fk;n � fl;n

kck � clk2

� �
; ð19Þ

where ck denotes the center of voxel k and w : R! R is even and
increasing in Rþ. In the case of isotropic spatial sampling, a natural
way to define the neighborhood system N is to let NðkÞ be the set of
indices of the voxels whose center is in a closed ball centered at ck.
In the case of anisotropic spatial sampling, this generalizes to

NðkÞ ¼ l 2 s1;Kt j 0 < kdiagðD�1
x ;D�1

y ;D�1
z Þðck � clÞk 6 r

n o
; ð20Þ

where Dx, Dy and Dz denote the resolutions along the spatial
dimensions, and where the norm k � k and the radius r > 0 are



C. Frindel et al. / Medical Image Analysis 18 (2014) 144–160 149
independent of k. In our experiments, we will use the 26-nearest
neighborhood system, which is defined by k � k = k � k1 (the maxi-
mum norm on R3) and r ¼

ffiffiffi
3
p

.
Borrowing from the terminology of Markov random field mod-

eling, we call w a potential function (PF). From the optimization
point of view, a very convenient choice is w(u) = u2, which corre-
sponds to ‘2-regularization. However, the quadratic PF produces
unsatisfactory results because it unduly penalizes large spatial gra-
dients and thus precludes the formation of discontinuities at the
interfaces between healthy and damaged regions. Many forms of
PF have been proposed in the literature to overcome this limita-
tion, with a dichotomy between convex and non-convex functions.
Convex PFs preserve discontinuities in the sense that they reduce
(but not eliminate) smoothing in their vicinity (Charbonnier
et al., 1997); they are usually nearly affine beyond a neighborhood
of the origin. A well-known example is

w1;dðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ d2

q
� d; ð21Þ

where d > 0 (this function is often used for obtaining a differentiable
approximation to total-variation regularization (Rodríguez and
Wohlberg, 2009), in which case d is small compared to the width
of the range of the original image). Non-convex PFs detect disconti-
nuities in the sense that they yield solutions whose gradient magni-
tudes are either below a threshold h0 > 0 or above another threshold
h1 > h0, but not in between (Nikolova, 2005). However, the price to
pay is an increase in optimization difficulty compared to the convex
case. Two typical examples of non-convex PFs are

w2;dðuÞ ¼ ln 1þ ðu=dÞ2
� �

and w3;dðuÞ ¼
u2

d2 þ u2
; ð22Þ

which were originally proposed in Hebert and Leahy (1989) and
Geman et al. (1985), respectively. The main difference between
these two functions lie in their behavior at infinity: we have
limu?+1w2,d(u) = +1, whereas w3,d is bounded. Consequently,
w2,d should be preferred over w3,d in terms of optimization diffi-
culty, but w3,d is expected to produce sharper discontinuities than
w2,d does.

The compact expression of Ws is less obvious than that of Wt.
For any ðk; lÞ 2 J, we let D(k,l) be the N � KN finite-difference matrix
defined by

Dðk;lÞ f ¼
1

kck � clk2

fk;1 � fl;1

..

.

fk;N � fl;N

0BB@
1CCA; ð23Þ

and we define the ‘‘spatial-differences matrix’’ S to be the vertical
concatenation of the D(k,l)’s:

S ¼

Dpð1Þ

..

.

Dpð JÞ

0BB@
1CCA; ð24Þ

where J ¼ 1
2

P
k2s1;Kt j NðkÞ j is the cardinality of J and p is any bijec-

tion from s1, Jt to J. Then,

Wsðf Þ ¼
X

i2s1; JNt

w Si fð Þ; ð25Þ

where Si denotes the ith row of S.

5.5. Global cost function

Using the compact notations, the global cost function
X : RKN ! R is given by

Xð f Þ ¼ Uð f Þ þ ktWtð f Þ þ ksWsð f Þ

¼ kHf � dk2
2 þ ktkTf k2

2 þ ks

X
i2s1; JNt

w Si fð Þ; ð26Þ
where the so-called smoothing parameters kt > 0 and ks P 0 adjust
the regularization strength in the temporal dimension and in the
spatial domain, respectively. As mentioned in Section 5.3, temporal
‘2-regularization imparts important properties to X. These proper-
ties are stated in Propositions 1–3 below, whose proofs are given in
Appendix A.

Proposition 1. X is coercive, that is, limkfk?1X(f) = +1.
Proposition 2. If w is convex, then X is strictly convex.
Proposition 3. Assume that w is non-convex and twice differentiable.
Let

CðwÞ ¼ � inf
u2R

w00ðuÞ ð27Þ

be the maximal concavity of w, and let eH be the vertical concatenation
of H and

ffiffiffiffi
kt
p

T. Then, X is strictly convex if

ks <
2

CðwÞ
linfðeHÞ
lsupðSÞ

 !2

¼: k�s ; ð28Þ

where linfðeHÞ and lsup(S) denote the smallest and largest singular val-

ues of eH and S, respectively.

