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Generic Half-Quadratic Optimization for Image Reconstruction∗
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Abstract. We study the global and local convergence of a generic half-quadratic optimization algorithm inspired
from the dual energy formulation of Geman and Reynolds [IEEE Trans. Pattern Anal. Mach. Intell.,
14 (1992), pp. 367–383]. The target application is the minimization of C1 convex and nonconvex
objective functionals arising in regularized image reconstruction. Our global convergence proofs are
based on a monotone convergence theorem of Meyer [J. Comput. System Sci., 12 (1976), pp. 108–
121]. Compared to existing results, ours extend to a larger class of objectives and apply under
weaker conditions; in particular, we cover the case where the set of stationary points is not discrete.
Our local convergence results use a majorization-minimization interpretation to derive an insightful
characterization of the basins of attraction; this new perspective grounds a formal description of the
intuitive water-flooding analogy. We conclude with image restoration experiments to illustrate the
efficiency of the algorithm under various nonconvex scenarios.
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1. Introduction. We focus on a general problem which includes regularized linear least
squares and regularized linear robust estimation as special cases. The issue it to minimize a
functional Θ : RN−→ R of the form

(1.1) Θ(x) :=
K∑
k=1

θk
(
‖Akx− ak‖

)
,

where ‖ · ‖ denotes the �2-norm and, for each k, Ak is a matrix in R
Nk×N , ak is a vector in

R
Nk , and θk belongs to the set of functions θ : R+−→ R satisfying the following conditions:

(C1) θ is increasing and nonconstant;

(C2) θ is C1 on (0,+∞) and continuous at zero;

(C3) the function θ† : t∈ (0,+∞) �−→ t−1θ′(t) is decreasing and bounded.

In particular, the functions θk can be nonconvex and even eventually constant. Note that the
boundedness assumption in (C3) implies that the derivatives θ′k vanish at zero; this excludes
for example the identity function and the strictly concave C1 functions considered in [1].
However, in practice, such functions can be approximated arbitrarily closely by functions
satisfying (C1)–(C3).
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To perform this optimization task, we consider a generalization of the half-quadratic ap-
proach that emerged from the dual energy formulation of Geman and Reynolds [2] and whose
convergence was subsequently studied in [3, 4, 5, 6, 7, 8]. The process consists in generating
a sequence (x(p))p∈N by using the recurrence relation

(1.2) x(p+1) := argmin
y∈RN

K∑
k=1

θ‡k
(
‖Akx

(p) − ak‖
)
‖Aky − ak‖2,

where θ‡k is the continuous extension of θ† to R+ (later, we give a necessary and sufficient
condition for the argument of the minimum to be a singleton, and we prove that the iteration
map x(p) �−→ x(p+1) is continuous). Depending on the assumptions made, this algorithm
has different interpretations: alternating minimization [3, 5], majorization-minimization [7],
quasi-Newton optimization [7, 9], and fixed-point iteration [8]. Its simplicity and ease of
implementation make it attractive for rapid and efficient testing of solutions to minimizing
objective functionals of the form of (1.1). Our motivation—signal reconstruction from noisy
linear measurements—is discussed in section 1.1. We then review existing convergence results
in section 1.2, and we outline our contributions in section 1.3.

1.1. Motivation. We are interested in the general problem of reconstructing a signal
x� ∈ R

N given some data

(1.3) d := χ(Dx� + ν),

where D ∈ R
M×N models the deterministic part of the observation process, ν ∈ R

M is
a noise term consisting of a realization of M independent zero-mean random variables, and
χ : RM −→ R

M is a componentwise function that stands for possible contamination by impulse
noise. The original signal x� can represent a temporal sequence, an image, a volume, or more
generally a set of samples on a point lattice. When D is known, estimates of x� are usually
defined as global minimizers of functionals of the form

(1.4) Θ(x) =

M∑
m=1

θfid
(
|(Dx− d)m|

)
︸ ︷︷ ︸

=: Θfid(x)

+

L∑
l=1

θreg
(
‖Rlx‖

)
︸ ︷︷ ︸

=: Θreg(x)

,

where the data-fidelity term Θfid favors solutions consistent with the observations (the notation
(Dx−d)m stands for the mth component of the residual vector), and the regularization term
Θreg imposes prior constraints modeled by the matrices Rl. The functional (1.4) is a special
case of (1.1) obtained by setting K = M + L and

(1.5) (θk,Ak,ak) =

{
(θfid,D(k, :), dk) if k ∈ [1 . .M ],

(θreg,Rk−M ,0) if k ∈ [M + 1 . .K],

where D(k, :) denotes the kth row of the observation matrix D.
Usually, {Rl} l∈[1..L] is a discrete approximation to the gradient operator, which favors

piecewise-smooth solutions [10, 11]. In image restoration, a recent trend is toward second-



1754 MARC C. ROBINI AND YUEMIN ZHU

and higher-order operators that reduce staircase artifacts and improve contour regularity;
examples include tight framelet filters [12], isotropic second-order total variation [13], Hessian
Frobenius norm regularization [14], and wavelet-domain edge-continuation [8]. The set {Rl} l

can also consist of projections on a set of vectors to promote sparsity either in a linear
transform domain [15] or with respect to a redundant dictionary [16]. We can of course
combine different types of operators: our results cover functionals of the form of (1.4) with
additional regularization terms similar to Θreg.

The function θreg is called a potential function in reference to the Bayesian interpretation
of regularization [17]—we use the same designation for the functions θk in (1.1). In practice,
a potential function θ is derived from a mother potential function ϑ by scaling the value and
the argument of ϑ, that is,

θ(t) = γϑ(t/δ),

where γ and δ are free positive parameters. Obviously, θ satisfies conditions (C1)–(C3) if and
only if ϑ does. The mother potential functions used for regularization can be divided into
three categories:

• convex functions with affine behavior at infinity, such as the function of minimal
surfaces

(1.6) ϑMS(t) := (1 + t2)1/2 − 1

and the Huber function

(1.7) ϑHu(t) :=

{
t2/2 if t � 1,

t− 1/2 if t > 1;

• nonconvex unbounded functions, such as the Lorentzian error function

(1.8) ϑLE(t) := ln(1 + t2);

• bounded functions, such as the Geman and McClure function

(1.9) ϑGM(t) :=
t2

1 + t2

and the Tukey biweight function

(1.10) ϑTB(t) :=

{
1−

(
1− t2/6

)3
if t �

√
6,

1 if t >
√
6.

The frequent dichotomy between convex and nonconvex potential functions is best illustrated
when the original signal is an image and {Rl} l is a discrete gradient operator. In this case,
convex potential functions with affine behavior at infinity reduce—but do not eliminate—
smoothing at edge locations [3], while nonconvex potential functions yield solutions whose
gradient magnitudes are all outside a nonempty interval [18]. Within the nonconvex class,
unbounded potential functions are distinguished from bounded ones in that the latter pro-
duce sharper discontinuities at the expense of increased optimization difficulty. Additional
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examples of edge-preserving potential functions satisfying conditions (C1)–(C3) can be found
in [19, 20, 21, 22]. It is not a coincidence that all the examples of mother potential functions
given above have a quadratic behavior near zero, as this property is a consequence of (C1)–
(C3) (see Lemma 2.1 in section 2.1). If a potential function satisfies (C1)–(C3) except that
limt→0+ θ†(t) = +∞, we can instead use the function t �−→ θ

(
(ε2+ t2)1/2

)
, where ε is a “small

enough” positive constant. This approximation is useful, for example, for concave functions
derived from t/(1 + t) [2] and for functions proportional to tα with α ∈ [1, 2) [23].

In the data-fidelity term, the most commonly used potential functions are the square
function θfid(t) = t2 and the identity function θfid(t) = t. The square function yields the
squared �2-norm of the residual; it is fully justified when there is no impulse noise and the
components of the noise ν are realizations of independent and identically distributed Gaussian
random variables. The identity function yields the �1-norm of the residual and is appropriate
for impulse noise [24, 25]. To fit our framework, the �1-norm must be replaced by a smooth
approximation, such as that obtained with the potential function

(1.11) θfid(t) = εϑMS(t/ε) =: idε(t),

where ε > 0 is small compared to the range of values covered by the components of the
original signal. This technique traces back to the pioneering work of Acar and Vogel [26] on
total variation regularization and was popularized by Vogel and Oman [27, 28]. If the original
signal is corrupted by both Gaussian and impulse noise, we can use a potential function which
behaves quadratically below a certain threshold and linearly above it. For example, Li et
al. [12] use a function derived from t2/(1 + t). Another possible choice is the Huber function
(1.7) with its argument scaled proportionally to the standard deviation of the Gaussian noise.
Note, however, that even if the current trend in image reconstruction is to use convex data-
fidelity terms, our conditions on θfid are the same as those on θreg, and so θfid can be nonconvex.

1.2. Previous work. The convergence of the recurrence (1.2) is studied in [3, 4, 5, 6, 7, 8]
under different requirements in addition to conditions (C1)–(C3) on the potential functions.

The results established in [3, 5, 6, 7] are restricted to the case where the objective functional
Θ is strictly convex and its potential functions θ1, . . . , θK are convex. (It is not necessary that
all the potential functions be convex to ensure that Θ is strictly convex: see Proposition B.2
in Appendix B.) Among these contributions, the most general result is due to Allain, Idier,
and Goussard [7], who showed that a sequence generated by (1.2) converges to the global
minimizer of Θ if either condition (C ′1a) or (C ′1b) below is satisfied:

(C ′1a)

{
A1 has full column rank,

θ1 is the square function, and θ2, . . . , θK are convex;

(C ′1b)

{ ⋂K
k=1 null(Ak) = {0},

θ1, . . . , θK are strictly convex.

Charbonnier et al. [3] impose (C ′1a) and two extra conditions:

(C ′2) θ†2, . . . , θ
†
K are strictly decreasing and vanish at infinity;

(C ′3) θ2, . . . , θK are C2 on (0,+∞) and C3 near zero.
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Idier [5] imposes (C ′1a) and (C ′2) (indeed, (C ′2) is equivalent to the condition that for every
k ∈ [2 . .K] the composite function θk◦

√
be strictly concave and θk(t) = o(t2) as t −→+∞).

Nikolova and Ng [6] assume that either (C ′1a) or (C ′1b) is satisfied and that (C ′3) holds for
all potential functions (meaning including θ1).

Delaney and Bresler [4] and Robini, Zhu, and Luo [8] established global and local conver-
gence results without convexity assumptions. They impose that

⋂
k null(Ak) = {0} and that

(C ′2) and (C ′3) hold for all potential functions with the class C2 condition relaxed to twice
differentiability. Their conclusions can be summarized as follows. Let S and L0 respectively
denote the set of stationary points of Θ and the sublevel set of Θ at the initial height Θ(x(0)),
that is,

S :=
{
x ∈ R

N : ∇Θ(x) = 0
}
,(1.12)

L0 :=
{
x ∈ R

N : Θ(x) � Θ(x(0))
}
.(1.13)

Let X := (x(p))p be a sequence generated by the recurrence (1.2). If L0 is bounded, then X
converges to S in terms of point-to-set distance, and so X converges to a stationary point
if S is discrete. Furthermore, every isolated minimizer is an attractor: if x∗ is an isolated
stationary point and a local minimizer, then X converges to x∗ provided x(0) is close enough
to x∗.

To sum up, the minimal conditions for convergence include that the potential functions
satisfy conditions (C1)–(C3) and that

⋂
k null(Ak) = {0}. If Θ is strictly convex, conver-

gence to the global minimizer is not guaranteed if one (or more) of the potential functions is
nonconvex. If Θ is nonconvex or nonstrictly convex, the potential functions must be strictly
increasing and at least C2 (which excludes, for example, the potential functions derived from
the Huber function and the Tukey biweight function).

1.3. Contributions. We establish global and local convergence properties that generalize
the works of Allain, Idier, and Goussard [7] and Robini, Zhu, and Luo [8] (and thus also
the earlier results in [3, 4, 5, 6]). The starting point of our global convergence analysis is
the application of the monotone convergence theorem of Meyer [29, Theorem 3.1] using a
fixed-point interpretation of the recurrence (1.2). The local convergence analysis is built on
a majorization-minimization interpretation and is initiated using the asymptotic stationarity
result and the capture property established by Jacobson and Fessler [30, Theorem 4.1 and
Proposition 6.3]. In addition to conditions (C1)–(C3) on the potential functions, we suppose
that

(C4)
⋂

k∈J+

null(Ak) = {0}, J+ :=
{
k ∈ [1 . .K] : θk is strictly increasing

}
.

This condition holds in the convex and nonconvex settings considered in [7, 8]. Contrary
to the conditions in [7], some or all of the potential functions can be nonconvex, and contrary
to the conditions in [8], the nonconvex potential functions can eventually be constant and of
class C1 only.
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Our global convergence results require that the sublevel set L0 be bounded, as in [8]. This
condition holds in particular when Θ is coercive (that is, Θ(x) −→+∞ as ‖x‖ −→+∞), which
is for example the case in the convex setting. We first establish that a sequence X := (x(p))p
generated by (1.2) converges to a stationary point if the intersections of S with the level sets of
Θ are discrete. This result extends those in [7, 8] to a wider class of objectives which includes
convex and nonconvex functionals with a single minimizer, nonconvex functionals with isolated
stationary points, and even some nonconvex functionals with nonisolated stationary points.
Our second result provides weaker convergence guarantees for the remaining case where a level
set contains a bounded infinite set of stationary points: X converges to the boundary of S in
terms of point-to-set distance, and the gradient sequence (∇Θ(x(p)))p converges to zero.

Regarding local convergence, we show that the basin of attraction of an isolated minimizer
x∗ includes the bounded open sets that contain no stationary point other than x∗ and whose
boundaries are flat—we call such sets cups. We also show that local convergence is still
guaranteed under a condition weaker than (C4), and we conclude with a characterization of
unions of cups which leads to a formal water-flooding interpretation of the basins of attraction.

1.4. Organization. In section 2, we describe the fixed-point construction of the half-
quadratic iterative scheme (1.2) and we discuss other fruitful interpretations of this algorithm.
Section 3 is devoted to global convergence: we first establish monotone convergence, and then
we derive sufficient conditions for convergence to stationary points with a distinction between
convergence in norm and point-to-set convergence. Local convergence is studied in section 4,
where we characterize the basins of attraction of isolated minimizers and discuss the water-
flooding analogy. Section 5 concludes the paper with detailed image restoration experiments
which illustrate the behavior of the algorithm for various nonconvex objectives. (We introduce
our notation as the paper progresses. The main symbols we use are listed in Appendix A for
convenience.)

