Robustness of Spatio-Temporal Regularization in Perfusion MRI Deconvolution: An Application to Acute Ischemic Stroke

Mathilde Giacalone,1 Carole Frindel,1 Marc Robini,1 Frédéric Cervenansky,1 Emmanuel Grenier,2 and David Rousseau1*

INTRODUCTION

Dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) is an imaging modality, mainly used in clinical routine for the evaluation of cerebral perfusion in stroke or brain cancer patients (1). In the context of acute ischemic stroke, perfusion imaging allows the estimation of hemodynamic parameters in the brain and is used in diagnosis and patient management. Its application is, for example, the evaluation of tissue at risk of infarction or the assessment of the risk of intracranial hemorrhage. Although largely disseminated in clinic and clinical research for acute stroke, the quantitative benefit of the use of DSC perfusion MRI is still discussed because many issues remain to be overcome (2) in the processing of the images. Among them, we will focus here on the issue of data deconvolution.

Deconvolution is used in DSC-MRI analysis to assess the hemodynamic parameters of clinical interest: it computes a three dimensional and temporal (3D + t) image where each voxel is associated to a temporal signal from which the hemodynamic parameters can be extracted. This step corresponds to the resolution of an ill-posed inverse problem. Consequently, in order to obtain a stable solution, additional prior information on the desired solution needs to be used. Generally, prior information enforces a constraint on the solution whose strength is determined by a regularization parameter. Most deconvolution approaches consider each voxel independently—imposing constraints in the temporal dimension only—and ignore the spatial correlation between neighboring voxels that is inherent to the structured organization of the brain tissue. A common approach consists in adding a temporal regularization constraint which imposes a certain smoothness over time. With such a deconvolution approach, the hemodynamic parameter maps extracted after deconvolution often contain isolated voxels with aberrant values. To address this problem, deconvolution approaches with spatial and temporal regularization constraints were recently introduced (3–7).

The deconvolution algorithm proposed by Frindel et al. (6) contains an edge-preserving spatial regularization constraint and has the added advantage of being globally convergent, which ensures that the algorithm systematically provides optimum performance and does not run the risk of being stuck in a local minimum. This robustness is very important in the context of clinical image analysis where fluctuations of a tool’s performance cannot be accepted. In this original paper, the algorithm was tested on synthetic and real data for large compact ischemic lesions. The quality of the hemodynamic parameter maps obtained after deconvolution with the Frindel algorithm (6) was considerably improved compared with maps obtained after deconvolution with either the truncated singular value decomposition (8) or the Tikhonov regularization (9) methods, both methods which contain only a temporal regularization constraint. These results showed the benefit of taking into account the spatio-temporal nature of the data. However, studies (10–14) focusing on the ischemic lesion shapes and their potential interest in predicting the
outcome of stroke, have brought to light the great variability of lesion shapes. They showed that in acute stroke, ischemic lesions do not necessarily present a compact shape but can have a fragmented aspect. Since the Frindel algorithm (6) imposes a spatial regularization constraint, it is possible that the optimum strength of the constraint, controlled by the value of its regularization parameter, will differ for compact and fragmented tissue organizations. In the context of clinical image analysis however, it is crucial that the deconvolution algorithm always gives results of good quality in spite of individual patient biodiversity.

Given the promising results obtained with the Frindel algorithm (6) on compact lesions, we propose to assess here the performance and robustness of the algorithm when confronted with lesion shape variability. Since lesion shape variability is not the sole possible source of variability, we will compare its relative impact on the performance of the deconvolution algorithm with other sources of variability. First, we will look at the impact of hemodynamic tissue variability. Then, since the signal to noise ratio is rather small in DSC-MRI due to the necessity of a fast MRI sequence in patient management in the acute phase, we will look at the impact of noise in the MRI acquisition system. Finally, the deconvolution process requires an estimate of the arterial input function and we will therefore look at the impact of errors on the estimation. We propose to address this issue via an original in silico validation approach with realistic lesion shapes.