In the remainder of this paper, we assume that w is differentia-
ble. Consequently, X is differentiable, and thus the set of solutions
to the minimization of X belongs to the set of stationary points of
X, that is,

Xðf �Þ ¼ inf
f2RKN

Xðf Þ ) rXðf �Þ ¼ 0: ð29Þ

Proposition 1 ensures that X has a global minimum, which means
that our optimization problem has a solution. If w is convex, it fol-
lows from Proposition 2 that X has a unique stationary point and
that this point is the global minimum f ⁄ of X, that is,
rX( f ) = 0, f = f ⁄. Therefore, we propose to search for a minimum
of X using a fixed-point iteration scheme to solve the equation
rX( f ) = 0. We describe our deterministic relaxation algorithm in
the next section, where we also study its convergence properties
in both the convex and non-convex cases. But before that, let us
briefly discuss the implications of Proposition 3. Simply speaking,
this proposition states that for any non-convex, twice-differentia-
ble PF w and any kt > 0, there exists k�s > 0 such that X is strictly
convex for all ks 2 ½0; k�sÞ. Hence, the ratio ks=k

�
s can be interpreted

as a measure of the difficulty in minimizing X: the larger ks=k
�
s ,

the higher the difficulty, and conversely, the closer ks=k
�
s is to zero,

the easier the optimization problem. This leads to the following
relationships between the optimization difficulty and the compo-
nents of X (the convergence analysis for the convex-case in Sec-
tion 6.2.1 leads to similar conclusions in terms of convergence
speed). First, and obviously, the difficulty increases with the
spatial-regularization strength. Second, the greater the maximum
concavity of w, the greater the difficulty. For instance, for the
non-convex PFs defined in (22), we have C(w2,d) = 1/(4d2) and
C(w3,d) = 1/(2d2), which suggests that w2,d should be preferred over
w3,d and that the difficulty decreases with increasing d (this latter
point is not surprising, since d adjusts the size of the symmetric
intervals where w2,d and w3,d behave like quadratic functions).
Third, the difficulty increases with linfðeHÞ, or, equivalently, the
better the conditioning of Ca and the larger kt, the easier the min-
imization of X.
6. Deterministic relaxation

6.1. Construction of the algorithm

We assume that the PF w satisfies the following conditions:
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C1. w is strictly increasing on Rþ, even, and differentiable.
C2. w00(0+) exists and is positive, and limu?+1w0(u)/u = 0.

Conditions of type C1 are standard in regularized reconstruction
and conditions of type C2 guarantee edge-preservation properties
(Charbonnier et al., 1997; Li, 1998); they are all satisfied by the
PFs w1,d, w2,d and w3,d defined in (21) and (22). We let
wy : R! ð0;þ1Þ be the so-called interaction function defined by

wyðuÞ ¼
w0ðuÞ=u if u – 0;
w00ð0þÞ if u ¼ 0:

�
ð30Þ

It is easy to check that

rXðf Þ ¼ 0() ð2HT Hþ 2ktT
T Tþ ksS

T Eð f ÞS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼: Mð f Þ

Þ f ¼ 2HT d; ð31Þ

where Eðf Þ ¼ diagðwyðS1 f Þ; . . . ;wyðSJN f ÞÞ: ð32Þ

By (50) (see Appendix A), and because w�(u) > 0 for all u, the sym-
metric matrix M(f) is positive definite and hence invertible. There-
fore, rX(f) = 0 () N(f) = f with N : RKN ! R defined by
N(f) = 2(M(f))�1HTd. This suggests the following iterative relaxa-
tion algorithm:

AX 	
f ð0Þ 2 RKN;

8p 2 N; f ðpþ1Þ ¼ 2ðMð f ðpÞÞÞ
�1

HT d:

(
ð33Þ

This fixed-point iteration scheme can be equivalently written as

f ðpþ1Þ ¼ arg inf
f2RKN

X0ð f ; eð f ðpÞÞÞ; ð34Þ

where the functions e : RKN ! ð0;þ1ÞJN and X0 : RKN�
ð0;þ1Þ JN ! R are defined by

X0ðf ; eÞ ¼ 2kHf � dk2
2 þ 2ktkTf k2

2 þ ks

X
i2s1; JNt

eiðSi f Þ2 ð35Þ

and eð f Þ ¼ ½wyðS1 f Þ; . . . ;wyðSJN f Þ
T : ð36Þ

For any e 2 (0,+1)JN, the map X0ð�; eÞ : f 2 RKN#X0ð f ; eÞ is a posi-
tive definite quadratic function, and thus AX belongs to the well-
known class of half-quadratic regularization algorithms (Charbon-
nier et al., 1997; Nikolova and Ng, 2005; Allain et al., 2006; Robini
et al., 2013). (Even more specifically, AX belongs to the subclass
of half-quadratic algorithms of the multiplicative form originally
introduced in Geman and Reynolds (1992).)