2. Half-quadratic optimization.

2.1. Basic properties of potential functions. The following two lemmas state basic prop-
erties of the potential functions satisfying our assumptions. These properties are used in the
construction of the half-quadratic algorithm discussed next.

Lemma 2.1. Let θ : R+−→ R be a function satisfying conditions (C1)–(C3):
(i) θ is right-differentiable at zero, and θ′+(0) = limt→0+ θ′(t) = 0.

(ii) If θ is not strictly increasing, then there is real number τ > 0 such that θ is strictly
increasing on [0, τ) and constant on [τ,+∞).

(iii) θ′ is right-differentiable at zero, and θ′′+(0) = limt→0+ θ†(t) > 0.
Proof. (i) Suppose θ′ does not tend to zero as t −→ 0+. Then there are a constant c > 0

and a sequence (tn)n in (0,+∞) such that tn −→ 0+ and θ′(tn) � c for all n, which contradicts
the condition that θ† be bounded. So limt→0+ θ′(t) = 0. Since θ is differentiable on (0,+∞)
and continuous at zero, it follows that θ is right-differentiable at zero and θ′+(0) = 0.

(ii) Assume θ is not strictly increasing. Then its derivative is eventually zero (because θ†

is nonnegative and decreasing), and thus the set

T :=
{
t > 0 : θ′ is zero on [t,+∞)

}
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is nonempty. Let τ := inf T . We have τ > 0 since θ is nonconstant. By definition of the
infimum, the set (0, τ) ∩ T is empty and θ′ is zero on (τ,+∞). Furthermore, θ′ must be
positive on (0, τ), for otherwise (0, τ) ∩ T is nonempty.

(iii) θ† is decreasing and bounded, and it is positive near zero by property (ii). So θ† has
a positive right-limit at zero, and since θ′+(0) = 0 by property (i),

lim
t→0+

θ†(t) = lim
t→0+

θ′(t)− θ′+(0)
t

= θ′′+(0).

Notation. By Lemma 2.1(iii), the function θ† has a continuous extension which we denote
by θ‡, that is,

(2.1) θ‡(t) :=

{
t−1θ′(t) if t > 0,

θ′′+(0) if t = 0.

Lemma 2.2. Let θ : R+−→ R be a function satisfying conditions (C1)–(C3). The composite
function η := θ ◦

√
is C1 with derivative η′ = 1

2 θ
‡ ◦

√
.

Proof. Clearly, η is C1 on (0,+∞) and η′ = 1
2 θ

† ◦ √ on this interval. Hence, since η is
continuous at zero, it remains to check that limt→0+ η′(t) = 1

2 θ
′′
+(0), which follows directly

from Lemma 2.1(iii).

2.2. Construction of the algorithm. The half-quadratic iterative scheme (1.2) can be
interpreted as a sequence of fixed-point iterations toward stationary points of the objective
functional. We give here the details of this construction, and we show that the resulting
algorithm is well-defined under our conditions.

Notation. We let A and a be the vertical concatenations of the matrices Ak ∈ R
Nk×N

and of the vectors ak ∈ R
Nk , that is,

A :=

⎛⎜⎝ A1
...

AK

⎞⎟⎠ ∈ R
N ′×N and a :=

⎛⎜⎝ a1
...

aK

⎞⎟⎠ ∈ R
N ′
,

where N ′ :=
∑K

k=1Nk. For every x ∈ R
N, we put

(2.2) εk(x) := θ‡k
(
‖Akx− ak‖

)
, k ∈ [1 . .K],

and we define the N ′×N ′ nonnegative diagonal matrix

(2.3) E(x) := diag
(
ε1(x)IN1 , . . . , εK(x)INK

)
,

where In denotes the identity matrix of order n.
Lemma 2.3. The objective functional Θ is C1, and its gradient is given by

(2.4) ∇Θ(x) = ATE(x)(Ax− a).
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Proof. Set ηk := θk ◦
√

for all k. Then Θ(x) =
∑K

k=1 ηk
(
‖Akx− ak‖2

)
, and so

∇Θ(x) = 2
K∑
k=1

η′k
(
‖Akx− ak‖2

)
AT

k (Akx− ak).

Using Lemma 2.2 and notation (2.2), we have η′k
(
‖Akx−ak‖2

)
= 1

2 εk(x), and hence (2.4) fol-

lows. Furthermore, since the functions θ‡k are continuous, the map x �−→ E(x) is continuous,
and thus so is ∇Θ.

Assume for now that the matrix ATE(x)A is positive definite for all x ∈ R
N. We deduce

from (2.4) that the stationary points of Θ can be approached by the following fixed-point
algorithm.

Algorithm 1. Given a starting point x(0) ∈ R
N, generate the sequence (x(p))p∈N via the

recurrence relation

(2.5) x(p+1) := (ATE(x(p))A)−1ATE(x(p))a,

or equivalently,

x(p+1) := argmin
y∈RN

Θ‡(x(p),y),(2.6a)

Θ‡(x,y) :=

K∑
k=1

εk(x) ‖Aky − ak‖2.(2.6b)

Each iteration consists of two steps: first compute the weighting coefficients ε1(x
(p)), . . . ,

εK(x(p)) according to (2.2), and then minimize the positive definite quadratic functional
y �−→ Θ‡(x(p),y). The second step can be performed efficiently by either a direct method
(such as Cholesky decomposition) or an iterative method (such as conjugate gradient), the
choice depending on the dimension of the solution space and on the sparsity ratio of the
matrixA.

Proposition 2.4 makes it clear that Algorithm 1 is well-defined under our conditions, and
Proposition 2.5 shows that condition (C4) is superfluous if Θ is coercive.

Proposition 2.4. Suppose the potential functions θk involved in the definition of the matrices
E(x) satisfy conditions (C1)–(C3). Then ATE(x)A is positive definite for all x ∈ RN if and
only if condition (C4) holds.

Proof. Let x ∈ R
N. For every y ∈ R

N,

yTATE(x)Ay =
K∑
k=1

εk(x)‖Aky‖2 � 0

with equality if and only if

y ∈
⋂

k∈Jε(x)

null(Ak), Jε(x) :=
{
k ∈ [1 . .K] : εk(x) > 0

}
.
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Therefore, since J+ ⊆ Jε(x), the matrix ATE(x)A is positive definite if (C4) is satisfied.
Now assume ATE(x)A is always positive definite, that is,

(2.7)
⋂

k∈Jε(x)

null(Ak) = {0} for all x ∈ R
N.

Seeking a contradiction, suppose there is a nonzero vector y such that

J+ ⊆
{
k ∈ [1 . .K] : y ∈ null(Ak)

}
=: J0(y).

Then the set [1 . .K] \ J0(y) is nonempty (for otherwise ATE(x)A is never positive defi-
nite), and for every index k in this set, θk is eventually constant (by Lemma 2.1(ii)) and
limα→+∞ ‖αAky − ak‖ = +∞. Hence, for each k such that y �∈ null(Ak), there is an αk > 0
such that εk(αy) = 0 for all α � αk. In other words, Jε(αy) ⊆ J0(y) for α sufficiently large.
Therefore, there exists some α > 0 such that

y ∈
⋂

k∈Jε(αy)

null(Ak),

which contradicts (2.7).
Proposition 2.5. The objective functional Θ is coercive if and only if

(2.8)
⋂

k∈J∞

null(Ak) = {0}, J∞ := {k ∈ [1 . .K] : lim
t→+∞ θk(t) = +∞}.

In particular, condition (C4) holds if Θ is coercive.
Proof. The equivalence is trivial if J∞ is empty, for in this case Θ is bounded and⋂

k∈J∞null(Ak) = R
N. So we assume J∞ is nonempty.

Suppose there is a nonzero vector x ∈
⋂

k∈J∞null(Ak). Then, for every α ∈ R,

Θ(αx) =
∑
k∈J∞

θk
(
‖ak‖

)
+

∑
k �∈J∞

θk
(
‖αAkx− ak‖

)
,

and thus

(2.9) lim
α→+∞Θ(αx) �

∑
k∈J∞

θk
(
‖ak‖

)
+

∑
k �∈J∞

sup
R+

θk < +∞.

Therefore, Θ is not coercive. Now, for the converse implication, suppose Θ is not coercive;
that is, there exists a sequence (y(p))p such that ‖y(p)‖ −→ +∞ and limp→∞Θ(y(p)) < +∞.
Let f be the quadratic form on R

N defined by f(y) :=
∑

k∈J∞ ‖Aky‖2. We have

lim
p→∞Θ(y(p)) < +∞ ⇐⇒ lim

p→∞ θk
(
‖Aky

(p) − ak‖
)
< +∞ for all k ∈ J∞

⇐⇒ sup
{
‖Aky

(p)‖ : k ∈ J∞, p ∈ N
}

< +∞

⇐⇒ sup
p∈N

f(y(p)) < +∞.
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It follows that
⋂

k∈J∞null(Ak) �= {0}, for otherwise f is positive definite and so f(y(p)) −→
+∞.

Finally, condition (C4) holds if Θ is coercive because J∞ ⊆ J+ by Lemma 2.1(ii).

Remark 1. A corollary to Proposition 2.5 is that condition (C4) is not needed if we add a
suitably chosen Tikhonov penalty to Θ. Indeed, given an invertible matrix A0 ∈ R

N×N, the
quadratic form x �−→ ‖A0x‖2 is coercive, and thus so is the functional x �−→ Θ(x)+‖A0x‖2.
This technique is used for example in [31], where A0 is proportional to the identity matrix.

2.3. Interpretations. Throughout this section, we assume that condition (C4) holds. For
every x ∈ R

N, the gradient of the quadratic functional Θ‡(x, ·) : y �−→ Θ‡(x,y) defined by
(2.6a) is

(2.10) ∇Θ‡(x, ·)(y) = 2
(
ATE(x)A(y − x) +∇Θ(x)

)
,

and thus Algorithm 1 is equivalently defined by the iterative scheme

x(p+1) := Φ(x(p)),(2.11a)

Φ(x) := x− (ATE(x)A)−1∇Θ(x).(2.11b)

Hence Algorithm 1 is a quasi-Newton optimization method where the Hessian matrix of Θ at
x is approximated by ATE(x)A.

Algorithm 1 can also be viewed as an alternating minimization process and a majorization-
minimization scheme. These two interpretations are discussed below; the former shows that
Algorithm 1 generalizes the half-quadratic regularization approach inspired by the construc-
tion of Geman and Reynolds [2], and the latter is used in section 4 to study local convergence.

2.3.1. Alternating minimization. Let θ : R+ −→ R be a function satisfying conditions
(C1)–(C3), and suppose that

(2.12) θ(t) ∝ t2 or θ(t) = o(t2).

As shown in [9], there is a decreasing convex function ζ : R+ −→ (−∞,+∞] such that for
every t ∈ R+,

θ(t) = min
u∈R+

(
t2u

2
+ ζ(u)

)
=

t2θ‡(t)
2

+ ζ(θ‡(t)).

Therefore, if the potential functions in the objective functional satisfy (2.12), then

Θ(x) = min
u=(u1,...,uK)∈RK

+

Θ�(x,u),

Θ�(x,u) :=

K∑
k=1

(
uk
2
‖Akx− ak‖2 + ζk(uk)

)
,
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and the minimum is attained when u = (ε1(x), . . . , εK(x)). It follows that the iterative
scheme (2.6) of Algorithm 1 is equivalent to the alternating minimization process

u(p+1) := argmin
u∈RK

+

Θ�(x(p),u),

x(p+1) := argmin
x∈RN

Θ�(x,u(p+1)).

This process is half-quadratic, as the augmented objective functional Θ� is quadratic with
respect to the primal variable x. Following the terminology of Nikolova and Ng [6], we call
it multiplicative because the quadratic terms x �−→ ‖Akx− ak‖2, k ∈ [1 . .K], are multiplied
by the components of the dual variable u. Hence, Algorithm 1 includes the multiplicative
half-quadratic algorithms studied in [3, 4, 5, 6, 7, 8] as special cases. Note that some authors
call half-quadratic any method based on an augmented formulation involving a quadratic term
to simplify the original optimization problem (this is for example the case of the robust sparse
representation approach proposed in [32], where the augmented objective is a nondifferentiable
convex function of the primal variable when the dual variable is fixed). It is important to be
clear that our focus here is only on fully half-quadratic algorithms, that is, those in which the
augmented objective is quadratic with respect to the primal variable.

2.3.2. Majorization-minimization. By the definition in [33], a majorization-minimization
algorithm for minimizing Θ consists of the iterations

(2.13) x(p+1) := argmin
y∈RN

Θ(x(p),y),

where Θ is such that for all x,y ∈ R
N,

(2.14) Θ(x,y) � Θ(y) with equality if y = x

(it is implicitly assumed that for every x the functional Θ(x, ·) has a unique global minimizer).
We call Θ a surrogate generator.

Proposition 2.6. Suppose condition (C4) holds. Then Algorithm 1 is a majorization-
minimization algorithm with surrogate generator Θ given by

(2.15) Θ(x,y) = Θ(x) + (y − x)T∇Θ(x) +
1

2
(y − x)TATE(x)A(y − x).

Proof. Let Θ be defined by (2.15). Then ∇Θ(x, ·) = 1
2∇Θ‡(x, ·), where ∇Θ‡(x, ·) is given

in (2.10), and thus Θ(x, ·) and Θ‡(x, ·) have the same global minimizer ifATE(x)A is positive
definite. So Algorithm 1 is equivalently defined by the iterative scheme (2.13) if condition (C4)
holds. It remains to show that Θ(x, ·) majorizes Θ (we readily have Θ(x,x) = Θ(x)). We
can write Θ in the form

(2.16) Θ(x,y) = Θ(x) + 〈A(y − x),Ax− a〉E(x) +
1

2
‖A(y − x)‖2E(x),

where 〈· , ·〉E(x) is the symmetric bilinear form on R
N ′

given by

〈v,w〉E(x) := vTE(x)w
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and ‖ · ‖E(x) is the associated seminorm, that is, ‖v‖E(x) := 〈v,v〉1/2E(x). It is easy to check
that

‖w − v‖2E(x) = ‖w‖2E(x) − ‖v‖2E(x) − 2〈w − v,v〉E(x).

Setting w = Ay − a and v = Ax− a, and substituting into (2.16), we obtain

(2.17) Θ(x,y) = Θ(x) +
1

2

(
‖Ay − a‖2E(x) − ‖Ax− a‖2E(x)

)
.

Consequently,

Θ(x,y)−Θ(y) =

K∑
k=1

[
θk

(
‖Akx− ak‖

)
− θk

(
‖Aky − ak‖

)
+

1

2
θ‡k

(
‖Akx− ak‖

)(
‖Aky − ak‖2 − ‖Akx− ak‖2

) ]
.