THEORY
Principles of Perfusion DSC-MRI Deconvolution

A DSC-MRI perfusion image consists of a time series of T_2- or T_2^*-weighted MRI images, the acquisitions of which are synchronized with the injection of a contrast-agent. The contrast-agent tissular concentration over time in each voxel is estimated from the perfusion image. For each voxel, the profile of the contrast-agent concentration signal gives insight into the state of the micro-circulation in the tissues within the voxel and can be used to estimate regional hemodynamic parameters of clinical interest, such as the cerebral blood flow (CBF) or the mean transit time. The profiles of the contrast-agent concentration signals also depend on the volume and dispersion of the so-called arterial input function (AIF), which corresponds to the profile of the contrast-agent bolus upon its arrival in the brain tissue. Based on the indicator-dilution theory (15), the contrast-agent concentration signal in voxel v, $C_v(t)$ (mM), can be modeled by the convolution of the AIF, $C_0(t)$ (mM), and the tissue impulse response function, $f_v(t)$ (mL g$^{-1}$ s$^{-1}$), which contains the hemodynamic information of interest:

$$C_v(t) = \kappa \int_0^t C_0(\tau) f_v(t-\tau) d\tau \quad \text{with} \quad f_v(t) = \text{CBF}_v \times R_v(t, \text{MTT}_v),$$

where κ (g mL$^{-1}$) depends on the brain tissue density and on the hematocrit level in the capillaries and arterioles. Generally, its value cannot be measured and it is common practice to suppose it constant (e.g., $\kappa = 1$ g mL$^{-1}$). CBF$_v$ (mL g$^{-1}$ s$^{-1}$) corresponds to the cerebral blood flow in voxel v. $R_v(t)$ (no unit) is the residue function in voxel v. It describes the fraction of contrast-agent still present in voxel v at time t (s). MTT$_v$ (s) corresponds to the mean transit time in voxel v.

In order to eliminate the variability due to the AIF, the deconvolution of the contrast-agent concentration image by the AIF needs to be carried out (16). It consists in computing the tissue impulse response function image f from the contrast-agent concentration image C and the arterial input function C_0.

Deconvolution Algorithm

The Frindel algorithm (6) addresses the deconvolution problem as the minimization, over the impulse response function image f, of a global cost function $\Omega(f)$ composed of a data-fidelity term $\Phi(f)$, a temporal regularization constraint $\Psi_t(f)$, and an edge-preserving spatial regularization constraint $\Psi_s(f)$:

$$\Omega(f) = \Phi(f) + \lambda_t \Psi_t(f) + \lambda_s \Psi_s(f, \delta),$$

where λ_t, λ_s, and δ are the parameters of the algorithm. In this cost function, the data fidelity term penalizes deviations from the observed data, the temporal regularization term penalizes solutions which are not smooth as a function of time (i.e., with a large temporal gradient norm) and the edge-preserving spatial regularization term favors solutions which are smooth spatially (i.e., with a small spatial gradient norm) but which still preserve the main spatial discontinuities in the image. The temporal regularization term is the well-known Tikhonov regularization (9) and is expressed as $\Psi_t(f) = \| Tf \|^2$ where T corresponds to a first-order difference operator. More details on the cost function terms can be found in (6) and (7).

The regularization parameters, λ_t and λ_s, control the strength of the temporal and edge-preserving spatial regularization terms with respect to the data fidelity term, while the scaling parameter, δ, controls the value of the spatial gradient above which edges should be preserved by the algorithm. Parameters λ_t, λ_s, and δ need to be selected to optimize the performance of the algorithm. An automatized and unsupervised solution to select these parameters was proposed recently (17). In this study, we address the question of the robustness of the algorithm of Equation [2] when we depart, due to various sources of variability, from the original set-up for which the parameters were optimized.

METHODS

In order to evaluate the performance and robustness of the Frindel deconvolution algorithm (6), we decided to adopt a numerical simulation approach since it enables a fine control of all the sources of variability, notably, as stressed in the introduction, lesion shape variability. To the best of our knowledge, none of the simulators available in the literature included realistic ischemic lesion shapes. Consequently, we developed a new simulator for the validation of deconvolution algorithms for DSC-MRI...
which uses the widespread simulation approach consisting of simulating directly the contrast-agent concentration images using the principle of the indicator-dilution theory formulated in Equation [1]. We then made full use of the simulator in order to test the robustness of the Frindel deconvolution algorithm (6). Please note that the simulator as well as an implementation of this algorithm was made accessible online via the Virtual Imaging Platform at www.creatis.insa-lyon.fr/vip (18) (see Supporting Information for a tutorial on the use of the online simulator).