Each iteration of AX solves a KN � KN linear system with sym-
metric positive matrix of the form of M(f) defined in (31). These
matrices have at most KNðN þ n� 1Þ non-zero coefficients, where
n :¼ supk j NðkÞ j is the maximum size of the neighborhoods used
in the spatial-regularization term. Because of this very sparse
structure (the sparsity ratio is of the order of 1/K), and because N
is not too large in clinical applications (the contrast-agent concen-
tration signals are measured over a period of about one minute
with a sampling period close to one second), the update equation
of AX can be solved exactly and efficiently using Cholesky
decomposition. Furthermore, stability is ensured by the fact that
the matrix TTT is weakly diagonally dominant.

6.2. Convergence properties

Let eH be as in Proposition 3 and let ed be the vertical concatena-
tion of d with the all-zero column vector of length K(N-1), that is,

eH ¼ Hffiffiffiffi
kt
p

T

� �
and ed ¼ d

0

� �
: ð37Þ

We can write X in the standard form
Xðf Þ ¼ keHf � edk2
2 þ ks

X
i

w Si fð Þ; ð38Þ

and it follows that the convergence results derived in Charbonnier
et al. (1997), Nikolova and Ng (2005), Allain et al. (2006), and Robini
et al. (2013) apply to AX. The two following subsections examine
the cases when w is convex and non-convex.

6.2.1. Convex case
Convergence results for the convex case are given in Charbon-

nier et al. (1997), Nikolova and Ng (2005), and Allain et al.
(2006) under smoothness assumptions on w (in addition to C1
and C2) and if one of the following conditions hold: (i) eH has full
rank Charbonnier et al. (1997); (ii) eHT eH is invertible Nikolova
and Ng (2005); and (iii) eHT eH þ ksST S is invertible Allain et al.
(2006). In fact, since eHT eH is positive definite by the proof of Prop-
osition 1 (see Appendix A), all these conditions are satisfied. The
global convergence result with the weakest assumptions on w is
given by Propositions 8 and 9 in Allain et al. (2006), from which
we readily deduce the following theorem.

Theorem 1. Assume that conditions C1 and C2 are satisfied and that

C3. w is convex and C1;
C4. w� is decreasing on Rþ.

Then, any sequence (f (p))p generated by AX converges to the global
minimum of X.

If, in addition to C1–C4, w is C2 and w is C3 in a neighborhood of
zero, then Corollary 2.5 in Nikolova and Ng (2005) gives an upper
bound on the root-convergence factor

RðAXÞ ¼ sup lim sup
p!1

k f ðpÞ � f �k1=p : ð f ðpÞÞp generated by AX

� 	
;

ð39Þ

where f ⁄ denotes the global minimum of X. If w = w1,d, this upper
bound is given by

RðAXÞ 6
ksl2

supðSÞ
2dl2

inf ðeHÞ þ ksl2
supðSÞ

 !
j2

d2 þ j2

� �
; ð40Þ

where j = supi2s1, JNtjSi f ⁄j. The consequences of this inequality
agree with the implications of Proposition 3 for the non-convex
case: (i) the convergence speed decreases with increasing spatial-
regularization strength, (ii) the convergence is faster when the scale
parameter d is large, and (iii) the convergence speed increases when
the condition number of Ca decreases and when the temporal-
regularization strength increases.

6.2.2. Non-convex case
The convergence results for the non-convex case are summa-

rized in Theorem 2 below, whose proof can be found in (Robini
et al., 2013). We denote by S the set of stationary points of X, that
is,

S ¼ f 2 RKNjrXð f Þ ¼ 0

 �

: ð41Þ

We call g 2 S isolated if

9a > 0; 8f 2 S n fgg; k f � gkP a; ð42Þ

and we say that S is discrete if all its points are isolated.

Theorem 2. Assume that conditions C1 and C2 are satisfied and that

C30. w is non-convex and twice differentiable;
C40. w000(0) = 0 and w is four times differentiable at zero;
C50. w� is strictly decreasing on Rþ.
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Let ( f (p))p be any sequence generated by AX.

(I) If X is strictly convex, then ( f (p))p converges to the global
minimum of X.

(II) If S is discrete, then there exists g 2 S such that
limp?1 f (p) = g.

(III) Let g be an isolated stationary point of X. If g is a local
minimum of X, then there exists an open neighborhood U of
g such that ( f (p))p converges to g if f (0) 2 U.