By Lemma 2.2, each term in the above sum is of the form

θ(t)− θ(u) +
1

2
θ‡(t)(u2 − t2) = η(t2)− η(u2) + η′(t2)(u2 − t2),

where η := θ ◦
√

is concave since θ‡ is decreasing. Therefore, Θ(x,y) − Θ(y) is a sum of
nonnegative numbers, and hence Θ(x,y) � Θ(y).

3. Global convergence to stationary points. It follows from Proposition 2.6 that Algo-
rithm 1 inherits the properties of majorization-minimization algorithms. In particular, we
deduce Theorem 3.2 below from Theorem 4.4 of Jacobson and Fessler in [30]. We first recall
the definitions of an isolated point and a discrete set.

Definition 3.1. Let G be a nonempty subset of RN. A point x ∈ G is said to be isolated in
G (or an isolated point of G) if there is an α > 0 such that ‖y − x‖ � α for all y ∈ G \ {x}.
The set G is called discrete if all its points are isolated in G.

Remark 2. A point x is isolated in the singleton {x} (indeed, the proposition “∀y ∈
∅, P(y)” is true whatever the propositional function P). Thus singletons are discrete.

Theorem 3.2. Let S be the set of stationary points of Θ, let X := (x(p))p∈N be a sequence
generated by Algorithm 1 under condition (C4), and let L0 be the sublevel set of Θ at the
initial height Θ(x(0)). If S is discrete, L0 is bounded, and ‖x(p+1) − x(p)‖ −→ 0, then X
converges to a point in S.

Proof. By Proposition 2.6, Algorithm 1 is a majorization-minimization algorithm with
surrogate generator given by (2.15). This generator satisfies the conditions of Theorem 4.4 in
[30], from which we deduce that X converges to a stationary point under the stated conditions
on S, X , and L0.

In the following, we use the monotone convergence theorem of Meyer in [29] to show that
‖x(p+1) − x(p)‖ −→ 0 under the other conditions of Theorem 3.2. We do not actually need
Meyer’s result to do so, but this approach allows us to relax the condition that S be discrete,
and even to remove it if convergence to a single stationary point is weakened to convergence
to S. (The remaining condition that L0 be bounded holds in particular if Θ is coercive, in
which case we can drop condition (C4) according to Proposition 2.5.)
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3.1. Monotone convergence. This section paves the way to study global convergence
to stationary points. Our results are built on Theorem 3.4, which is a special instance of
Theorem 3.1 in [29].

Definition 3.3. Let Ψ be a map from G ⊆ R
N to itself.

(i) A sequence (x(p))p∈N in R
N is said to be generated by Ψ if x(0) ∈ G and x(p+1) =

Ψ(x(p)) for all p ∈ N.

(ii) Let FΨ denote the set of fixed points of Ψ. The map Ψ is said to be strictly monotonic
with respect to a functional Ξ : G −→ R if

(Ξ ◦Ψ)(x) < Ξ(x) for all x ∈ G \ FΨ.

Theorem 3.4 (Meyer [29]). Let G be a closed subset of R
N, and let Ψ : G −→ G be strictly

monotonic with respect to Ξ. Let X := (x(p))p be a sequence generated by Ψ, and denote by
CX the set of cluster points of X . If Ψ and Ξ are continuous and X is bounded, then

(i) ∅ �= CX ⊆ FΨ,

(ii) ‖x(p+1) − x(p)‖ −→ 0, and

(iii) (Ξ(x(p)))p decreases to Ξ(x∗) for some x∗ ∈ CX .
Recall that Algorithm 1 consists in iteratively applying the map Φ : RN−→ R

N defined
in (2.11). The following lemma is used in the proof of Theorem 3.7, where we show monotone
convergence to S by applying Theorem 3.4 to restrictions of Φ and Θ.

Lemma 3.5. Suppose condition (C4) holds.

(i) Φ is continuous.

(ii) Φ is strictly monotonic with respect to Θ.

(iii) FΦ = S (that is, the fixed points of Φ are the stationary points of Θ).

Proof. (i) The matrix inverse function is continuous at every point that represents an
invertible matrix (indeed, matrix groups are Lie groups), and so the map x �−→ (ATE(x)A)−1

is continuous. Thus Φ is continuous since Θ is C1.

(ii) Let x ∈ R
N \ FΦ. Using (2.14) and (2.17), we have

(Θ ◦Φ)(x)−Θ(x) < Θ(x,Φ(x))−Θ(x)

=
1

2

(
‖AΦ(x)− a‖2E(x) − ‖Ax− a‖2E(x)

)
.

Therefore, by the definition of Θ‡ in (2.6a),

(Θ ◦Φ)(x)−Θ(x) <
1

2

(
Θ‡(x,Φ(x))−Θ‡(x,x)

)
.

Since Φ(x) = argmin{Θ‡(x,y) : y ∈ R
N}, we deduce that (Θ ◦ Φ)(x) < Θ(x). So Φ is

strictly monotonic with respect to Θ.
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(iii) From the definition of Φ, and since ATE(x)A is positive definite for all x (by Propo-
sition 2.4), we have

Φ(x) = x ⇐⇒ (ATE(x)A)−1∇Θ(x) = 0

⇐⇒ ∇Θ(x) = 0,

which shows that FΦ = S.
Definition 3.6. A nonempty subset of RN is called a continuum if it is compact and con-

nected. A continuum C ⊆ R
N is said to be flat if Θ is constant on C. (In particular, a singleton

is a flat continuum.)

Remark 3. Some authors define a continuum to be a closed connected set. The above
definition of a continuum is from [34].

Theorem 3.7. Let S, X , and L0 be as stated in Theorem 3.2, and suppose L0 is bounded.
Then

(i) ∅ �= CX ⊆ S (that is, X has at least one cluster point and every cluster point is a
stationary point of Θ),

(ii) ‖x(p+1) − x(p)‖ −→ 0,

(iii) CX is a flat continuum, and

(iv) (Θ(x(p)))p decreases to the value of Θ on CX .
Proof. Suppose L0 is bounded. Then X is bounded since Φ(L0) ⊆ L0 by Lemma 3.5(ii).

Let Φ|L0 and Θ|L0 denote the restrictions of Φ and Θ to L0. Using Lemma 3.5 again,
we have FΦ|L0

= S ∩ L0 , and Φ|L0 is continuous and strictly monotonic with respect to
Θ|L0 . So Theorem 3.4 applies with G = L0, Ψ = Φ|L0 , and Ξ = Θ|L0 . Consequently,
∅ �= CX ⊆ FΦ|L0

⊆ S, the difference x(p+1) − x(p) goes to zero, and Θ(x(p)) decreases to
Θ(x∗) for some x∗ ∈ CX .

It remains to show that CX is a flat continuum. This set is compact because X is bounded
and the set of cluster points of a sequence in a topological space is closed. Furthermore,
since ‖x(p+1) − x(p)‖ −→ 0, we deduce from Theorem 26.1 in [35] that CX is connected. To
prove that CX is flat, suppose for contradiction that X has two cluster points x∗ and y∗ such
that Θ(x∗) < Θ(y∗). Let β := (Θ(y∗) − Θ(x∗))/3, and denote by B(z, α) the open ball with
center z and radius α. Since Θ is continuous, there is an α > 0 such that |Θ(x)− Θ(x∗)| <
β for all x ∈ B(x∗, α) and |Θ(x) − Θ(y∗)| < β for all x ∈ B(y∗, α). Furthermore, since x∗

and y∗ are cluster points of X , there are two integers p and q > p such that x(p) ∈ B(x∗, α)
and x(q) ∈ B(y∗, α). Therefore,

Θ(x(q))−Θ(x(p)) = 3β +Θ(x(q))−Θ(y∗) + Θ(x∗)−Θ(x(p)) > β,

which contradicts the fact that (Θ(x(p)))p is a decreasing sequence.

3.2. Convergence in norm. Theorem 3.9 provides sufficient conditions for convergence
to a stationary point regardless of the convexity of Θ. Instead of the usual requirement that
S be discrete, we impose the weaker condition that every stationary point be isolated from
the others in the same level set—we give in Appendix C an example of an objective function
satisfying this latter condition but whose set of stationary points is not discrete.
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Definition 3.8. We call S level-discrete if for every h ∈ R the set {x ∈ S : Θ(x) = h} (that
is, the intersection of S with the h-level set of Θ) is either discrete or empty.

Theorem 3.9. Let S, X , and L0 be as stated in Theorem 3.2, and suppose L0 is bounded.
If S is level-discrete, then X converges to a point in S. In particular, if Θ has a unique
stationary point x∗, then x∗ is the unique global minimizer of Θ and X converges to x∗.

Proof. Suppose L0 is bounded—so Theorem 3.7 applies—and S is level-discrete. Since
CX is flat, there is an h ∈ R such that

∅ �= CX ⊆ {x ∈ S : Θ(x) = h},

and thus CX is discrete. But CX is also a continuum; so CX is a singleton whose unique element,
say x∗, is in S. Now suppose for contradiction that X diverges. Then X has a subsequence
lying outside a neighborhood of x∗, and since X is in the compact set L0, this subsequence
has a further subsequence which converges to a point different from x∗. This contradicts the
fact that x∗ is the only cluster point of X . Therefore, X converges to x∗.

Assume that S = {x∗}. Seeking a contradiction, suppose there is an x such that Θ(x) <
Θ(x∗). Because Θ(x(p)) decreases to Θ(x∗), we have Θ(x) < Θ(x(0)), and thus infL0 Θ <
Θ(x(0)). Consequently, since L0 is compact, there is a y∗ in the interior of L0 such that
Θ(y∗) = infL0 Θ. It follows that y∗ ∈ S and y∗ �= x∗, a contradiction. So x∗ is a global
minimizer of Θ. Furthermore, this global minimizer is unique since S = {x∗}.

Remark 4. In order for S to be level-discrete but not discrete, Θ must involve a potential
function whose derivative oscillates infinitely often around some positive value (as is the case
of θ2 in the example discussed in Appendix C). To our knowledge, at least in the field of
image reconstruction, there is currently no practical situation motivating this property. Still,
we do not want to exclude possible future applications, and relaxing the requirement that S be
discrete is a further theoretical step toward full understanding of half-quadratic optimization.

Remark 5. We can prove that Theorem 3.9 holds if we replace the condition that S be
level-discrete by the condition that the boundary of S be discrete. However, this result is
irrelevant when N � 2, for in this case S is discrete if and only if its boundary is discrete.

The following corollary generalizes the convergence results in [3, 5, 6, 7]. The important
point is that some potential functions can be nonconvex as long as Θ is strictly convex—
sufficient conditions for strict convexity are given in Appendix B.

Corollary 3.10. If Θ is strictly convex, then any sequence generated by Algorithm 1 con-
verges to the unique global minimizer of Θ.

Proof. Assume Θ is strictly convex. Seeking a contradiction, suppose Θ is not coercive.
By Proposition 2.5 and inequality (2.9), there is a nonzero vector x such that the function α ∈
R �−→ Θ(αx) is bounded above and hence is either constant or nonconvex. This contradicts
the strict convexity assumption, and thus Θ is coercive. Consequently, condition (C4) holds,
and every sublevel set of Θ is bounded. So Theorem 3.7 applies to every sequence generated
by Algorithm 1. The corollary then follows from the fact that Θ has a unique stationary point
because S is nonempty by Theorem 3.7(i) and Θ is strictly convex.

3.3. Convergence in terms of point-to-set distance. We now show that, regardless of
the distribution of the stationary points, the sequences generated by Algorithm 1 converge to
the boundary of S with an objective gradient tending to zero. In other words, Algorithm 1



GENERIC HALF-QUADRATIC OPTIMIZATION 1767

behaves well even when S is not level-discrete, including in the presence of flat continua (as
happens, for example, when Θ is convex and has several global minimizers).

Definition 3.11. Let G be a nonempty subset of RN. The point-to-set distance to G is the
functional dG : RN−→ R defined by

dG(x) := inf
y∈G

‖y − x‖.

A sequence (x(p))p is said to converge to G if dG(x(p)) −→ 0.
Theorem 3.12. Let S, X , and L0 be as stated in Theorem 3.2, and suppose L0 is bounded.
(i) If X does not converge to a single point in S, then X converges to S \ S◦, where S◦

denotes the interior of S.
(ii) ‖∇Θ(x(p))‖ −→ 0.
Proof. Suppose L0 is bounded so that the conclusions of Theorem 3.7 hold.
(i) Seeking a contradiction, suppose X does not converge to CX . Then there are an α > 0

and a subsequence (y(q))q =: Y of X such that dCX (y
(q)) � α for all q. It follows that the

set CY of cluster points of Y is empty (since CY ⊆ CX ), which contradicts the fact that Y
lies in the compact set L0. So X converges to CX and hence to S. Now suppose X does
not converge to a single stationary point. Since X gets stuck at stationary points by Lemma
3.5(iii), the set CX ∩ S◦ must be empty. Therefore, CX ⊆ S \ S◦, and so convergence to CX
implies convergence to S \ S◦.

(ii) Since CX is compact, there is a sequence (z(p))p in CX such that ‖z(p) − x(p)‖ =
dCX (x

(p)) for all p. So ∇Θ(z(p)) is always zero and ‖z(p) − x(p)‖ −→ 0. Since Θ is C1 and
L0 is compact, ∇Θ is uniformly continuous on L0 by the Heine-Cantor theorem, and hence
‖∇Θ(x(p))‖ = ‖∇Θ(z(p))−∇Θ(x(p))‖ −→ 0.

Corollary 3.13. If Θ is convex and coercive, then any sequence generated by Algorithm 1
converges to the set of global minimizers of Θ.

Proof. If Θ is coercive, then Theorem 3.12 applies to every sequence generated by Algo-
rithm 1. If, in addition, Θ is convex, then S is the set of global minimizers of Θ (see, for
example, Theorem 7.4.4 in [36]).

Remark 6. In the convex case, the coercivity of the objective functional does not strengthen
the conditions of Theorem 3.12. Indeed, if Θ is convex, the condition that Θ be coercive is
equivalent to requiring that the set of global minimizers of Θ be nonempty and bounded,
which is the case when L0 is bounded.

4. Local convergence to isolated minimizers. The majorization-minimization interpre-
tation given in Proposition 2.6 leads to the capture property stated in Theorem 4.3—the proof
of this theorem uses Theorem 4.1 and Proposition 6.3 of Jacobson and Fessler in [30]. First,
we recall the definition of a generalized basin given in [30], and we introduce the notion of a
feasible initial point which is used later in section 4.2 to characterize the basins of attraction
for Algorithm 1.

Notation. Let G ⊆ R
N. We denote the interior, the closure, and the boundary of G by G◦,

G, and ∂G, respectively. (The only subsets of RN with empty boundary are ∅ and R
N.)