Numerical Simulator for the Validation of Deconvolution Algorithms

Kudo et al. (19) proposed a digital phantom for the study of the precision and reliability of perfusion DSC-MRI analysis softwares. However, although their simulations are extremely valuable for the evaluation of deconvolution algorithms with temporal regularization constraints, they do not take into account any shape aspect. The only digital phantoms in the literature with realistic shapes were proposed for different imaging modalities, such as CT brain perfusion (20) or DCE-MRI (21). Amongst the different articles on deconvolution algorithms with spatio-temporal regularization constraints, Schmid et al. (3) only used real patient data for the validation of their algorithm, He et al. (4) and Frindel et al. (6) used some synthetic data with simple and compact geometric shapes, and Schmid (5) used some synthetic data with geometric concentric shapes mimicking the myocardial segments. In the end, to the best of our knowledge, no simulations in DSC-MRI of brain contrast-agent concentration images with realistic shapes and applied to stroke pathology can be found in the literature. Also, when synthetic data were used to test the deconvolution algorithm of (6), piece-wise continuous tissues were considered and no tissue variability was introduced. This perfectly matched the spatial prior behind the edge-preserving spatial regularization. However, there is in reality some hemodynamic tissue variability and it can alter the performance of deconvolution algorithms with spatio-temporal regularization compared with the ideal case of a piece-wise continuous image.

We, therefore, modified the simulator of (19) to propose a new simulator which allows the production of digital phantoms with realistic brain and lesion shapes, distinct classes of tissues and distinct realistic hemodynamic tissue distributions as well as simulates errors on the AIF. The complete simulation pipeline, illustrated in Figure 1, is described below.

Step 1—Simulation of the Impulse Response Function Image

We generate a 2D + t (or 3D + t) impulse response function image from a two-dimensional (2D) (or three-dimensional (3D)) label mask representing the spatial distribution of the different classes of tissues. The label mask, which will be referred to as “shape model” from now on, is an input of the simulator. Its choice is very important since it determines the degree of realism of the simulation in terms of number of tissue classes and spatial organization.

Each voxel \(v\) in the 2D (or 3D) spatial domain is associated to a one-dimensional signal \(f_v(t)\) representing the impulse response function of this voxel. Different models representing potential shapes for the tissue impulse response function have been proposed in the literature (8,9,22). In our simulator, the choice between a box-shaped, triangular or single exponential first-order model is given:

\[
[f_v(t)]_{\text{box-shaped}} = \begin{cases}
 \text{CBF}_v & \text{if } t \leq \text{MTT}_v, \\
 0 & \text{if } t > \text{MTT}_v
\end{cases}
\]

\[
[f_v(t)]_{\text{triangular}} = \begin{cases}
 \text{CBF}_v \left(1 - \frac{t}{2.\text{MTT}_v}\right) & \text{if } t \leq 2.\text{MTT}_v, \\
 0 & \text{if } t > 2.\text{MTT}_v
\end{cases}
\]

FIG. 1. Pipeline for the DSC-MRI concentration image simulator.
\[f_v(t)_{\text{exponential}} = \text{CBF}_v \exp \left(-\frac{t}{\text{MTT}_v} \right). \]

The values of the hemodynamic parameters CBF and MTT are drawn from a distribution specific to the tissue class associated to the voxel v by the shape model. In our simulator, we model independently the CBF and the mean transit time distributions as truncated Gaussian distributions. We therefore need four parameters: the mean \(\mu \), the standard deviation \(\sigma \), the lower bound \(lb \) and the upper bound \(ub \). The values of these parameters \((\mu, \sigma, lb, ub) \) for both the CBF and the mean transit time and for each tissue class is an input of the simulator and determine the level of intracranial tissue variability and interclass tissue separability.