(IV) There exists g 2 S such that limp?1X(f (p)) = X(g), and for any
Fig. 4. S
to healt
p 2 N;Xð f ðpþ1ÞÞ 6 Xð f ðpÞÞ with equality if and only if f ðpÞ 2 S.

(V) limp!1infg2Sk f ðpÞ � gk ¼ 0.

(Remark. It is further assumed in Robini et al. (2013) that
limu?+1w(u) = +1, so that X is coercive, but this condition is not
needed here because coercivity is ensured by temporal ‘2-regulari-
zation, as shown in the proof of Proposition 1 (see Appendix A).)

Assume that C1, C2 and C30–C50 hold, which is the case for
w2,d and w3,d in (22). Then it follows from (I) and Proposition 3
that (28) is a sufficient condition for global convergence. If X
is not strictly convex, we have from (II) that the algorithm con-
verges to a stationary point if S is discrete, but it can be ob-
jected that limp?1X( f (p)) may be a maximum or a saddle
point. However, this situation is very unlikely because any iso-
lated stationary point that is a minimum is an attractor (by
(III)), whereas maxima and saddle points are unstable. Indeed,
imulated CBF map (cm3/100 g/s). Regions A and B respectively correspond
hy and damaged tissues.

Fig. 5. Simulated residue functions and contrast-agent concentrations in
from (IV), any small perturbation away from an isolated station-
ary point that is not a minimum—including the round-off errors
in floating-point arithmetic—will eventually move the iterates
away from this point. In this light, we can agree that the algo-
rithm behaves well if ( f (p))p gets arbitrarily close to S, which
is guaranteed by (V). This includes the worst-case scenario when
S is not discrete and ( f (p))p does not converge, but this specific
situation can be interpreted as a failure in the design of the spa-
tial-regularization term, as it can be shown then that S contains
a non-empty continuum.

7. Experimental setup

This section describes the synthetic and real data considered in
our experiments together with the measures used to compare the
performances of the competing algorithms.

7.1. Synthetic data

We generated a 50 � 50 slice of perfusion signals with two
homogeneous regions corresponding to healthy and damaged
brain tissues, as illustrated in Figs. 4 and 5 (the spatial resolution
is 1.875 mm in both directions and the temporal resolution is
(1 s). The contrast-agent concentration signals Ck are simulated
using (1), and the AIF Ca is modeled by the gamma-variate function
used in Mouridsen et al. (2006) and He et al. (2010), that is,

CaðtÞ ¼
0 if t < 0;
atb expð�t=cÞ if t P 0;

�
ð43Þ

where a = 1, b = 3, and c = 1.5 s (this setting gives an AIF similar to
that obtained with a standard injection scheme). The residue func-
tions Rk are modeled by boxcar functions, as in Østergaard et al.
(1996b):

RkðtÞ ¼
1 if t 6MTTk;

0 if t > MTTk;

�
ð44Þ

where MTTk can take two different values depending on whether
the voxel vk is in the healthy region A or in the damaged region B.
The CBV is set to 4 mL/100 g, and CBFk is set to 80 mL/100 g/min
if vk 2 A and 20 mL/100 g/min if vk 2 B. Therefore, according to (2),
MTTk = 3 s if vk 2 A and MTTk = 12 s if vk 2 B.

Finally, the synthetic data is obtained by adding Gaussian noise
to the simulated average contrast-agent concentration signals. The
noise level is measured by the SNR in the data defined by
the healthy (dashed blue line) and damaged (red plain line) regions.
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SNRdB ¼ 20 log10
Cmax

r

� �
; ð45Þ

where Cmax = sup{Ck(tn); k 2 s1,Kt, n 2 s1,Nt} is the maximum con-
trast-agent concentration and r is the noise standard-deviation. In
our experiments on synthetic data, the SNR is 22.6 dB unless stated
otherwise (this is the average noise level observed in our real data).

7.2. Clinically acquired human MRI data

Our real data consist of perfusion-weighted MR volumes ob-
tained from patients with acute ischemic stroke (due to middle
cerebral artery occlusion) within 3 h of symptom onset. They were
acquired on a 1.5 T clinical whole-body scanner (Siemens Avanto)
using a gradient echo sequence (TR = 1540 ms, TE = 30 ms). For
each patient, the data set is a 128 � 128 � 20 voxel volume repre-
senting a 240 � 240 � 214 mm3 region (the 128 � 128 slices are
5 mm thick and consecutive slices are separated by 6 mm gaps),
each voxel being associated to a discrete contrast-agent concentra-
tion signal of length N = 60 with sampling period Dt = 1.2 s. We
also have the final infarct region delineated by a physician from
one month follow-up T2 FLAIR imaging (T2 FLAIR images are ob-
tained via an inversion-recovery pulse sequence that removes
the signal from fluids and hence renders damaged tissues hyperin-
tense). This final infarct region will play the role of perfect classifi-
cation for performing a ROC analysis, which is justified by the
study reported in Rivers et al. (2006).