Definition 4.1. A set G ⊆ R
N is called a generalized basin of Θ if there is an x ∈ G such

that
Θ(x) < Θ(y) for all y ∈ ∂G.
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(In particular, RN is a generalized basin of any functional on R
N.) Such an x is said to be

well-contained in G.
Definition 4.2. We call x(0) ∈ R

N a feasible initial point if the matrix ATE(x(p))A is
positive definite at each step of the recurrence (2.5) starting from x(0); in this case, we say
that the sequence (x(p))p so generated is feasible.

Theorem 4.3. Let X := (x(p))p be a feasible sequence, and let G be a bounded generalized
basin of Θ such that G contains a unique stationary point x∗. If there is an integer q � 0
such that x(q) is well-contained in G, then x(p) ∈ G for all p � q and X converges to x∗.

Proof. According to the beginning of the proof of Proposition 2.6, if x(0) is a feasible
initial point, then the iterative scheme of Algorithm 1 is equivalent to (2.13) with Θ given by
(2.15). Consequently, X is a majorization-minimization sequence whose surrogate generator
Θ is continuous on the product space R

N × R
N and such that ∇Θ(x, ·)(x) = ∇Θ(x) for all

x. Hence, applying Theorem 4.1 in [30], we obtain that CX ⊆ S (that is, any cluster point of
X is a stationary point of Θ).

Let G be as stated, and suppose there is a q ∈ N such that x(q) is well-contained in G.
Since Θ(x, ·) is convex for every x ∈ R

N, it follows from Proposition 6.3 in [30] that if a point
x is well-contained in G, then so is every y such that Θ(x,y) � Θ(x,x). Therefore, by (2.13),
x(p) ∈ G implies that x(p+1) ∈ G, and straightforward induction yields x(p) ∈ G for all p � q.
Furthermore, since G is compact, it follows that ∅ �= CX ⊆ S ∩G. But S ∩G = {x∗}, and thus
X is eventually in a compact set and has no cluster point other than x∗, which completes the
proof.

Example 1. Let Θ : R −→ R be defined by

(4.1) Θ(x) = ϑLE

(
|x− 1|

)
+ ϑLE

(√
3 |x− 3|/

√
2
)
+ 6ϑGM

(
|x− 6|/

√
2
)
,

where ϑLE and ϑGM are the Lorentzian error function and the Geman and McClure function
given in (1.8) and (1.9). The function Θ is plotted in Figure 1(a); it has three stationary
points: one isolated maximizer x3 ≈ 4.274 and two isolated minimizers x2 ≈ 2.910 and
x5 ≈ 5.819.

The class Υ of intervals U such that U◦ = (α, β) with −∞ � α < x2 < β < x4 or
−∞ � α < x5 < β � +∞ are generalized basins of Θ, but the intervals U such that
supU ∈ [x4, x5] are not. (Note that the definition of a generalized basin does not impose
that it be connected; however, disconnected basins are of no practical or theoretical interest.)
The hypotheses of Theorem 4.3 restrict Υ to the subclass Υ∗ of intervals that are bounded
and whose closure contains a unique stationary point x∗ ∈ {x2, x5}, that is, the intervals with
interior (α, β) such that −∞ < α < x2 < β < x3 or x3 < α < x5 < β < +∞ . Furthermore,
within an interval U ∈ Υ∗, the attraction region around x∗ is the set of points that are
well-contained in U , and thus the capture intervals are

Oh(x2) = (x1, x3) ∩ {x : Θ(x) < h} and Oh(x5) = (x3, x6) ∩ {x : Θ(x) < h}

with h ∈ (Θ(x2),Θ(x3)) for Oh(x2) and h ∈ (Θ(x5),Θ(x3)) for Oh(x5). We call such sets
“cups” by analogy with water-flooding from a bottom source.

Figure 1(b) illustrates the behavior of Algorithm 1 starting from x(0) = 1. Each iterate
x(p+1) is the minimizer of the majorizing quadratic function Θ(x(p), ·) defined by (2.15), and
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Figure 1. One-dimensional illustration of local convergence: (a) the open intervals Oh(x2) and Oh(x5) are
basins of attraction of the function Θ (defined by (4.1)) provided h < Θ(x3); (b) first iterates of Algorithm 1
starting from x(0) = 1 and associated majorizing quadratic functions plotted in orange.

the sequence so generated converges to x2. This example illustrates why it is not possible to
jump between cups with different bottoms: moving from a point x(p) in a cup Oh(x2) to a
point x(p+1) in a cup Oh′(x5) would imply that Θ(x(p), ·) is strictly smaller than Θ on some
interval containing x3, contradicting the fact that Θ(x(p), ·) majorizes Θ.

In the following three sections, we characterize the basins of attraction of isolated mini-
mizers in terms of the special sets called “cups” exemplified above, which are bounded open
sets with a flat boundary and containing a single stationary point. We start with elementary
properties of cups in section 4.1. Next, in section 4.2, we show that Theorem 4.3 can be
reformulated by saying that the basin of attraction of an isolated minimizer x∗ contains every
cup around x∗. The union of all such cups can be viewed as the N -dimensional region covered
by flooding from the source x∗. We develop this water-flooding interpretation in section 4.3.

4.1. Basic properties of cups. We consider here a functional Ξ : RN −→ R which is
differentiable and has at least one local minimizer that is also an isolated stationary point—
we call such a point an isolated local minimizer (an isolated local minimizer is a strict local
minimizer, but the converse is not necessarily true).
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Definition 4.4. Let SΞ denote the set of stationary points of Ξ. We call a cup of Ξ a
bounded open set O ⊂ R

N such that
(i) O ∩ SΞ = {x∗}, where x∗ is a local minimizer of Ξ, and

(ii) Ξ is constant on ∂O.
The isolated local minimizer x∗ is called the bottom of O. The value of Ξ on ∂O is called the
height of O and is denoted by H(O).

We begin with two general lemmas and proceed with more specific ones to characterize
cups.

Lemma 4.5. Let U be a bounded subset of R
N containing a single stationary point x∗ ∈ SΞ.

If there is an x ∈ U such that Ξ(x) < min∂U Ξ , then x∗ is the unique global minimizer of Ξ
on U.

Proof. The functional Ξ has a global minimizer on U because this set is compact. Let
y∗∈ argminU Ξ, and suppose there is an x ∈ U such that Ξ(x) < min∂U Ξ. Then Ξ(y∗) <
min∂U Ξ, and thus y∗∈ U◦. So y∗ is a local minimizer and hence a stationary point. But x∗

is the only stationary point in U , which completes the proof.
Notation. Given a binary relation R on R and a real number h, we let

(4.2) levRhΞ :=
{
x ∈ R

N : Ξ(x)Rh
}
.

For example, lev=hΞ and lev�hΞ are the level and sublevel sets of Ξ at height h, respectively.
Lemma 4.6. Let U be an open subset of R

N, and let h ∈ R. If ∂U ⊆ lev�hΞ , then
∂(U ∩ lev<hΞ) ⊆ lev=hΞ.

Proof. Let Uh := U ∩ lev<hΞ. We have

∂Uh ⊆ Uh ⊆ lev<hΞ ⊆ lev�hΞ and ∂Uh ⊆ ∂U ∪ ∂ lev<hΞ ⊆ ∂U ∪ lev=hΞ

(the two rightmost inclusions follow from the continuity of Ξ). Hence ∂Uh ⊆ lev=hΞ if
∂U ⊆ lev�hΞ.

Lemma 4.7. Let x∗ be an isolated local minimizer of Ξ. Every open ball around x∗ contains
a cup of Ξ with bottom x∗.

Proof. Let r > 0, and let B(x∗, r) denote the open ball with center x∗ and radius r. Since
x∗ is an isolated local minimizer, there is an α ∈ (0, 2r] such that

B(x∗, α) ∩ SΞ = {x∗} and Ξ(x) > Ξ(x∗) for all x ∈ B(x∗, α) \ {x∗}.
Consider the bounded open set O ⊆ B(x∗, r) defined by

O := B(x∗, α/2) ∩ lev<hΞ with h := min
∂B(x∗,α/2)

Ξ.

Since ∂B(x∗, α/2) is a compact subset of B(x∗, α), there is an x ∈ B(x∗, α) such that Ξ(x) =
h. So Ξ(x∗) < h, and it follows that O ∩ SΞ = {x∗}. Furthermore, by Lemma 4.6 with
U = B(x∗, α/2), we have ∂O ⊆ lev=hΞ. Therefore, O is a cup with bottom x∗.

Lemma 4.8. Let O be a cup of Ξ with bottom x∗.
(i) O ⊆ lev<H(O)Ξ (therefore, maxO Ξ = H(O) and argmaxO Ξ = ∂O).

(ii) argminO Ξ = {x∗} (that is, x∗ is the unique global minimizer of Ξ on O).

(iii) O is connected.
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Proof. (i) Suppose for contradiction that O ∩ lev�H(O)Ξ �= ∅. Since O is compact and Ξ
is equal to H(O) on ∂O, there is a y∗ ∈ O such that Ξ(y∗) = maxO Ξ. Hence Ξ has a local
maximizer in O, a contradiction with the fact that O contains a single stationary point which
is a strict local minimizer.

(ii) By the definition of a cup and the above property (i), Lemma 4.5 applies with U = O.
(iii) Suppose for contradiction that O is not connected; that is, there are open sets O1 and

O2 such that {O∩O1, O∩O2} is a partition of O. Without loss of generality, we assume that
x∗ ∈ O1. The set O ∩O2 is compact, its interior O∩O2 is a subset of lev<H(O)Ξ by property
(i), and Ξ is equal to H(O) on ∂(O ∩O2) since ∂O = ∂(O ∩O1)∪ ∂(O ∩O2). It follows that
Ξ has a local minimizer in O ∩O2, which contradicts the fact that Ξ has no stationary point
in O ∩O2.

Lemma 4.9. Let O1 and O2 be cups of Ξ with the same bottom. Then O1 ⊆ O2 if and
only if H(O1) � H(O2).

Proof. Suppose O1 is not a subset of O2. If O1 ∩ ∂O2 is empty, the sets O1 ∩ O2 and
O1 ∩ (RN \ O2) form a partition of O1. But O1 is connected by Lemma 4.8(iii); so O1 ∩ ∂O2

must be nonempty. Let x ∈ O1∩ ∂O2. We have Ξ(x) < H(O1) by Lemma 4.8(i), and Ξ(x) =
H(O2), which proves the converse implication. The forward implication follows immediately:
if H(O1) > H(O2), then O1 is not a subset of O2 because O2 ⊂ O1 by the converse implication
(O1 �= O2 since H(O1) �= H(O2)).

Lemma 4.10. Let O be a cup of Ξ with bottom x∗. For every h ∈ (Ξ(x∗),H(O)), the set
O ∩ lev<hΞ is the unique cup of Ξ with bottom x∗ and height h.

Proof. Let h ∈ (Ξ(x∗),H(O)). The set Oh := O ∩ lev<hΞ is clearly open and bounded,
and Oh ∩ SΞ = {x∗} ∩ lev<hΞ = {x∗}. Furthermore, since ∂O ⊆ lev=H(O)Ξ ⊂ lev>hΞ, it
follows from Lemma 4.6 that ∂Oh ⊆ lev=hΞ. So Oh is a cup with bottom x∗ and height h.
The uniqueness follows from Lemma 4.9.

4.2. Basins of attraction. We prove Theorem 4.11 by showing that its hypotheses imply
those of Theorem 4.3, and we establish the converse in the proof of Proposition 4.13. Corol-
laries of this new formulation provide a clear characterization of the basins of attraction for
Algorithm 1.

Theorem 4.11. Let X := (x(p))p be a feasible sequence. If there are an integer q � 0 and a
cup O of Θ such that x(q) ∈ O, then x(p) ∈ O for all p � q and X converges to the bottom of
O.

Proof. Let x∗ be the bottom of O, and let q be such that x(q) ∈ O. Then Θ(x∗) �
Θ(x(q)) < H(O) by Lemma 4.8. Let h ∈ (Θ(x(q)),H(O)) and Oh := O ∩ lev<hΘ. We show
that Theorem 4.3 applies with G = Oh (hence the conclusions that x(p) ∈ Oh for all p � q
and X converges to x∗). By Lemma 4.10, the set Oh is a cup with bottom x∗ and height h.
So Oh is bounded, and for every x ∈ ∂Oh, Θ(x) = h > Θ(x(q)). It remains to check that
Oh ∩ S = {x∗}. We have

Oh ⊆ O ∩ lev<hΘ ⊆ O ∩ lev�hΘ,

and since ∂O ⊆ lev=H(O)Θ ⊂ lev>hΘ, it follows that

Oh ⊆ O ∩ lev�hΘ ⊂ O.

Therefore, x∗ ∈ Oh ∩ S ⊆ O ∩ S = {x∗}.
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Lemma 4.12. Let G be a bounded generalized basin of Θ such that G◦ contains a unique
stationary point x∗. The set

WG :=
{
x ∈ R

N : x is well-contained in G
}

is a cup of Θ with bottom x∗.
Proof. Since G is bounded, ∂G is compact, and thus WG = G◦ ∩ lev<hΘ with h :=

min∂G Θ. Hence WG is open and bounded. Let x ∈ WG (such a point exists by the definition
of a generalized basin). By Lemma 4.5 with U = G◦ and Ξ = Θ, the stationary point x∗ is the
unique global minimizer of Θ on G◦. Therefore, Θ(x∗) � Θ(x) < h, and so WG ∩ S = {x∗}.
Finally, since ∂G◦ ⊆ ∂G ⊆ lev�hΘ, it follows from Lemma 4.6 that ∂WG ⊆ lev=hΘ.

Remark 7. The converse of Lemma 4.12 is also true by the definition of a cup and Lemma
4.8(i). Therefore, a cup with bottom x∗ can be equivalently defined to be the set of points
that are well-contained in a bounded generalized basin G such that G◦ ∩ S = {x∗}. Note
that we cannot replace G◦ by either G or G in this alternative definition, as cups can have
stationary points on their boundaries (this is, for example, the case of (x1, x3) and (x3, x6) in
Figure 1).

Proposition 4.13. The hypotheses of Theorem 4.11 are equivalent to those of Theorem 4.3.
Proof. Let x ∈ R

N. In the proof of Theorem 4.11, we have shown that if x is in a
cup O with bottom x∗, then x is well-contained in a bounded generalized basin G such that
G ∩ S = {x∗}. We must prove the converse. By Lemma 4.5 with U = G and Ξ = Θ, the
stationary point x∗ is the unique global minimizer of Θ on G. But G is not a generalized basin
if x∗ ∈ ∂G, and thus x∗ ∈ G◦. It follows from Lemma 4.12 that WG is a cup with bottom
x∗.