Step 2—Simulation of the Arterial Input Function

A global arterial input function \(C_0(t) \) is generated. \(C_0(t) \) is modeled by a gamma-variate function, expressed with the formulation proposed by Madsen (23):

\[
C_0(t) = \begin{cases}
0 & \text{if } t \leq d \\
\gamma_{\text{max}}(t - d) \exp \left(\alpha \left(1 - \frac{t - d}{t_{\text{max}}} \right) \right) & \text{if } t > d,
\end{cases}
\]

where \(\gamma_{\text{max}} \) and \(t_{\text{max}} \) correspond respectively to the magnitude and the location of the AIF maximum, \(d \) is the tracer arrival time and \(\alpha \) is the shape parameter of the AIF. \((\gamma_{\text{max}}, t_{\text{max}}, d, \alpha) \) are input parameters of the simulator.

Also, a flawed version of the global arterial input function is generated in order to evaluate the impact of errors in the AIF estimation on the performance of the deconvolution. In the literature, several studies examined the effect of specific AIF estimation errors on the quantification of DSC-MRI (24–27) but, to the best of our knowledge, none gave a statistical model for the errors on the AIF estimation in their specific framework of study. Meijs et al. (28) recently proposed a bivariate Gaussian model on the \(\gamma_{\text{max}} \) and \(t_{\text{max}} \) to describe the inter-patient variability in the arterial input function. Similar to the work of Calamante and Connelly (25), we propose here to model AIF estimation errors as perturbations on the \(\gamma_{\text{max}} \) and \(t_{\text{max}} \) of the arterial input function and sample the distorted values of \(\gamma_{\text{max}} \) and \(t_{\text{max}} \) within the 95% confidence ellipse of the model of Meijs et al. (28) rescaled to and centered around the true \(\gamma_{\text{max}} \) and \(t_{\text{max}} \) values. These values serve as an upper bound for the intrapatient estimation errors on the AIF.

Step 3—Simulation of the Contrast-Agent Concentration Image

The contrast-agent concentration image is generated using Equation [1]. Each noise-free concentration time curve \(C_v(t) \) is simulated by convolving the arterial input function \(C_0(t) \) of step 2 with the tissue impulse response function \(f_v(t) \) of step 1. For the convolution, a trapezoidal method is used to approximate the integral and, in order to reduce discretization artifacts, \(C_0(t) \) and \(f_v(t) \) are discretized with a sampling rate 10 times higher than \(dt \), the target temporal resolution of \(C_v(t) \). The signals are then under-sampled to achieve the temporal resolution \(dt \). We have \(t \in [0:T] \), with \(T \) the duration of the MRI acquisition. Finally, a realistic noise is added to the noise-free concentration image by following the procedure proposed by Smith et al. (29). Each noise-free concentration time curve \(C_v(t) \) is transferred into the signal intensity domain giving \(S_v(t) = S_0 \exp \left(-k_R^{\text{v}} \cdot \text{TE} \cdot C_v(t) \right) \), where the baseline value \(S_0 \) is 200 a.u., the echo time TE is \(50 \times 10^{-3} \) s and the proportionality constant \(k_R^{\text{v}} \) is determined such that the mean concentration time curve in the brain tissue achieves a 40% peak signal decrease in the signal intensity domain (19). A Gaussian noise of mean zero and standard deviation \(\sigma_N \) is added to the noise-free signal intensity image to simulate noise in the MRI acquisition system. The standard deviation value \(\sigma_N \) is computed in order to obtain a signal to noise ratio of \(\text{snr} \), where the SNR is defined in decibel as \(20 \log_{10} \left(S_0 / \sigma_N \right) \). The noisy concentration image is then recovered with the inverse transform \([C_v(t)]_{\text{noisy}} = -\frac{1}{k_R^{\text{v}} \cdot \text{TE} \cdot \text{snr}} \ln \left(S_v(t)_{\text{max}} / S_0 \right) \). (dt, T, snr) are input parameters of the simulator.

Robustness Analysis

Dataset Simulation for the Robustness Analysis

We test the robustness of the deconvolution algorithm to shape variability and evaluate its impact on the performance of the algorithm in comparison with other sources of variability (i.e., tissue variability, noise in the MRI acquisition system, or errors in the arterial input function estimation). The impact of a given source of variability is studied while the other sources are kept constant.