7.3. Performance evaluation

We compare the performances of three algorithms: TSVD
deconvolution, deconvolution using temporal regularization, and
reconstruction with spatio-temporal regularization. For fair com-
parison, the hyper-parameters of these algorithms (namely, the
SVD threshold and the temporal and spatial smoothing parameters
kt and ks) are selected to obtain the best solutions in terms of peak
SNR (PSNR) in the case of the synthetic data and in terms of ROC
analysis in the case of the real data. The performances are evalu-
ated at each stage of the processing pipeline using (i) the PSNR
of the computed solutions; (ii) the PSNRs of the CBF, MTT and T max

maps estimated from the computed solutions; and (iii) ROC
parameters measuring closeness to perfect classification.

7.3.1. PSNR measurements
In the case of the synthetic data, the true CBF values and the

true residue functions are known, and it is therefore possible to
measure directly the quality of the computed solutionbf ¼ ðbf 1; . . . ; bf KÞ. We consider two measures. The first one is the
PSNR of bf in a given region of interest (i.e., healthy tissues, dam-
aged tissues, or healthy + damaged tissues), which is defined by

PSNRdB ¼ 10 log10
jMj Nf 2

maxX
k2M

���bf k � Fkrk

���2

2

0BBB@
1CCCA; ð46Þ

whereM� s1;Kt is the set of indices of the voxels in the region of
interest, Fk and rk are the true CBF value and residue function at
voxel k, and fmax ¼ sup FkrkðtnÞ; k 2M;n 2 s1;Ntf g. The second mea-
sure is the PSNR of the estimate bP (computed from bf ) of a paramet-
ric map P ¼ fPvk

; k 2Mg:

PSNRdB ¼ 10 log10
jMj ðsupk2MPvk

Þ2X
k2M

bPvk
� Pvk

� �2

0BBB@
1CCCA; ð47Þ

where P = CBF, MTT or T max.
7.3.2. ROC analysis
In the case of the real data, we perform a ROC analysis to com-

pare the predictive power of the T max maps estimated from the
solutions computed by TSVD and spatio-temporal reconstruction
(ROC analysis has previously been used for acute stroke MRI study
in Christensen et al. (2009)). The performance is measured from
the ROC curve, which plots the true positive rate (TPR) versus
the false positive rate (FPR) associated with a moving threshold
on the T max values. More precisely, let I be the set of voxels in
the final infarct region obtained from follow-up T2 FLAIR imaging,
let V be the set of voxels in the whole tissue region, and let bI ðsÞ be
the set of voxels whose estimated T max value is greater than s. The
ROC curve is the parametric curve s 2 [0,+1) ´ (FPR(s),TPR
(s)) 2 [0,1]2, where

FPRðsÞ ¼ j
bI ðsÞ \ ðV n IÞ j
j V n I j and TPRðsÞ ¼ j

bI ðsÞ \ I j
j I j : ð48Þ

A perfect classifier would yield FPR = 0 and TPR = 1, whereas ran-
dom guessing gives FPR = TPR. Our performance measures are the
area under the ROC curve (AUC) and the minimum distance to per-
fect classification

MDPC ¼ inf
sP0

dHðsÞ; dHðsÞ ¼ kðFPRðsÞ;TPRðsÞÞ � ð0;1Þk2: ð49Þ

The closer the AUC is to one and/or the closer MDPC is to zero, the
higher the predictive power.
8. Results

8.1. Synthetic data

In this section, we compare the performances of the competing
algorithms via PSNR measurements reflecting the quality of the
estimated residue functions and of the associated parametric
maps. We show (both quantitatively and qualitatively) that tempo-
ral regularization outperforms TSVD and that spatio-temporal reg-
ularization outperforms temporal regularization, and we compare
convex and non-convex spatial regularization. The computation
times given in the sequel correspond to Matlab implementations
run on a single core of an Intel core i7 2.2 GHz laptop with 8 GB
RAM.

8.1.1. Comparison in terms of residue functions
For accurate evaluation of the performance of the proposed spa-

tio-temporal reconstruction approach, we first need to find appro-
priate values for the spatial and temporal smoothing parameters ks

and kt. To do so, we set these parameters to the values that give the
best PSNR in terms of residue functions. From now on, we consider
the convex PF w1 and the non-convex PF w2 defined in (21) and
(22).

Fig. 6 displays the PSNR as a function of (ks,kt), and Fig. 7 shows
the PSNR as a function of ks for a few fixed values of kt. Predictably
enough, too large values of ks give over-smooth solutions, as is the
case for too large values of kt when ks is fixed. Compared to tempo-
ral regularization (i.e., ks = 0), spatio-temporal regularization yields
up to a 9 dB improvement in PSNR and produces better solutions
for any ks in an interval of the form (0,K), where K increases as
kt decreases.