Definition 4.14. Let I(0) ⊆ R
N be the set of feasible initial points, let X (x) denote the

sequence (x(p))p generated by Algorithm 1 starting from x(0) = x ∈ I(0), and let x∗ be an
isolated local minimizer of Θ. The set

A(x∗) :=
{
x ∈ I(0) : X (x) converges to x∗}

is called the basin of attraction of x∗.
Definition 4.15. Let Ω(x∗) be the set of all the cups of Θ with bottom x∗. We call the union

set
Osup(x

∗) :=
⋃

O∈Ω(x∗)

O

a supremum cup.
Recall that condition (C4) is equivalent to the requirement that the matrix ATE(x)A be

positive definite for every x ∈ R
N (see Proposition 2.4), which implies that I(0) = R

N. Hence
we have the following corollary to Theorem 4.11.

Corollary 4.16. If condition (C4) holds, then Osup(x
∗) ⊆ A(x∗) for every isolated local

minimizer x∗.
Example 2. The cups (x1, x3) and (x3, x6) in Figure 1 are simple examples of supremum

cups. Supremum cups can also be unbounded, but we show in Appendix D that this situation
does not arise in the one-dimensional case for the class of objective functionals considered. So
we focus here on a two-dimensional example.
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Let Θ : R2−→ R be defined by

(4.3) Θ(x1, x2) = ϑGM

(
|x1|

)
+ ϑGM

(
|x2|

)
+ ϑGM

(
‖(x1, x2)− (3, 3)‖

)
,

where ϑGM is the Geman and McClure function given in (1.9). This functional has two isolated
minimizers x∗ and y∗ in the vicinity of 0 and (3, 3) and one isolated maximizer z∗ near (2, 2).
Figure 2(a) shows the boundaries of the supremum cups Osup(x

∗) =: O1 and Osup(y
∗) =: O2

superimposed on Θ. The supremum cupsO1 andO2 are respectively unbounded and bounded:
O1 is the connected component of x∗ in lev<2Θ, and O2 is the connected component of y∗ in
lev<H(y∗)Θ, where H(y∗) := sup

{
h > Θ(y∗) : lev<hΘ is disconnected

}
≈ 2.26988.

Figure 2(b) displays the number of iterations for Algorithm 1 to reach either of the open
balls B(x∗, 10−6) (dominant blue color) or B(y∗, 10−6) (dominant red color) starting from
every location in the square domain [−2, 5] × [−2, 5]. In accordance with Corollary 4.16, we
observe convergence to x∗ when the starting point x(0) is in O1 and convergence to y∗ when
x(0) is in O2. Note that the absence of convergence guarantee does not imply divergence (the
sublevel set lev<Θ(x)Θ is unbounded when x �∈ O1 ∪ O2, and so there is neither global nor
local convergence guarantee when starting outside O1 ∪ O2).

Figure 2. A two-dimensional objective functional with bounded and unbounded supremum cups: (a) func-
tional defined in (4.3) and boundaries of the supremum cups Osup(x

∗) =: O1 and Osup(y
∗) =: O2 ; (b) number

of iterations to reach a 10−6 distance to either x∗ or y∗ as a function of the starting position.

Corollary 4.17 supplements Corollary 4.16. It states how condition (C4) can be weakened
and is illustrated in Example 3 using the motivation example presented in the introduction.

Corollary 4.17. Let O be a cup of Θ with bottom x∗. For every x ∈ O, define the set
Jε(x) :=

{
k ∈ [1 . .K] : εk(x) > 0

}
, where εk is given in (2.2). If

(4.4)
⋃
x∈O

⋂
k∈Jε(x)

null(Ak) = {0},

then O ⊆ A(x∗).
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Proof. By the beginning of the proof of Proposition 2.4, condition (4.4) holds if and only
if ATE(x)A is positive definite everywhere in O. So we need only show that O is stable with
respect to the recurrence (2.5). Seeking a contradiction, suppose there is an x ∈ O such that

z := (ATE(x)A)−1ATE(x)a �∈ O.

Let Θ be defined as in (2.15). By the proof of Proposition 2.6, z is the unique global minimizer
of Θ(x, ·), and Θ is majorized by Θ(x, ·) with equality at x. So

Θ(x,z) < Θ(x,x) = Θ(x) and Θ(y) � Θ(x,y) for all y ∈ R
N.(4.5)

For every α ∈ [0, 1], we let yα := (1 − α)x + αz. Since y0 = x ∈ O and y1 = z �∈ O, the
supremum α∗ := sup{α ∈ [0, 1] : yα ∈ O} is well-defined. The point yα∗ lies on the boundary
of O, and thus Θ(x) < Θ(yα∗) by Lemma 4.8(i). At the same time, using (4.5) and the
convexity of Θ(x, ·), we have

Θ(yα∗) � Θ(x,yα∗)

� (1− α∗)Θ(x,x) + α∗Θ(x,z)

� max
{
Θ(x,x),Θ(x,z)

}
= Θ(x),

a contradiction.
Remark 8. By the definition of εk and Lemma 2.1, Jε(x) is the set of indices k such that

the potential function θk is strictly increasing on [0, τk) for some τk > ‖Akx−ak‖. Therefore,
contrary to condition (C4), the intersection in (4.4) is not restricted to the indices of the
strictly increasing potential functions: it is also over the indices of the remaining potential
functions whose arguments are sufficiently small.

Example 3. Let x∗ be an isolated local minimizer of a functional of the form of (1.4) with
θfid strictly increasing, θreg eventually constant, and null(D) �= {0} (so condition (C4) fails).
By Lemma 2.1(ii), there is a τ > 0 such that θreg is strictly increasing on [0, τ) and constant
on [τ,+∞). For every x ∈ R

N, we let

Jreg(x) :=
{
l ∈ [1 . . L] : ‖Rlx‖ < τ

}
and Nreg(x) :=

⋂
l∈Jreg(x)

null(Rl).

Suppose that

(4.6) null(D) ∩ Nreg(x
∗) = {0}

(in other words, for every y �= 0 such that Dy = 0, there is an index l such that Rly �= 0
and ‖Rlx

∗‖ < τ). Since the maps x �−→ ‖Rlx‖ are continuous, there is an r > 0 such that
Jreg(x

∗) ⊆ Jreg(x) for all x in the open ball B(x∗, r). Using Lemma 4.7, we deduce that there
is a cup O with bottom x∗ such that⋃

x∈O

(
null(D) ∩Nreg(x)

)
= {0}.
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It follows from Corollary 4.17 and Remark 8 that if (4.6) holds, then Algorithm 1 generates
feasible sequences converging to x∗ when initialized close enough to this point.

Since cups generally do not partition R
N, we are left with the question of whether a cup

is actually reached. The most favorable situation is when the three following conditions are
satisfied: (C4) holds, the set S of stationary points is discrete, and Algorithm 1 is initialized
in a bounded sublevel set. In this case, Theorem 3.9 guarantees convergence to a point in S,
and the majorization-minimization interpretation yields that Θ(x(p+1)) < Θ(x(p)) whenever
x(p) �∈ S. Therefore, if a saddle point is encountered, any perturbation will move the iterates
away from it, and so any practical implementation will eventually reach a cup because of the
round-off errors inherent in floating-point arithmetic (note that maximizers are also unstable
but cannot be attained unless chosen for initialization). If the three conditions listed above
are not all satisfied, we can still greatly increase the confidence in reaching a cup by using a
continuation scheme to guide the first steps of the optimization process (as in our experiments)
or by adding a stochastic perturbation sequence to avoid saddle points and shallow minimiz-
ers. These two techniques can be combined and are inspired by the graduated nonconvexity
framework presented in [37] and the random perturbation method proposed in [38].

4.3. Supremum cups and water-flooding analogy. This section is intended to character-
ize supremum cups for better understanding the local convergence properties of Algorithm 1.
In particular, we establish that supremum cups share the properties of cups stated in Defi-
nition 4.4 and Lemma 4.8, except for boundedness. We also show that if the intersection of
a supremum cup Osup(x

∗) with a level set of Θ is nonempty, then this intersection is either
{x∗} or the boundary of a cup. Together with Corollary 4.16, these results yield a handy
water-flooding interpretation of the capture properties of half-quadratic optimization. How-
ever, they do not contribute directly to the discussion on practical convergence and hence can
be skipped by the reader more interested in numerical experiments.

Proposition 4.18. Let x∗ be an isolated local minimizer of Θ. The supremum cup Osup(x
∗)

is open and connected, and

Osup(x
∗) ∩ S = {x∗}.

Proof. By Lemmas 4.7 and 4.8(iii), Ω(x∗) is nonempty and the cups in Ω(x∗) are connected
open sets containing x∗. So Osup(x

∗) is a nonempty connected open set. Furthermore, x∗ is
the only stationary point in Osup(x

∗) because O ∩ S = {x∗} for every O ∈ Ω(x∗).
Notation. We denote by H(x∗) the supremum of the heights of the cups with bottom x∗;

that is,

(4.7) H(x∗) := sup
{
H(O) : O ∈ Ω(x∗)

}
∈ (0,+∞].

For every h ∈ (Θ(x∗),H(x∗)), we let Oh(x
∗) be the unique cup with bottom x∗ and height h

(the existence and uniqueness of such cups follow from Lemma 4.10).

Proposition 4.19 draws an analogy between supremum cups and water-flooded regions.
Think of Θ as an altitude function and of x∗ as the bottom of a valley to be filled with water.
Then H(x∗) is the critical water level above which either water overflows out of the valley
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or the volume of water is infinite, and Osup(x
∗) is the land submerged when the water level

reaches H(x∗). Proposition 4.19 is used in the proof of Proposition 4.20 to complete our
description of supremum cups.

Proposition 4.19.

(4.8) Osup(x
∗) =

⋃
h∈(Θ(x∗),H(x∗))

Oh(x
∗),

and for every h ∈ (Θ(x∗),H(x∗)),

Osup(x
∗) ∩ lev<hΘ = Oh(x

∗),(4.9a)

Osup(x
∗) ∩ lev=hΘ = ∂Oh(x

∗).(4.9b)

Proof. Let ω(x∗) :=
{
Oh(x

∗) : h ∈ (Θ(x∗),H(x∗))
}
. Clearly, ω(x∗) ⊆ Ω(x∗) with

equality if and only if there is no cup with bottom x∗ and height H(x∗), in which case (4.8)
holds trivially. Suppose there is cup O∗ ∈ Ω(x∗) such that H(O∗) = H(x∗). We complete
the proof of (4.8) by showing that O∗ ⊆

⋃
O∈ω(x∗)O. Let x ∈ O∗. Since O∗ ⊆ lev<H(x∗)Θ by

Lemma 4.8(i), we have Θ(x) < H(x∗). Let h ∈ (Θ(x),H(x∗)). Then Oh(x
∗) = O∗∩ lev<hΘ

by Lemma 4.10, and hence x ∈ Oh(x
∗) ∈ ω(x∗).

Let h ∈ (Θ(x∗),H(x∗)). Using (4.8), we have

Osup(x
∗) ∩ lev<hΘ =

⋃
l∈(Θ(x∗),H(x∗))

(
Ol(x

∗) ∩ lev<hΘ︸ ︷︷ ︸
=: Oh

l (x
∗)

)
.

If l > h, then Oh
l (x

∗) = Oh(x
∗) by Lemma 4.10. If l � h, then Oh

l (x
∗) = Ol(x

∗) ⊆ Oh(x
∗) by

Lemmas 4.8(i) and 4.9. Therefore, Osup(x
∗) ∩ lev<hΘ is a union of subsets of Oh(x

∗) which
includes Oh(x

∗) itself; hence we get (4.9a).
Seeking a contradiction, suppose there is an x ∈ Osup(x

∗)∩lev=hΘ such that x �∈ ∂Oh(x
∗).

Then x �∈ Oh(x∗) by (4.9a), and since Osup(x
∗) and R

N \Oh(x∗) are open, there is an α > 0

such that B(x, α) ⊂ Osup(x
∗)\Oh(x∗). Using (4.9a) again, it follows that B(x, α)∩ lev<hΘ =

∅. So x is a local minimizer of Θ and x �= x∗, a contradiction with the fact that x∗ is the
only stationary point in Osup(x

∗). This proves that Osup(x
∗) ∩ lev=hΘ ⊆ ∂Oh(x

∗). For the
reverse inclusion, it suffices to show that ∂Oh(x

∗) ⊂ Osup(x
∗), as ∂Oh(x

∗) ⊆ lev=hΘ by the
definition of Oh(x

∗). Let x ∈ ∂Oh(x
∗) and l ∈ (h,H(x∗)). We have Oh(x

∗) ⊂ Ol(x
∗) by

Lemma 4.9, and thus x ∈ Oh(x∗) ⊂ Ol(x∗). But x �∈ ∂Ol(x
∗) since Θ(x) = h < l. Hence

x ∈ Ol(x
∗) ⊂ Osup(x

∗), which completes the proof of (4.9b).
Proposition 4.20.
(i) If Osup(x

∗) �= R
N, then Θ is equal to H(x∗) on ∂Osup(x

∗).

(ii) argmaxOsup(x∗) Θ = ∂Osup(x
∗).

(iii) argminOsup(x∗) Θ = {x∗}.
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Figure 3. “Text” image: (a) original; (b) degraded by 1× 9 uniform blur and 25 dB white Gaussian noise;
(c) degraded by 3× 3 uniform blur, 30 dB white Gaussian noise, and 15% random-valued impulse noise.

Proof. (i) Suppose Osup(x
∗) �= R

N. From (4.8), we have

(4.10) Osup(x
∗) ⊆

⋃
h∈(Θ(x∗),H(x∗))

lev<hΘ = lev<H(x∗)Θ.

Let y ∈ ∂Osup(x
∗). By the definition of the boundary of a set, there is a sequence (y(p))p in

Osup(x
∗) converging to y. The sequence (Θ(y(p)))p converges to Θ(y) by the continuity of Θ,

and Θ(y(p)) < H(x∗) for all p by (4.10); thus Θ(y) � H(x∗). We now prove by contradiction
that Θ(y) � H(x∗). Suppose Θ(y) < H(x∗), and let h ∈ (Θ(y),H(x∗)). From (4.9), we have

Oh(x∗) = Osup(x
∗) ∩ lev�hΘ.

Since y �∈ Osup(x
∗), there is an α > 0 such that B(y, α) ∩ Oh(x∗) = ∅. Therefore, if p is

sufficiently large,

y(p) ∈ Osup(x
∗) \ Oh(x∗) = Osup(x

∗) ∩ lev>hΘ.

So (Θ(y(p)))p cannot converge to Θ(y), a contradiction.