In order to simulate shape variability, we need to use shape models representative of the shape variability observed on clinical data. We studied the European I-
KNOW database (14) and constructed, from real patient images, four shape models (R1, R2, R3, and R4) with ischemic lesion shapes and tissue distributions representative of the variability observed in the database (see Fig. 2). Shape model R1 represents a large-sized fragmented lesion, shape model R2 represents a medium-sized fragmented lesion, shape model R3 represents a small-sized compact lesion and shape model R4 represents a large-sized compact lesion. These shape models were selected via an unsupervised clustering of the acute DWI lesion shapes in the I-KNOW database (see Supporting Information for more details). We chose to consider three classes of tissues: healthy white matter, healthy gray matter and core ischemic lesion. Information in the literature concerning intrapatient and intraclass tissue variability is relatively scarce. Moreover, the hemodynamic parameters are age-dependent and vary for the ischemic lesion, with the severity of the stroke and the region under consideration (DWI lesion, mismatch, penumbra...). Combining different information found in the literature (16,30–34) we chose the following simulation parameters. For healthy gray tissue, healthy white tissue and ischemic tissue, respectively: μCBF = (60, 25, 10), σCBF = (9, 2.1, 4.3), IbCBF = (0, 0, 0) and uCBF = (200, 200, 200) mL/100 g/min; μMTT = (4, 4.8, 10), σMTT = (2.2, 3.2, 5), IbMTT = (0, 0, 0) and uMTT = (25, 25, 25) s. For background voxels, we simply set Gt(0) = 0 at all time t. In order to simulate noise in the MRI acquisition system, we chose a SNR of 40 dB, a value found in the perfusion images of the I-KNOW database. Finally, we use an exponential model for the impulse response function and, based on information found in the literature (8,34,35), we set the other input parameters to the following values: ymax = 0.6124 mM, tmax = 4.5 s, d = 3 s, α = 3, dt = 1 s, T = 56 s.

Performance Evaluation

The performance of the deconvolution algorithm is assessed with two quality criteria, the mean absolute error on the CBF and the root mean square error on the impulse response function. For these two criteria, the smaller the value, the better the quality of the deconvolved image. The mean absolute error compares the CBF map estimated after deconvolution (CBF) to the expected CBF map (CBF):

$$\text{MAE} = \frac{1}{N_{\text{v,brain}}} \sum_{\text{v,brain}} |\widehat{\text{CBF}}_{\text{v}} - \text{CBF}_{\text{v}}|.$$

The root mean square error, contrarily to the mean absolute error, is an overall quality criteria and compares the entire impulse response image obtained after deconvolution (f) to the expected impulse response image (f).

Table 1

<table>
<thead>
<tr>
<th>Optimum set of Regularization Parameters $\Lambda_R = (\lambda_1, \lambda_2)$ Selected for Shape Model R_i in the (ST) and (T) Contexts of the Frindel Algorithm (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ_{R_i} (ST)</td>
</tr>
</tbody>
</table>
| $\begin{align*}
(3.65, 0.422) \times 10^{-2} \\
(7.50, 0) \times 10^{-3}
\end{align*}$ | $\begin{align*}
(3.65, 0.649) \times 10^{-2} \\
(5.62, 0) \times 10^{-3}
\end{align*}$ |
| $\begin{align*}
(3.16, 0.750) \times 10^{-2} \\
(4.87, 0) \times 10^{-3}
\end{align*}$ | $\begin{align*}
(1.00, 0.0750) \times 10^{-2} \\
(7.50, 0) \times 10^{-3}
\end{align*}$ |