Table 2 gives the PSNR values associated with the estimates
computed by the competing algorithms. Our spatio-temporal ap-
proach produces solutions in excellent agreement with the true
residues in both healthy and damaged tissue regions, and it signif-
icantly outperforms TSVD deconvolution which has difficulty in
recovering low-flow residue signals. In all cases, the PSNR in dam-
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Optimal temporal
deconvolution

TSVD

Optimal temporal
deconvolution

Fig. 6. PSNR of the residues as a function of the smoothing parameters ks and kt (the SNR in the data is 22.6 dB). The PSNR values obtained by TSVD and by optimal temporal
deconvolution are indicated on the color bars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. PSNR vs. ks curves for different values of kt (the SNR in the data is 22.6 dB): kt = 1 (blue), kt = 5 (green), kt = 50 (magenta), kt = 1000 (red), and kt = 5000 (purple). The
dotted and solid lines correspond to TSVD and to optimal temporal deconvolution, respectively.
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aged tissues is lower than that in healthy tissues; the reason is that
the blood flow is lower in damaged than in healthy tissues, which
translates to lower SNR in damaged regions. Nevertheless, the
PSNR obtained by spatio-temporal regularization in the damaged
region is about 9 dB higher than that obtained by TSVD in the
healthy region.

Fig. 8 displays the optimal PSNR values as a function of the SNR
in the data. Spatio-temporal regularization significantly outper-



Table 2
PSNR (dB) of the residue functions (the SNR in the data is 22.6 dB).

Method Healthy
tissue

Damaged
tissue

All
tissue

TSVD 14.41 10.82 13.82
Temporal deconvolution 18.40 16.72 16.58
Spatio-temporal reconstruction

with w1

24.02 21.52 22.51

Spatio-temporal reconstruction
with w2

27.15 23.37 25.13
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Fig. 8. Optimal PSNR of the residues as a function of the SNR in the data: TSVD
(green), temporal deconvolution (magenta), spatio-temporal reconstruction with
w1 (blue), spatio-temporal reconstruction with w2 (red). The dotted line indicates
the SNR in our clinical data. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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forms TSVD over the whole range of SNR values, and, as one would
expect, the PSNR increases with the SNR in all cases. Compared to
convex reconstruction, non-convex reconstruction is more inter-
esting when the SNR is below 40 dB, but there is a price for this:
the computation time ranges between 5 s (SNR = 60 dB) and 25s
(SNR = �20 dB) when using the convex PF u1, whereas it ranges
Fig. 9. Estimation of the CBF distribution displayed in (A) ((t = 5),s) for two different valu
distributions obtained by TSVD; (C) and (F) were obtained by convex spatio-tempora
reconstruction. Note that negative values are reconstruction artifacts without physical m
between 35 s and 135 s when using the non-convex PF u2. There-
fore, non-convex reconstruction should be preferred in low SNR
situations which occur when increasing temporal and/or spatial
resolutions. For the noise level observed in our clinical data
(SNR � 22.60 dB), the convex and non-convex reconstruction ap-
proaches perform similarly, and thus we will stick to the convex
case for our experiments on real data in Section 8.2.

We complete our quantitative performance analysis by a qual-
itative inspection of the solutions produced by TSVD deconvolution
and by our spatio-temporal reconstruction algorithm. Figs. 9 and
10 show the estimated flow residues at time t = 5 s and plots of
their middle rows. The solutions obtained by spatio-temporal
reconstruction (either convex or non-convex) are of much higher
quality than those obtained by TSVD. We also observe that non-
convex reconstruction outperforms convex reconstruction in terms
of edge preservation: compared to the convex case, non-convex
reconstruction produces sharper edges and does not fail to recover
edges when the SNR is low.

Finally, Fig. 11 displays typical examples of flow residue signals
in the healthy and damaged regions estimated from the data with
22.60 dB SNR. In both tissue classes, the signal computed by TSVD
shows large oscillations which translate to large negative values
without physical meaning. This unwanted effect is much less
prominent in the case of temporal deconvolution and further
attenuated when using spatio-temporal reconstruction (the exam-
ple shown corresponds to the convex case).
8.1.2. Comparison in terms of parametric maps
Fig. 12 shows the CBF, MTT and T max maps computed from the

perfusion volume estimates produced by the competing algo-
rithms from the data with 22.60 dB SNR. In the case of TSVD decon-
volution, all three maps are very noisy in both the healthy and
damaged tissue regions, and it is almost impossible to distinguish
these two tissue classes in terms of CBF or MTT. By contrast, the
CBF and T max maps computed from the temporal deconvolution
estimate are less noisy than those obtained via TSVD, and temporal
deconvolution allows us to discriminate damaged from healthy tis-
sues in terms of CBF. As the maps associated with spatio-temporal
reconstruction show, the quality of the parametric estimates is sig-
nificantly improved by exploiting the coherence between the flow
es of the SNR in the data: (B–D) 22.6 dB; (E–G) 2.5 dB. Figures (B) and (E) show the
l reconstruction; and (D) and (G) were obtained by non-convex spatio-temporal