(ii) If Osup(x
∗) �= R

N, then property (ii) follows directly from (i) and (4.10). If Osup(x
∗) =

R
N, then ∂Osup(x

∗) is empty and Θ has no global maximizer (since a global maximizer is a
stationary point and the only stationary point is the strict local minimizer x∗).

(iii) Let x ∈ Osup(x∗) \ {x∗}. If x ∈ Osup(x
∗), then x is in a cup with bottom x∗, and

so Θ(x) > Θ(x∗) by Lemma 4.8(ii). If x ∈ ∂Osup(x
∗), then Θ(x) = H(x∗) by (i), and so

Θ(x) > Θ(x∗) by (4.10).

5. Experiments. We consider the problem of restoring the 128 × 128 images displayed
in Figures 3(a) and 4(a) from synthetic data generated using the observation model (1.3)
described in the introduction. The pixel intensity in the original “text” image is either 50
(background) or 150 (text regions). The data shown in Figure 3(b) were obtained by blurring
with a 1 × 9 uniform kernel and adding white Gaussian noise at 25 dB SNR (the signal-to-
noise ratio defines the standard deviation ς of the noise term via the relation SNRdB :=
20 log10(ς

�/ς), where ς� is the sample standard deviation of the noise-free observation Dx�).
The data displayed in Figure 3(c) were generated by first blurring with a 3×3 uniform kernel,
then adding 30 dB white Gaussian noise, and finally degrading the result by random-valued
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Figure 4. “Office” image: (a) original; (b) degraded by a 7× 7, 1-pixel standard deviation Gaussian filter,
30 dB white Gaussian noise, and 20% random-valued impulse noise.

impulse noise with range [0, 255] and 15% corruption rate—that is, the data pixels are of the
form

dm =

{
(Dx� + ν)m with probability 0.85,

ξm with probability 0.15,

where ξm is sampled uniformly at random from [0, 255]. The “office” image data shown in
Figure 4(b) were obtained in a similar way by blurring with a 7 × 7 rotationally symmetric
Gaussian kernel with a standard deviation of one pixel and corrupting the result with 30 dB
white Gaussian noise and 20% random-valued impulse noise. In each example, the blurring
kernel has odd dimensions and blurring is performed by convolution without zero-padded
edges (as in [2]); so the pixel grid of the data is a subset of the pixel grid G� of the original
image (the observations in Figures 3(b), 3(c), and 4(b) are of sizes 128× 120, 126× 126, and
122× 122, respectively, and the square boxes around each of them delimit G�).

In all our experiments, the restorations are obtained by minimizing objective functionals
of the form of (1.1) using Algorithm 1 with 100 iterations. We assess restoration quality with
the structural similarity (SSIM) index [39] and the improvement in SNR (ISNR). The SSIM
index is computed using the MATLAB implementation available at http://ece.uwaterloo.ca/
∼z70wang/research/ssim with default settings. The ISNR of an estimate x̂ of x� is defined by

(5.1) ISNRdB := 20 log10

(
‖x�|G − d‖
‖(x� − x̂)|G‖

)
,

where x|G denotes the restriction of x to the pixel grid G of the data. Note that, for simplicity,
we make no distinction between images and their vector representations.

5.1. Overview. In section 5.2, we present our experiments on the restoration of the “text”
image degraded by 1×9 uniform blur and Gaussian noise. For this example problem, the objec-
tive functional is the sum of the squared �2-norm of the residual and a bounded gradient-based
regularizer. The regularizer is chosen so that condition (C4) fails, a difficulty circumvented
by introducing a continuation sequence at the beginning of the optimization process. Next,
in section 5.3, we consider the restoration of the “text” image degraded by 3 × 3 uniform
blur and Gaussian plus impulse noise. To deal with the impulse noise, we replace the �2

http://ece.uwaterloo.ca/~z70wang/research/ssim
http://ece.uwaterloo.ca/~z70wang/research/ssim


GENERIC HALF-QUADRATIC OPTIMIZATION 1779

data-fidelity term by a strictly convex approximation to the �1-norm of the residual. We em-
phasize the instability caused by the regularizer, and we discuss the stabilizing effect of adding
either a Tikhonov penalty or a wavelet-sparsity penalty to the objective functional. Finally,
in section 5.4, we compare different regularization schemes for restoring the “office” image,
including convex, nonconvex, and bounded gradient-based regularizers and their association
with Tikhonov, wavelet-sparsity, and Hessian-based regularizers.

It should be stressed that our goal here is to show that Algorithm 1 behaves well for various
instances of the objective functional (1.1). A thorough comparison of existing regularization
strategies is beyond the scope of this paper. Likewise, we do not address the choice of the
parameters that control the strengths of the regularization terms.

5.2. “Text” image corrupted by Gaussian noise. Consider the problem of restoring the
“text” image from the data shown in Figure 3(b). The blurred observation is corrupted by
additive white Gaussian noise, and the original image is piecewise constant. This suggests
combining �2 data-fidelity with gradient regularization. We focus on the difficult case where
the regularizer is bounded and has flat regions: the solutions are the minimizers of the func-
tional Θ�2 : RN−→ R, N = 1282, defined by

Θ�2(x) := ‖Dx− d‖2 + γ
∑
l

ϑTB

(
‖Glx‖/δ

)
, γ, δ ∈ (0,+∞),

where ϑTB is the Tukey biweight function given in (1.10), and {Gl} l is the discrete gradient
operator defined as follows. Let (l1, l2) and x(l1, l2), respectively, denote the coordinates and
the value of the lth pixel in x (the indices l1 and l2 range from 1 to 128, and l = 128(l1−1)+l2).
For every l,

(5.2) Glx :=

(
xh(l1, l2)
xv(l1, l2)

)
∈ R

2,

where xh(l1, l2) and xv(l1, l2) are the horizontal and vertical differences at the lth pixel location:

xh(l1, l2) :=

{
x(l1, l2)− x(l1, l2 − 1) if l2 � 2,

0 otherwise,

xv(l1, l2) :=

{
x(l1, l2)− x(l1 − 1, l2) if l1 � 2,

0 otherwise.

With this definition, the gradient G1x at the upper left pixel is always zero; so the sum in
the regularizer is over [2 . . N ].

For every t � 0, we define

(5.3) G+(t) :=
{
x ∈ R

N : ‖Glx‖ > t for all l � 2
}
.

Let τ := δ
√
6. The open set G+(τ) is a flat region of the regularizer, as ϑTB(‖Glx‖/δ) = 1

if the gradient magnitude ‖Glx‖ is above the threshold τ . We set δ = 20/
√
6 to preserve
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edges with magnitude greater than τ = 20, and we call γ the spatial smoothing strength, for
the regularizer penalizes spatial gradients to favor piecewise-smooth solutions.

Condition (C4) reduces here to null(D) = {0}; but sinceD is a low-pass filtering operator,
it has a nontrivial null space composed of high frequency band images. So, according to
Proposition 2.4, Algorithm 1 is not well-defined. A simple way to get around this problem
is to run the first iterations with ϑTB replaced by strictly increasing potential functions ϑ(p)

such that the optimization difficulty increases gradually with p. The expected effect of this
continuation technique is to reach a cup of Θ�2 satisfying condition (4.4) prior to running
iterations with the target potential function ϑTB. (By Example 3 following Corollary 4.17,
condition (4.4) holds for a cup with bottom x∗ if every image y ∈ null(D) \ {0} has a pixel
l where Gly �= 0 and ‖Glx

∗‖ < τ , which is the case if x∗ is piecewise smooth.) We use a
continuation sequence of the form

(5.4) ϑ(p) := κpϑTB + (1− κp)ϑMS,

where ϑMS is the function of minimal surfaces defined in (1.6), and κp increases linearly from
0 to 1 during the first half of the iterations (after which ϑ(p) = ϑTB):

κp :=

{
(p− 1)/50 if p ∈ [1 . . 50],

1 if p > 50.

The initial solution x(0) is taken in null(D) ∩ G+(τ) so that the algorithm cannot be started
without continuation. (We obtain x(0) by first computing the null space component v of a uni-
form noise image using the method described in [40] and then setting x(0) = 2τv/min l�2 ‖Glv‖
so that ‖Glx

(0)‖ � 2τ for all l � 2.)
Figures 5(a) and 5(c) display the SSIM and the ISNR of the restorations obtained by

varying γ in a range covering both underregularization (γ < 3) and overregularization (γ >
30). The maximum SSIM and ISNR, namely 0.9885 and 20.06 dB, are attained simultaneously
for γ ≈ 6.3 (the corresponding estimate is shown in the upper left of Figure 6). At first glance,
the sharp drop after the maximum ISNR may be interpreted as instability of the algorithm,
but the enlargements in Figures 5(b) and 5(d) reveal a smooth behavior. The local SSIM
and ISNR variations, whether of small or large amplitude, actually reflect the changes in
the objective landscape as γ varies—not instability. This assertion is further supported by
Figure 6: the restored image varies smoothly as γ increases in the interval where the drop
occurs, which suggests the distortion of a basin of attraction rather than a change in the
topology of the objective landscape (both behaviors are exemplified in Appendix E). We
conclude that a simple continuation sequence suffices to properly initialize the algorithm in
the extreme case where the regularizer has flats.

5.3. “Text” image corrupted by Gaussian plus impulse noise. Since �2 data-fidelity is
not adapted to impulse noise (see, e.g., [8, 12, 41]), the functional Θ�2 used above is not
appropriate for the restoration of the “text” image data shown in Figure 3(c). So we now
consider an objective functional Θ�1 similar to Θ�2 but with the data-fidelity term replaced
by a strictly convex approximation to the �1-norm of the residual:

Θ�1(x) := ‖Dx− d‖1,ε + γ
∑
l

ϑTB

(
‖Glx‖/δ

)
,
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Figure 5. Restoration of the “text” image degraded by 1×9 uniform blur and Gaussian noise: (a) SSIM as
a function of the spatial smoothing strength γ; (b) zoom in on of the small drop following the maximum SSIM;
(c) ISNR as a function of γ; (d) zoom in on the sharp drop following the maximum ISNR.

where ‖ · ‖1,ε : RM −→ R is defined by

‖u‖1,ε :=
M∑

m=1

idε(um), idε(t) := (ε2 + t2)1/2 − ε.

In the present context, ‖ · ‖1,ε behaves almost like the �1-norm when ε is two or more orders of
magnitude smaller than the width of the original intensity range—we set ε = 0.1 throughout
the rest of the experiments.

5.3.1. Restoration with gradient regularization alone. Figure 7(a) shows the best solu-
tion obtained by minimizing Θ�1 with the same continuation strategy and initial solution as
in section 5.2. This estimate, say x∗, is close to the original image x�, but the restoration
process is unstable because the regularizer yields deep spurious minimizers. For example, the
minimizer y∗ displayed in Figure 7(b) is a solution of the forward system Dx = d and belongs
to G+(τ). Therefore, Θ�1(y

∗) = γ(N − 1), which is about 5.7 × 104 for the value of γ that
gives x∗ (namely, γ ≈ 3.5). By contrast, Θ�1(x

∗) ≈ 2.0 × 105, and so y∗ is much deeper than
x∗, although it has nothing in common with x�. The existence of such spurious minimizers is
explained as follows. Since D has full rank, the forward system is consistent and its general
solution is the sum of a particular solution xp and a vector in null(D). Furthermore, since
null(D) \ {0} is composed of high frequency band images,

N+ := null(D) ∩ G+(0) �= ∅.
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Figure 6. Restorations of the “text” image degraded by 1×9 uniform blur and Gaussian noise for increasing
values of γ in the interval considered in Figures 5(b) and 5(d).

Figure 7. Restoration of the “text” image degraded by 3×3 uniform blur and Gaussian plus impulse noise:
(a) best result achieved by varying the spatial smoothing strength (SSIM = 0.9796, ISNR = 13.46 dB); (b) deep
spurious minimizer.

For every v ∈ N+, we can choose α > 0 large enough so that xp + αv ∈ G+(τ), and thus

Sv :=
{
xp + αv : α ∈ R

}
∩ G+(τ) �= ∅.

The set Sv is contained in the solution set of the forward system, and the regularizer is
constant in a neighborhood of each point in Sv. Consequently,

(5.5) S+ :=
⋃

v∈N+

Sv

is a set of local minimizers of Θ�1 .



GENERIC HALF-QUADRATIC OPTIMIZATION 1783

5.3.2. Association with Tikhonov and wavelet-sparsity regularization. We discuss here
two techniques which allow us to exclude spurious minimizers and which guarantee global con-
vergence by ensuring coercivity—indeed, coercivity implies condition (C4) (see Proposition
2.5) as well as boundedness of the sublevel sets, and hence it implies the conditions common
to the global convergence theorems (Theorems 3.7, 3.9, and 3.12).

The first technique was introduced in Remark 1 after Proposition 2.5. It consists in adding
a Tikhonov penalty to the objective functional: the solutions are minimizers of

ΘT
�1(x) := Θ�1(x) + ρ‖x‖2, ρ ∈ (0,+∞).

We call ρ the Tikhonov strength; this parameter must be small enough so that ΘT
�1
(x) ≈

Θ�1(x) when x is piecewise smooth, for otherwise the solutions are pulled toward 0. A
rule of thumb is to begin with a value one or two orders of magnitude smaller than the ratio
Θ�1(x

�
max1)/‖x�max1‖2, where x�max is the presumed maximum absolute value of the pixels in x�,

and 1 denotes the constant image with value 1. We may then increase or decrease ρ depending
on whether the restoration has unexpected high-frequency content or is oversmoothed.

The second technique is to add a penalty ‖Tx‖1,ε defined by a sparsifying transform T
such that the resulting functional x �−→ Θ�1(x) + ‖Tx‖1,ε is coercive, which is the case if
null(D) ∩ null(T ) = {0}. A natural choice is the wavelet transform, as piecewise smoothness
translates to sparse wavelet coefficients. Let W ∈ R

N×N be a nonredundant, J-level wavelet
transform: given an image x, the vector Wx is the concatenation of VJx,W1x, . . . ,WJ x,
where VJ x is the approximation of x at resolution 2−J , and for every decomposition level
j ∈ [1 . . J ], the components of Wjx are the wavelet coefficients of x at resolution 2−j (that is,
Wjx contains the information in x that is lost when going from resolution 2−j+1 to resolution
2−j). Restorations with sparse wavelet representations are obtained by minimizing

ΘW
�1,J(x) := Θ�1(x) + γ̃

J∑
j=1

‖2−j+1Wjx‖1,ε , γ̃ ∈ (0,+∞),

where the wavelet-sparsity strength γ̃ controls the degree of sparsity of the minimizers, and the
weights 2−j+1 compensate for the decay of the wavelet-coefficient magnitudes as the resolution
increases [8]. For this objective functional, condition (2.8) in Proposition 2.5 becomes

(5.6) null(D) ∩ NJ = {0}, NJ :=

J⋂
j=1

null(Wj).