Table 2

<table>
<thead>
<tr>
<th>Shape model</th>
<th>Parameters used for deconvolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAE (%)</td>
<td>Λ_{R_i}</td>
</tr>
<tr>
<td>(ST) R1</td>
<td>7.68 ± 0.05</td>
</tr>
<tr>
<td>R2</td>
<td>9.48 ± 0.26</td>
</tr>
<tr>
<td>R3</td>
<td>9.23 ± 0.17</td>
</tr>
<tr>
<td>R4</td>
<td>9.23 ± 0.15</td>
</tr>
<tr>
<td>R5</td>
<td>9.25 ± 0.12</td>
</tr>
<tr>
<td>R6</td>
<td>11.05 ± 0.27</td>
</tr>
<tr>
<td>R7</td>
<td>10.54 ± 0.25</td>
</tr>
<tr>
<td>R8</td>
<td>9.85 ± 0.12</td>
</tr>
<tr>
<td>NRMSE (%)</td>
<td>Λ_{R_i}</td>
</tr>
<tr>
<td>(ST) R1</td>
<td>5.78 ± 0.02</td>
</tr>
<tr>
<td>R2</td>
<td>6.83 ± 0.02</td>
</tr>
<tr>
<td>R3</td>
<td>6.92 ± 0.02</td>
</tr>
<tr>
<td>R4</td>
<td>5.12 ± 0.02</td>
</tr>
<tr>
<td>R5</td>
<td>8.08 ± 0.05</td>
</tr>
<tr>
<td>R6</td>
<td>9.33 ± 0.11</td>
</tr>
<tr>
<td>R7</td>
<td>9.03 ± 0.03</td>
</tr>
<tr>
<td>R8</td>
<td>8.12 ± 0.02</td>
</tr>
</tbody>
</table>

For each shape model, the worst result obtained in the (ST) context between the four set of regularization parameters is systematically better than the best result obtained in the (T) context. This is illustrated in gray for patient R_i and quality criteria NMAE.
Quantification of the Impact of Tissue Variability—Performance (Mean ± SD) of the Frindel Algorithm (6) for the Deconvolution, with the True AIF, of n = 30 Contrast-Agent Concentration Images Simulated from Each Shape Model Rᵢ

<table>
<thead>
<tr>
<th>Shape Model</th>
<th>NMAE (%)</th>
<th>NRMSE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T)</td>
<td>(ST)</td>
</tr>
<tr>
<td>R1</td>
<td>9.08 ± 0.17</td>
<td>7.53 ± 0.22</td>
</tr>
<tr>
<td>R2</td>
<td>11.07 ± 0.24</td>
<td>9.07 ± 0.24</td>
</tr>
<tr>
<td>R3</td>
<td>10.38 ± 0.21</td>
<td>8.21 ± 0.22</td>
</tr>
<tr>
<td>R4</td>
<td>9.76 ± 0.15</td>
<td>8.17 ± 0.13</td>
</tr>
</tbody>
</table>

The contrast-agent concentration images are simulated by generating a new realization of the hemodynamic maps every time (see Figure 1, green frame in step 1) while keeping everything else in the simulation pipeline strictly identical. Significance codes for the paired t-tests: *** for P-value ≤ 0.001, else ** for P-value ≤ 0.01, else * for P-value ≤ 0.05, else • for P-value ≤ 0.1, else ‡ for P-value ≤ 1.

Implementation and Optimization of the Deconvolution Algorithm

The deconvolution algorithm proposed in (6) was implemented and a preliminary step of normalization of the data by the maximum value of the AIF was added to the deconvolution pipeline. This step allows the use, for all images, of a fixed value for the scaling parameter δ which controls the value of the spatial gradient above which edges should be preserved by the deconvolution algorithm (data not shown). After empirical testing, we set δ = 10⁻².

Here, we simulated six contrast-agent concentration images for each shape model Rᵢ, and deconvolved them (with the true AIF) for a very wide range of regularization parameters L = (λT, λS). The optimum set of regularization parameters for each shape model Rᵢ, Aᵢ, is then set, once and for all, as the set of regularization parameters minimizing the average NMAE after deconvolution over the six images.

RESULTS

Robustness to Shape Variability

Table 1 shows the regularization parameters that were selected for the different shape models. The comparative performance of the deconvolution algorithm in the (ST) and (T) contexts is given in Table 2. The average performance in the (ST) context (8.34% for the NMAE and 6.18% for the NRMSE, all shape models confounded) is systematically better than in the (T) context (10.13% for the NMAE and 9.25% for the NRMSE, all shape models confounded). Moreover, the worst result obtained in the
Table 5
Quantification of the Impact of Errors in the Estimation of the AIF—Performance (Mean ± SD) of the Frindel Algorithm (6) for the Deconvolution of One Contrast-Agent Concentration Image Simulated from Each Shape Model R_i with n = 30 Different Flawed AIF, where Perturbations are Introduced on Both y_{max} and t_{max}.