eaning—they are set to zero in practice.
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Fig. 10. Intensity profiles (middle rows) of the CBF distributions shown Fig. 9(A, C, D, F, and G): true CBF distribution (red); convex spatio-temporal reconstruction (green);
and non-convex spatio-temporal reconstruction (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 11. Example residue functions obtained by the competing algorithms.
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residue signals of neighboring voxels: (i) the healthy and damaged
regions are smooth in all three cases; (ii) healthy and damaged tis-
sues are separated by a sharp discontinuity in the CBF and Tmax

maps; and (iii) damaged tissues can be distinguished from the
healthy ones in the MTT map even though its contrast is low. These
qualitative observations are supported by the PSNR measurements
given in Table 3: for the three considered parameters, spatio-tem-
poral reconstruction outperforms both TSVD and temporal
deconvolution.

8.2. Real data

In the real data case, the true residues are unknown, and thus
we cannot rely on PSNR measurements to tune the hyper-parame-
ters of the algorithms. We circumvent this difficulty by selecting
the values that best predict the final infarct in terms of ROC anal-
ysis (see Section 7.3.2). Besides, the AIF must be estimated: we do
so by averaging the six sharpest contrast-agent signals in the ante-
rior cerebral artery, where by sharp we mean small Tmax, narrow
peak width, and large peak amplitude.

Fig. 13 shows the estimated flow residues at time t = 9.6 s for
different data sets obtained using the protocol outlined in Sec-
tion 8.2. (For each data set, the processing of the entire
128 � 128 � 20 volume of contrast-agent concentration signals
takes 1–2 min using TSVD and 3–4 min using spatio-temporal
reconstruction.) We observe that spatio-temporal reconstruction
yields significant improvements over TSVD: not only the healthy
tissue regions are smoother, but also the ischemic injury regions
are better delineated.

In common practice, the final infarct region is defined as the set
of voxels whose Tmax value is above a given threshold (Nagakane
et al., 2012). Instead of setting this threshold empirically, we ex-
plore a continuous spectrum of threshold values using ROC curves
and we choose the value sroc that gives the closest point to perfect
classification, that is, sroc ¼ arg infsP0dHðsÞwith dw defined in (49).
This allows us to measure the quality of a solution by comparing
the associated estimated infarct region bI ðsrocÞ to the infarct region
I delineated manually from follow-up T2 FLAIR imaging. The ROC
curves and the classification results obtained for the different data
sets are displayed in Fig. 14. We observe that the ROC curves asso-
ciated with spatio-temporal reconstruction are almost always
above those obtained via TSVD, which shows that spatio- temporal
reconstruction yields better predictive power than TSVD deconvo-
lution. The superiority of spatio-temporal reconstruction over
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Fig. 12. Parametric maps (CBF, MTT and T max) computed from the estimates obtained by (B) TSVD, (C) temporal deconvolution, and (D) spatio-temporal reconstruction. The
leftmost images (A) are the true parametric maps.

Table 3
PSNR (dB) of parametric maps.

Method Healthy
tissues

Damaged
tissues

All
tissues

CBF
TSVD 10.96 1.21 7.99
Temporal deconvolution 26.35 28.40 26.55
Spatio-temporal

reconstruction
28.53 29.78 28.66

MTT
TSVD 36.99 18.58 27.46
Temporal deconvolution 37.52 18.99 27.82
Spatio-temporal

reconstruction
45.71 21.66 30.87

T max

TSVD 26.27 15.71 22.83
Temporal deconvolution 24.89 14.50 21.55
Spatio-temporal

reconstruction
28.57 21.21 26.76
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TSVD is also clearly seen from the classifications shown in Fig. 14
and from the measurements given in Table 4: in all cases, spatio-
temporal reconstruction outperforms TSVD deconvolution in terms
of false positives, false negatives, AUC, and MDPC.
9. Conclusion

We proposed a globally convergent spatio-temporal reconstruc-
tion approach to improve the quality of parametric maps in PWI.
Our algorithm comes with strong convergence guarantees—con-
vergence to the global minimum in the convex-case and conver-
gence to a local minimum in the non-convex case—and
experiments on both synthetic and real data show that it signifi-
cantly outperforms TSVD deconvolution in terms of PSNR, ROC
analysis and visual inspection. Hence our approaches definitively
improves the localization of ischemic tissues. We focused on
hemodynamic parameters that are routinely tested for binary clas-
sification (salvageable/necrotic tissue) in clinical studies. In the
case where clinical practice would require three or more classes
to improve diagnosis, we could perform hierarchical ROC analysis
(Ishwaran and Gatsonis, 2000) to study multi-level classifications
obtained from hemodynamic parameter maps. Then, an interesting
perspective would be to assess the performance of our reconstruc-
tion algorithm in terms of fine classifications involving arterial, ve-
nous, and other tissue classes (as in Chou et al. (2007), Martel et al.
(2001), and Wu and Liu (2007)).