The vector space NJ is the set of low-pass filtered images obtained by interpolating every
possible approximation at resolution 2−J back to full resolution (that is, resolution 1). There-
fore, since the images in null(D) have strong high-frequency content, condition (5.6) holds,
and hence ΘW

�1,J
is coercive. Note that large values of γ̃ pull the solutions toward NJ rather

than 0. In this respect, the minimizers of ΘW
�1,J

are less sensitive to γ̃ than those of ΘT
�1
are to

ρ. In our experiments below, we use a single decomposition level (that is, we set J = 1) and
biorthogonal spline wavelets with two vanishing moments [42].

The Tikhonov and wavelet-sparsity regularizers penalize the images in G+(τ) much more
strongly than for piecewise-smooth images (e.g., for the “good” and “bad” minimizers x∗ and



1784 MARC C. ROBINI AND YUEMIN ZHU

y∗ shown in Figure 7, we have ‖y∗‖2/‖x∗‖2 ≈ 5.1×103 and ‖W1y
∗‖1,ε/‖W1x

∗‖1,ε ≈ 6.4×102).
Therefore, both regularizers are appropriate to exclude the spurious minimizers in the set S+

defined in (5.5). Besides, since ΘT
�1

and ΘW
�1,1

are coercive, there is theoretically no need for
the continuation strategy used so far—yet we continue to use it because it provides a good
starting point for the algorithm.

Figure 8 displays the SSIM and the ISNR of the restorations obtained by minimizing ΘT
�1

and ΘW
�1,1

when varying the Tikhonov and wavelet-sparsity strengths (the spatial smoothing
strength is kept constant at the value that gives x∗, the best achieved minimizer of Θ�1). Both
additional regularizers improve restoration quality if their strengths are not too high. When
the Tikhonov strength increases above its optimum value, the SSIM and the ISNR decrease
rapidly to the values corresponding to the zero image (namely, 1.2 × 10−3 and −4.94 dB,
respectively). On the other hand, when increasing the wavelet-sparsity strength, the SSIM
and the ISNR stabilize around 0.86 and 8dB. Indeed, increasing γ̃ brings the minimizers
closer to null(W1) (the vector space of the images that contain no detail information between
resolutions 1 and 1

2), and in the limit when γ̃ −→+∞, minimizing ΘW
�1,1

amounts to searching
for minimizers of Θ�1 on null(W1). The best restorations achieved by adding Tikhonov and
wavelet-sparsity regularization are shown in Figures 9(a) and 9(b), respectively. They are
similar, and their ISNR values are more than 6dB higher than that of x∗. The increase in
SSIM is less marked because the perceptual improvement compared to x∗ lies in the smoothing
of a few outliers.

Figure 8. Restoration of the “text” image degraded by 3×3 uniform blur and Gaussian plus impulse noise:
(a)–(b) SSIM and ISNR as functions of the Tikhonov strength when minimizing ΘT

�1
; (c)–(d) SSIM and ISNR

as functions of the wavelet-sparsity strength when minimizing ΘW
�1,1

.
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Figure 9. Restoration of the “text” image degraded by 3 × 3 uniform blur and Gaussian plus impulse
noise: best results obtained by adding (a) Tikhonov regularization (SSIM = 0.9852, ISNR = 19.72 dB) and (b)
wavelet-sparsity regularization (SSIM = 0.9858, ISNR = 19.42 dB).

Figure 10. Restoration of the “text” image degraded by 3 × 3 uniform blur and Gaussian plus impulse
noise. SSIM and ISNR as functions of the spatial smoothing strength: (i) without Tikhonov or wavelet-sparsity
regularization; (ii) with Tikhonov regularization; (iii) with wavelet-sparsity regularization.

We can also observe the impact of Tikhonov and wavelet-sparsity regularization by keeping
their strengths constant while varying that of the gradient regularizer. Figure 10 compares
the SSIM and ISNR versus γ curves obtained by minimizing Θ�1 (in red), ΘT

�1
(in green), and

ΘW
�1,1

(in blue). The Tikhonov and wavelet-sparsity regularizers improve restoration quality
up to a certain value of γ (about 10) above which their effects are negligible. Furthermore,
both reduce the sensitivity to γ in two senses. First, they maintain a minimum quality when
gradient regularization is too weak: when γ goes to zero, the SSIM decreases to 0.5109 with
Tikhonov regularization and to 0.5325 with wavelet sparsification, whereas it goes to zero
when neither is used. Second, they enlarge the range of values of γ that yield estimates with
SSIM (or ISNR) above a given value: for example, the length of the interval of values of γ
yielding an SSIM greater than 0.9 is 0.91 decades when minimizing Θ�1 , 1.05 decades when
adding Tikhonov regularization, and 1.27 decades with wavelet sparsification.

5.4. “Office” image. We conclude this paper with the restoration of the “office” image
from the data shown in Figure 4(b). All the results presented in this section are the best
obtained by varying the regularization strength parameters.

As an alternative to the �1-norm of the residual, we deal with Gaussian plus impulse noise
by using the Huber function ϑHu defined in (1.7), a choice rooted in robust statistics [21]. The
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instances of (1.1) considered here are of the form

(5.7) Θ(x) =
M∑

m=1

ϑHu

(
|(Dx− d)m|/ς

)
+ Θreg,1(x) + Θreg,2(x),

where ς ≈ 2.12 is the standard deviation of the Gaussian noise component, and the regularizers
Θreg,1 and Θreg,2 impose different types of constraints. The first regularizer is gradient- or
Hessian-based:

Θreg,1(x) = γ1
∑
l

ϑ
(
‖Rlx‖/δ

)
,

where {Rl} l is either the gradient operator {Gl ∈ R
2×N} l given in (5.2) or the Hessian opera-

tor {H l ∈ R
3×N} l that defines Frobenius-norm regularization [14] (Hessian regularization was

not introduced in the previous experiments because it is not adapted to piecewise-constant
images). In either case, we consider convex, nonconvex, and bounded regularization by setting
ϑ = idε, ϑ = ϑLE, and ϑ = ϑGM, respectively (ϑLE and ϑGM are the Lorentzian error and the
Geman and McClure functions defined in (1.8) and (1.9)). When ϑ = idε, the scaling param-
eter δ is set to 1, and thus Θreg,1(x) ≈ γ1

∑
l ‖Rlx‖; in particular, if {Rl} l is the gradient

operator, then Θreg,1(x)/γ1 is a smooth approximation to the discrete total variation (TV) of
x. When ϑ = ϑLE or ϑGM, we set δ = 10 for gradient regularization and δ = 10

√
2 for Hessian

regularization, where the factor
√
2 accounts for the fact that ‖H lx‖ =

√
2‖Glx‖ when the

lth pixel in x is adjacent to a horizontal or vertical step-edge. The second regularizer is either
zero or one of the following:

Θreg,2(x) =

⎧⎪⎪⎨⎪⎪⎩
γ2‖x‖2 (Tikhonov regularizer),

γ2‖W1x‖1,ε (wavelet-sparsity regularizer),

γ2
∑

l idε
(
‖H lx‖

)
(convex Hessian regularizer).

If Θreg,2 is the Tikhonov regularizer or the wavelet sparsifier, Θ is coercive independently
of the choice of ϑ in Θreg,1 (the reasons are the same as those given in section 5.3.2). The
objective functional is also coercive when Θreg,2 is the convex Hessian regularizer. Indeed, the
null space of the vertical concatenation H of the matrices H l is the set of planar images (we
call x planar if there are real numbers a1, a2, a3 such that x(l1, l2) = a1l1 + a2l2 + a3 for all
(l1, l2)). Therefore, since D is a low-pass filtering operator, we have null(D)∩null(H) = {0},
and coercivity follows from Proposition 2.5.

The only case when Θ is not coercive is when ϑ = ϑGM and Θreg,2 = 0, but since condition
(C4) holds, we can introduce a continuation sequence to reach a bounded sublevel set of Θ and
hence guarantee global convergence. Continuation is actually helpful when Θ is nonconvex,
whether coercive or not; so we use this technique whenever ϑ = ϑLE or ϑ = ϑGM (the
corresponding sequences of potential functions are similar to that defined in (5.4) but with
ϑTB replaced by either ϑLE or ϑGM depending on which is considered).

Figure 11 shows the restorations obtained using gradient regularization alone—the cor-
responding SSIM and ISNR values are listed in Table 1 (in the row labeled “Gradient”),
which summarizes our experiments on the “office” image. The solution associated with the



GENERIC HALF-QUADRATIC OPTIMIZATION 1787

convex potential function is fairly good; it contains no outlier and is approximately piece-
wise smooth, and so we expect little if no improvement from the introduction of Tikhonov or
wavelet-sparsity regularization. We indeed observe that Tikhonov regularization is useless and
that wavelet sparsification improves restoration quality only slightly. The restoration obtained
by adding the wavelet sparsifier is shown in Figure 12(a). It looks similar to that achieved
with convex gradient regularization alone, but closer examination reveals a reduced staircase
effect and smoother contour lines (by “smooth contour lines” we mean piecewise-smooth level
curves, not smooth edges).

Figure 11. Restoration of the “office” image with different gradient regularizers: (a) smooth approximation
to TV (SSIM = 0.9292); (b) Lorentzian error (SSIM = 0.9069); (c) Geman and McClure (SSIM = 0.8650).

Table 1
Best SSIM and ISNR (dB) obtained by minimizing the objective functional (5.7) for various regularization

schemes (WS stands for “wavelet sparsity”).

Potential function in the first regularizer

First regularizer Quality idε ϑLE ϑGM

(+ second regularizer) measure (convex) (nonconvex) (bounded)

Gradient
SSIM 0.9292 0.9069 0.8650

ISNR 14.56 11.42 8.94

Gradient + Tikhonov
SSIM 0.9292 0.9095 0.8833

ISNR 14.56 12.12 10.66

Gradient + WS
SSIM 0.9356 0.9308 0.9264

ISNR 15.04 14.22 13.90

Gradient + Hessian
SSIM 0.9415 0.9421 0.9436

ISNR 15.94 15.95 15.78

Hessian
SSIM 0.9368 0.9345 0.9216

ISNR 15.19 14.60 12.07

Hessian + WS
SSIM 0.9368 0.9356 0.9306

ISNR 15.19 14.65 13.80

In contrast with the convex case, nonconvex gradient regularization produces noisy contour
lines, an effect even more pronounced if the potential function is bounded. This deterioration
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Figure 12. Restoration of the “office” image with wavelet sparsification added to different gradient regular-
izers: (a) smooth approximation to TV (SSIM = 0.9356); (b) Lorentzian error (SSIM = 0.9308); (c) Geman
and McClure (SSIM = 0.9264).

in image quality is clearly visible in Figures 11(b) and 11(c) and translates to smaller SSIM
and ISNR. Since the Tikhonov penalty does not distinguish between smooth and noisy contour
lines, it is not surprising that additional Tikhonov regularization does not improve the situa-
tion much: although it slightly increases the SSIM and the ISNR, the restorations obtained
with or without it have similar noisy boundaries. The wavelet sparsifier, on the other hand,
brings real improvements. The solutions obtained using nonconvex gradient regularization
together with wavelet sparsification are shown in Figures 12(b) and 12(c). Compared to the
results achieved with nonconvex gradient regularization alone, the contour lines are smooth
(as in the original image) and the increases in SSIM and ISNR are significant.

Figure 13. Restoration of the “office” image with convex Hessian regularization added to different gradient
regularizers: (a) smooth approximation to TV (SSIM = 0.9415); (b) Lorentzian error (SSIM = 0.9421); (c)
Geman and McClure (SSIM = 0.9436).

We can further improve restoration quality by combining gradient and Hessian regulariza-
tion. The resulting estimates are shown in Figure 13; they are qualitatively and quantitatively
very close to the original image, especially considering the poor quality of the data. This sug-
gests that gradient plus Hessian regularization is the best adapted to piecewise-smooth images.
To support this claim, we performed restorations using Hessian regularization either alone or
with wavelet sparsification. The corresponding SSIM and ISNR values are reported in the
last two rows of Table 1; they are all smaller than those achieved with gradient plus Hessian
regularization. (We also observe that wavelet sparsification brings negligible improvement to
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Hessian regularization. The reason is that Hessian regularization alone produces smooth con-
tour lines even when the potential function is nonconvex.) More importantly, gradient plus
Hessian regularization is the most stable: contrary to the other regularization schemes, there
is almost no difference between the restorations obtained with the three potential functions
considered. It is also noteworthy that the bounded potential function offers a slight advantage
in terms of SSIM. This again confirms that Algorithm 1 behaves well in difficult situations
where the objective functional contains a bounded regularizer.

Appendix A. List of symbols and acronyms. Below is a summary of the symbols and
acronyms used in this paper. As a general rule, we denote matrices by bold upper-case
roman letters, vectors by bold lower-case roman letters, and sets by calligraphic upper-case
letters. The interior, the closure, and the boundary of a set G are denoted by G◦, G, and ∂G,
respectively.

Ak, ak Matrices and vectors in the definition (1.1) of the objective
functional

A, a Vertical concatenations of the matrices Ak and of the vectors
ak

A(x∗) Basin of attraction of a stationary point x∗ (Definition 4.14)
B(x, α) Open ball with center x and radius α
CX Set of cluster points of the sequence X
D, d Observation matrix and data vector, (1.3)
E(x) Diagonal matrix of the weighting coefficients at point x, (2.3)
{Gl} l Discrete gradient operator, (5.2)
G+(t) Set of images with gradient norm everywhere greater than t,

(5.3)
H(O) Height of a cup O (Definition 4.4)
H(x∗) Supremum of the heights of the cups with bottom x∗, (4.7)
ISNR Improvement in SNR, (5.1)
J+ Index set of the strictly increasing potential functions, (C4)

L0 Sublevel set at the initial height Θ(x(0)), (1.13)
lev Level, sublevel, and superlevel sets, (4.2)
null Null-space operator
O Cup (Definition 4.4)
Oh(x

∗) Unique cup with bottom x∗ and height h
Osup(x

∗) Supremum cup with bottom x∗ (Definition 4.15)
{Rl} l Discrete regularization operator, (1.4)
S Set of stationary points of the objective functional, (1.12)
SΞ Set of stationary points of a differentiable functional Ξ
SNR Signal-to-noise ratio
SSIM Structural similarity
TV Total variation
x� Original signal, (1.3)

X Sequence (x(p))p generated by Algorithm 1
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εk(x) kth weighting coefficient at point x, (2.2)
θ, ϑ Potential functions
θ† Weighting function t∈ (0,+∞) �−→ t−1θ′(t)
θ‡ Continuous extension of θ† to R+, (2.1)
Θ Objective functional of the form of (1.1)
Θ‡ Half-quadratic functional associated with Θ, (2.6a)

Θ Surrogate generator of the majorization-minimization interpre-
tation of Algorithm 1, (2.15)

Ξ Continuous functional on some subset of RN (Theorem 3.4) or
differentiable functional on R

N (section 4.1)
Φ Iteration map of Algorithm 1, (2.11b)
Ω(x∗) Set of all the cups with bottom x∗ (Definition 4.15)
∇ Gradient operator in R

N

Appendix B. Sufficient conditions for strict convexity. Propositions B.1 and B.2 provide
sufficient conditions for strict convexity of functionals of the form of (1.1)—the former when
the potential functions θ1, . . . , θK are all convex and the latter when some of the potential
functions are nonconvex. We conclude this appendix with the example of image restoration
using �2 data-fidelity and nonconvex regularization under periodic boundary conditions.