<table>
<thead>
<tr>
<th>Shape Model</th>
<th>NMAE (%) (T)</th>
<th>NMAE (%) (ST)</th>
<th>NMAE (%) (T)-(ST)</th>
<th>NRMSE (%) (T)</th>
<th>NRMSE (%) (ST)</th>
<th>NRMSE (%) (T)-(ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>30.92 ± 26.43</td>
<td>31.37 ± 24.33</td>
<td>-0.45 ± 3.72</td>
<td>11.39 ± 4.25</td>
<td>8.90 ± 3.16</td>
<td>2.50 ± 1.41***</td>
</tr>
<tr>
<td>R2</td>
<td>25.26 ± 12.61</td>
<td>26.76 ± 12.42</td>
<td>-1.51 ± 3.10*</td>
<td>11.56 ± 2.08</td>
<td>9.24 ± 1.54</td>
<td>2.32 ± 1.21***</td>
</tr>
<tr>
<td>R3</td>
<td>31.36 ± 23.65</td>
<td>34.20 ± 22.75</td>
<td>-2.84 ± 3.26***</td>
<td>12.94 ± 3.67</td>
<td>9.78 ± 2.78</td>
<td>3.16 ± 1.59***</td>
</tr>
<tr>
<td>R4</td>
<td>25.99 ± 20.26</td>
<td>25.68 ± 20.05</td>
<td>0.31 ± 1.68</td>
<td>10.72 ± 3.29</td>
<td>8.17 ± 3.04</td>
<td>2.54 ± 0.90***</td>
</tr>
</tbody>
</table>

Significance codes for the paired t-tests: *** for P-value ≤ 0.001, else ** for P-value ≤ 0.01, else * for P-value ≤ 0.05, else ● for P-value ≤ 0.1, else ↑ for P-value ≤ 1.

The variability in the performance is of the same order of magnitude in the (ST) and (T) contexts (0.05% vs. 0.10% for the NMAE and 0.02% vs. 0.04% for the NRMSE, all shape models confounded).

This demonstrates that the deconvolution algorithm with spatio-temporal regularization (6) is robust to MRI acquisition noise at a signal-to-noise ratio level typical of clinical stroke data.

Robustness to Errors in the AIF Estimation

Table 5 shows the impact on the performance of the deconvolution algorithm of errors in the estimation of the maximum (y_{max}) and position (t_{max}) of the arterial input function. The impact of errors in the estimation of y_{max} and t_{max} are also evaluated separately in Table 6 and 7, respectively, and illustrated on Figure 3. The impact of errors on the performance of the algorithm is more pronounced for the (ST) context than the (T) context. This means that the spatio-temporal approach is more sensitive to errors on the AIF than the temporal approach. The gain in using the spatial regularization constraint always stays significantly positive when considering the NRMSE, whereas in certain situations the gain vanishes or even becomes negative when considering the NMAE (e.g., Table 5, shape model R_3). This constitutes the limits of the robustness of the deconvolution algorithm with spatio-temporal regularization.

DISCUSSION

The deconvolution algorithm with spatio-temporal regularization proved robust when confronted with realistic shape variability, tissue variability or noise in the MRI acquisition system. The algorithm performed better in

Table 6
Quantification of the Impact of Errors in the Estimation of the AIF—Performance (Mean ± SD) of the Frindel Algorithm (6) for the Deconvolution of One Contrast-Agent Concentration Image Simulated from Each Shape Model R_i with n = 30 Different Flawed AIF, where Perturbations are Introduced on y_{max} Only.