We did not address the issue of selecting the hyper-parameters
kt and ks which adjust the strengths of temporal and spatial regu-



Fig. 13. Deconvolution of PWI data from ischemic subjects (each row corresponds to a different subject): spatio-temporal reconstruction (left column); FLAIR mask (middle
column); and TSVD deconvolution (right column).
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larization. Good starting points are the L-hypersurface method
(Belge et al., 2002), the Monte Carlo SURE approach (Ramani
et al., 2008), the use of the no-reference measure proposed in
Zhu and Milanfar (2010), and the zero-crossing method developed
in Ito et al. (2011). Another interesting possibility is to choose the
values of kt and ks via ROC analysis. This requires a small database
containing both PWI data acquired shortly after the stroke and fi-
nal infarcts delineated by physicians from follow-up imaging.
The resulting estimates of the optimal values of kt and ks are then
tied to the MR scanner and the acquisition sequence used to con-
struct the database, as a fixed acquisition protocol guarantees that
the optimal values of kt and ks vary only slightly from one patient
to the other.
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Appendix A

A.1. Proof of Proposition 1

Let f 2 RKN n f0g such that Tf = 0. Then, there exists k 2 s1,Kt

such that fk,1 = � � � = fk,N – 0. Consequently, since Ca is non-zero
and non-negative, we have Ca fk – 0, and thus Hf – 0. This shows
that

kerðHÞ \ kerðTÞ ¼ f0g: ð50Þ

Since kt > 0, it follows that the quadratic form
Q : f # kHf k2

2 þ ktkTf k2
2 is positive definite, which is equivalent to

say that there exists c > 0 such that Qðf ÞP ckf k2
2 for all f. Therefore,

the quadratic function Uþ ktWt : f # Qðf Þ � 2dT Hf þ kdk2
2 is coer-

cive. Then, since w is increasing on Rþ and even, Ws is lower
bounded, and thus X is coercive.



Fig. 14. Tissue outcome prediction (each row corresponds to a different subject). Left column : ROC curves obtained by varying the threshold on the Tmax map computed
from the TSVD estimates (blue dashed line) and from the spatio-temporal reconstruction estimates (red plain line). Middle column: false positives (white), true positives
(light blue), false negatives (dark red) and true negatives (black) associated with the TSVD estimates. Right column: same as middle column but for spatio-temporal estimates.

Table 4
Area under curve (AUC) and minimum distance to perfect classification (MDPC) for
the subjects considered in Fig. 13.

Patient Spatio-temporal TSVD

AUC MDPC AUC MDPC

#1 0.90 0.26 0.64 0.61
#2 0.94 0.27 0.76 0.38
#3 0.94 0.19 0.89 0.22
#4 0.98 0.06 0.91 0.08
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A.2. Proof of Proposition 2

Assume that w is convex. Then the maps f ´ w(Si f ) are convex
(because the composition of a convex function with a linear map is
convex), and thus so is Ws as a sum of convex functions. In addi-
tion, according to the proof of Proposition 1, the quadratic function
U + ktWt is positive definite and hence strictly convex. Therefore, X
is strictly convex as the sum of a strictly convex function and of a
convex function.
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A.3. Proof of Proposition 3

The Hessian matrix of X at f is

r2Xðf Þ ¼ 2eHT eH þ ksS
T diagðw00ðS1f Þ; . . . ;w00ðSJNf ÞÞS:

For any g 2 RKN , we have

gTr2Xðf Þg ¼ 2gT eHT eHg þ ks

X
i2s1; JNt

w00ðSif ÞðSigÞ2

P gTð2eHT eH � ksCðwÞST S|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼: L

Þg: ð51Þ

Given a real symmetric matrix A, we denote its smallest and largest
eigenvalues by minf(A) and msup(A), respectively. Using the Weyl’s
inequality for eigenvalues, we have

minf ðLÞP minfð2eHT eHÞ þ minfð�ksCðwÞST SÞ
¼ 2minfðeHT eHÞ � ksCðwÞmsupðST SÞ
¼ 2l2

infðeHÞ � ksCðwÞl2
supðSÞ:

Now assume that (28) holds. Then, the above inequality gives that
minf(L) > 0, which means that L is positive definite. It follows from
(51) that r2X(f) is positive definite for all f 2 RKN , and thus X is
strictly convex.
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