Notation. Given a nonempty set J ⊆ [1 . .K], we denote by AJ any vertical concatenation
of the matrices Ak indexed by J , that is,

AJ :=
(
AT

k1 · · · AT
kj

)T
with {k1, . . . , kj} = J .

Proposition B.1. Let Θ : R
N −→ R be a functional of the form of (1.1) with potential

functions θ1, . . . , θK increasing and convex. If the set

K+ :=
{
k ∈ [1 . .K] : θk is strictly convex

}
is nonempty and

null(AK+) = {0},

then Θ is strictly convex.
Proof. Suppose all the potential functions are increasing and convex. Let x and y be

distinct points in R
N, and let α ∈ (0, 1). For every k ∈ [1 . .K],

θk
(
‖Ak(αx+ (1− α)y)− ak‖

)
� αθk

(
‖Akx− ak‖

)
+ (1− α)θk

(
‖Aky − ak‖

)
.

(B.1)

So Θ is strictly convex if this inequality is strict for some k which may depend on x and y.

Suppose further that null(AK+) = {0}, and let k ∈ K+ be such that y−x �∈ null(Ak). If
‖Akx− ak‖ �= ‖Aky − ak‖, then inequality (B.1) is strict by the strict convexity of θk. Now
consider the case where ‖Akx− ak‖ = ‖Aky − ak‖. Let

v := Akx− ak and w := Ak(y − x).
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Clearly, ‖v+w‖ = ‖v‖, and thus ‖w‖2 = −2〈v,w〉, where 〈· , ·〉 denotes the Euclidean inner
product. It follows that

‖v + (1− α)w‖2 = ‖v‖2 + 2(1− α)〈v,w〉+ (1− α)2‖w‖2

= ‖v‖2 − α(1− α)‖w‖2

< ‖v‖2.

Therefore, since θk is strictly increasing (for it is increasing and strictly convex),

θk
(
‖v + (1− α)w‖

)
< θk

(
‖v‖

)
= αθk

(
‖v‖

)
+ (1− α)θk

(
‖v +w‖

)
,

which proves that inequality (B.1) is strict.
Notation. Suppose the potential functions θ1, . . . , θK are twice differentiable with some

strictly convex and others nonconvex. Let J be a nonempty subset of K+, and let

K− :=
{
k ∈ [1 . .K] : θk is nonconvex

}
.

We define Γ(J ) to be the minimum convexity over the potential functions indexed by J , and
we let Γ(K−) be the maximum concavity over the nonconvex potential functions; that is,

Γ(J ) := min
k∈J

inf
R+

θ′′k and Γ(K−) := max
k∈K−

sup
R+

(−θ′′k).

Proposition B.2. Let Θ : RN−→ R be a functional of the form of (1.1). Suppose that the
potential functions θ1, . . . , θK are twice differentiable, that they satisfy conditions (C1) and
(C3), and that at least one of them is nonconvex. If there is a nonempty set J ⊆ K+ such
that

Γ(J )σ2
min(AJ ) > Γ(K−)σ2

max(AK−),

where σmin( ·) and σmax( ·) respectively denote the smallest and largest singular values of their
matrix argument, then Θ is strictly convex.

Proof. We show that the Hessian matrix of Θ is positive definite everywhere under the
stated assumptions. Let x ∈ R

N. The Hessian matrix of Θ at x is

∇2Θ(x) =
K∑
k=1

θ′′k
(
‖Akx− ak‖

)
AT

kAk

(this expression is derived using Lemmas 2.1(iii) and 2.3, which is why we assume that the
potential functions satisfy conditions (C1) and (C3) in addition to twice differentiability).
For every y ∈ R

N,

yT∇2Θ(x)y =
K∑
k=1

θ′′k
(
‖Akx− ak‖

)
‖Aky‖2

� Γ(J )
∑
k∈J

‖Aky‖2 − Γ(K−)
∑
k∈K−

‖Aky‖2

= yT
(
Γ(J )(AJ )TAJ︸ ︷︷ ︸

=: BJ

− Γ(K−)(AK−)
TAK−︸ ︷︷ ︸

=: BK−

)
y.
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Let λmin(C) and λmax(C) denote the smallest and largest eigenvalues of a real symmetric
matrix C. Using Weyl’s theorem (see, e.g., Corollary 4.3.15 in [43]), we have

λmin(BJ −BK−) � λmin(BJ ) + λmin(−BK−)

= Γ(J )λmin

(
(AJ )TAJ

)
− Γ(K−)λmax

(
(AK−)

TAK−
)

= Γ(J )σ2
min(AJ )− Γ(K−)σ2

max(AK−)

> 0.

Therefore, BJ −BK− is positive definite, and hence so is ∇2Θ(x).
Example 4. Consider the classical example of image restoration by minimizing

Θγ,δ(x) := ‖Dx− d‖2 + γ

L∑
l=1

ϑ
(
‖Rlx‖/δ

)
, γ, δ ∈ (0,+∞),

where D implements a two-dimensional (2-D) convolution, and the vertical concatenation of
R1, . . . ,RL is any ordering of the first-order horizontal and vertical difference operators, that
is,

R :=
(
RT

1 · · · RT
L

)T
= P

(
H
V

)
,

where P is a permutation matrix, and H and V implement the 2-D convolutions with the
masks ( −1 1 ) and ( −1 1 )T.

Suppose the mother potential function ϑ is nonconvex, twice differentiable, and satisfies
conditions (C1) and (C3). By Proposition B.2, the functional Θγ,δ is strictly convex if

(B.2) σ2
min(D) >

γ

2δ2
sup
R+

(−ϑ′′)σ2
max(R).

Since the singular values of a real matrix C are the square roots of the eigenvalues of CTC,
condition (B.2) is of practical interest if we can efficiently estimate the smallest eigenvalue
of DTD and the largest eigenvalue of RTR = HTH + V TV . To do so, we further assume
periodic boundary conditions for both the data and the regularization models. In this case,
D, H , and V are block-circulant, and thus so are DTD and RTR. We can then use the fact
that the eigenvalues of block-circulant matrices can be computed exactly by using the 2-D
discrete Fourier transform (DFT) [44]—the results we need are the following.

Let f be a discrete function defined on [−M1 . .M1]× [−M2 . .M2], and let C be the block-
circulant matrix representing the circular convolution of an N1×N2 image with f (we assume
that N1 > 2M1 and N2 > 2M2). The eigenvalues of C are

λ(n1, n2) :=

M1∑
k1=−M1

M2∑
k2=−M2

f(k1, k2) exp

(
−2iπ

(
k1n1

N1
+

k2n2

N2

))
,

(n1, n2) ∈ [0 . . N1 − 1]× [0 . . N2 − 1].

In other words, the spectrum of C is the 2-D DFT of the N1 × N2 image obtained by zero-
padding f and then performing a circular shift to position f(0, 0) in the upper left corner.
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Furthermore, if N1 > 4M1 and N2 > 4M2, the block-circulant matrix CTC implements
the circular convolution with the autocorrelation function f � f defined on [−2M1 . . 2M1 ] ×
[−2M2 . . 2M2 ] by

(f � f)(k1, k2) :=
∑

i∈J (M1,k1)

∑
j∈J (M2,k2)

f(i, j)f(i − k1, j − k2),

where J (M,k) := [−M +max{0, k} . . M +min{0, k}].
Let g be the kernel of the convolution implemented by D, and let F(g � g) denote the

N1×N2 DFT of the autocorrelation of g. By the above properties of block-circulant matrices,
the singular values of D are the square roots of the magnitudes of the Fourier coefficients
F(g � g)(n1, n2) (since the magnitude of the DFT is invariant to circular shifting in the spatial
domain, there is no need to shift the zero-padding of g � g prior to computing the DFT). It
follows that

σ2
min(D) = min

(n1,n2)

∣∣F(g � g)(n1, n2)
∣∣.

Besides, HTH and V TV implement the convolutions with the masks

( −1 2 −1 ) and ( −1 2 −1 )T,

and thus RTR represents the convolution with the Laplace kernel⎛⎝ 0 −1 0
−1 4 −1
0 −1 0

⎞⎠.

Therefore, RTR has eigenvalues

λ(n1, n2) = 4− 2 cos

(
2πn1

N1

)
− 2 cos

(
2πn2

N2

)
,

and hence σ2
max(R) � 8 with equality when N1 and N2 are even. So finally, under periodic

boundary conditions, Θγ,δ is strictly convex if

min
(n1,n2)

∣∣F(g � g)(n1, n2)
∣∣ >

4γ

δ2
sup
R+

(−ϑ′′).

Appendix C. A nondiscrete, level-discrete set of stationary points. The following ex-
ample shows the existence of objective functionals that satisfy our assumptions and whose set
of stationary points is level-discrete but not discrete.

Consider the function

Θ : x ∈ R �−→ θ1(|x− 2|) + θ2(|x|),

where θ1 and θ2 are given by

θ1(t) =

{
t2(1− t/3) if t ∈ [0, 1],

t− 1/3 if t > 1
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and

θ2(t) =

⎧⎨⎩ θ1(t) if t ∈ [0, 1],

θ1(t) +

∫ t−1

0

u2 sin(1/u)

1 + u+ u sin(1/u)
du if t > 1.

The potential functions θ1 and θ2 satisfy conditions (C1)–(C3); they are also strictly increasing,
and so (C4) holds trivially. Leaving details aside, the set of stationary points of Θ is

S = {1} ∪ {tk : k ∈ N}, tk := 1 +
2

(4k + 3)π
.

Furthermore, the derivative of Θ is negative on (−∞, 1) and positive on (1,+∞)\{tk : k ∈ N}.
Consequently, Θ(1) < Θ(tk+1) < Θ(tk) for all k ∈ N, and thus S is level-discrete. But S is
not discrete since limk→∞ tk = 1 ∈ S.

Appendix D. Supremum cups in the one-dimensional case. Contrary to cups, supremum
cups can be unbounded. However, as stated in the following proposition, the one-dimensional
case is particular: when defined on R, the objective functions in the class considered do not
admit unbounded supremum cups other than R.

Proposition D.1. Let Θ : R −→ R be a differentiable function of the form

Θ(x) =

K∑
k=1

θk
(
|αkx− ak|

)
,

where, for every k, the potential function θk : R+ −→ R is increasing and (αk, ak) ∈ (R\
{0}) ×R. Then any supremum cup of Θ is either R or a cup.

Proof. Let Θ be as stated, and let x∗ be an isolated minimizer of Θ (assuming one exists).
If the supremum cup Osup(x

∗) is bounded, then it is a cup by Propositions 4.18 and 4.20. So
we need only show that if Osup(x

∗) �= R, then Osup(x
∗) is bounded. Seeking a contradiction,

suppose Osup(x
∗) is different from R and unbounded. Since supremum cups are open and

connected by Proposition 4.18, either Osup(x
∗) = (−∞, c) with x∗ < c or Osup(x

∗) = (c,+∞)
with x∗ > c. Without loss of generality, we consider the latter case. By Proposition 4.20(ii),
we have Θ(x) < Θ(c) for all x > c, and thus Θ(c) � limx→+∞Θ(x). Since the potential
functions θk are increasing, it follows that Θ(c) =

∑
k supR+

θk. But this is only possible if
all the potential functions are eventually constant, which implies that Θ(x) = Θ(c) when x
is sufficiently large, a contradiction.

Appendix E. Impact of the free parameters on the objective landscape. When the
objective functional is nonconvex, the variation of a strength parameter can result in either
continuous or discontinuous trajectories of the solutions obtained by Algorithm 1. The fol-
lowing example illustrates the two cases.

Let Θγ,δ : R −→ R be defined by

(E.1) Θγ,δ(x) := ϑGM

(
|x− 1|/δ

)
+ γ

(
ϑGM

(
|x|

)
+ ϑGM

(
|x+ 1|

))
,

where ϑGM is the Geman and McClure function given in (1.9). Let us first set δ = 5/4. Then,
as illustrated by Figure 14(a), the function Θγ, 5/4 has a unique minimizer x∗γ which moves
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Figure 14. Minimizers of the function Θγ,δ defined in (E.1) for (a) δ = 5/4 and (b) δ = 1/2. The red
and green arrows in (b) indicate the trajectories of the solutions obtained by Algorithm 1 when starting from
x(0) = 0 and x(0) = 1, respectively.

smoothly from x∗0 = 1 to limγ→+∞ x∗γ = −1/2. Furthermore, since the supremum cup with
bottom x∗γ is R, minimizing Θγ, 5/4 using Algorithm 1 yields x∗γ regardless of the initialization.
Now let us set δ = 1/2. Then there are two constants γ1 ≈ 0.6189 and γ2 ≈ 1.5489 such that
Θγ, 1/2 has a unique minimizer x∗γ when γ ∈ [0, γ1)∪ (γ2,+∞) and two distinct minimizers y∗γ
and z∗γ when γ ∈ (γ1, γ2). In other words, the basin of attraction of x∗γ splits into two basins
with bottoms y∗γ and z∗γ when γ > γ1, and these two basins merge into a single one when
γ > γ2. Consequently, if γ ∈ [0, γ1)∪(γ2,+∞), Algorithm 1 converges to x∗γ from any starting

point x(0), whereas if γ ∈ (γ1, γ2), the convergence is toward either y∗γ or z∗γ depending on

x(0). For instance, the red and green arrows in Figure 14(b) indicate the trajectories of the
solutions obtained by starting from x(0) = 0 and x(0) = 1, respectively. The discontinuity in
the first trajectory occurs when x(0) = 0 “switches” from a unique basin to a newly emerging
basin, and the discontinuity in the second trajectory arises when the basin containing x(0) = 1
vanishes.
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