<table>
<thead>
<tr>
<th>Shape Model</th>
<th>NMAE (%) (T)</th>
<th>NMAE (%) (ST)</th>
<th>NMAE (%) (T)-(ST)</th>
<th>NRMSE (%) (T)</th>
<th>NRMSE (%) (ST)</th>
<th>NRMSE (%) (T)-(ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>13.36 ± 4.33</td>
<td>13.72 ± 5.15</td>
<td>-0.36 ± 2.58</td>
<td>8.54 ± 1.51</td>
<td>6.46 ± 0.68</td>
<td>2.08 ± 1.12***</td>
</tr>
<tr>
<td>R2</td>
<td>15.46 ± 4.62</td>
<td>16.59 ± 6.13</td>
<td>-1.13 ± 3.03*</td>
<td>11.22 ± 1.94</td>
<td>8.02 ± 0.71</td>
<td>3.20 ± 1.45***</td>
</tr>
<tr>
<td>R3</td>
<td>14.88 ± 4.5</td>
<td>14.73 ± 5.91</td>
<td>0.15 ± 2.33</td>
<td>10.81 ± 1.84</td>
<td>7.41 ± 0.69</td>
<td>3.40 ± 1.45***</td>
</tr>
<tr>
<td>R4</td>
<td>14.91 ± 3.23</td>
<td>13.48 ± 2.85</td>
<td>1.43 ± 1.60***</td>
<td>8.45 ± 1.49</td>
<td>5.65 ± 0.65</td>
<td>2.80 ± 1.08***</td>
</tr>
</tbody>
</table>

Significance codes for the paired t-tests: *** for P-value ≤ 0.001, else ** for P-value ≤ 0.01, else * for P-value ≤ 0.05, else ● for P-value ≤ 0.1, else ↑ for P-value ≤ 1.
the spatio-temporal regularization context than in the sole temporal regularization context when using Tikhonov regularization (9), and this when considering the quality of both the entire impulse response function image with the NRMSE or the CBF hemodynamic parameter map with the NMAE. This gain was obtained at the expense of a 100-fold increase of the computational time (4 min for the spatio-temporal approach vs. 3 s for the temporal approach for a 66 × 77 × 57 2D + t concentration image) with an implementation without parallelization on an Intel Core 7 CPU (2.10 GHz) computer.

The same robustness for the deconvolution algorithm was not found while investigating the impact of errors on the AIF estimation. The limiting factor of the performance of the deconvolution algorithm with spatio-temporal regularization appears to be errors on the AIF. The deconvolution algorithm is more sensitive to AIF errors in the spatio-temporal context than in the temporal regularization context. The performance of the algorithm in the spatio-temporal context is still systematically better than in the temporal context when considering the quality of the entire image after deconvolution (NRMSE), but, when considering only the quality of the CBF after deconvolution (NMAE), mixed results are obtained and the performance of the algorithm is not better in the spatio-temporal context than in the temporal context anymore.

This can in part be due to the fact that we used, as a model for the errors on the AIF, an existing interpatient

Table 7
Quantification of the Impact of Errors in the Estimation of the AIF—Performance (Mean ± SD) of the Frindel Algorithm (6) for the Deconvolution of One Contrast-Agent Concentration Image Simulated from Each Shape Model R, with n = 30 Different Flawed AIF, where Perturbations are Introducetd on tmax Only

<table>
<thead>
<tr>
<th>Shape Model</th>
<th>NMAE (%)</th>
<th>NRMSE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T)</td>
<td>(ST)</td>
</tr>
<tr>
<td>R1</td>
<td>16.20 ± 6.99</td>
<td>17.38 ± 7.68</td>
</tr>
<tr>
<td>R2</td>
<td>16.51 ± 4.96</td>
<td>18.65 ± 5.84</td>
</tr>
<tr>
<td>R3</td>
<td>21.62 ± 9.62</td>
<td>23.78 ± 9.60</td>
</tr>
<tr>
<td>R4</td>
<td>16.58 ± 7.56</td>
<td>16.48 ± 7.49</td>
</tr>
</tbody>
</table>

Significance codes for the paired t-tests: *** for P-value ≤ 0.001, else ** for P-value ≤ 0.01, else * for P-value ≤ 0.05, else • for P-value ≤ 0.1, else † for P-value ≤ 1.

FIG. 3. Impact of errors in the estimation of ymax (top) or tmax (bottom) on the performance of the Frindel deconvolution algorithm (6), as quantified by the NMAE (left) or the NRMSE (right). In total, the results of the deconvolution of 120 simulations, 30 per shape model, are displayed here.
model of AIF variability (28) instead of an intrapatient AIF error model, which can result in an over estimation of the error. We believe it would be very useful in future research to develop a more precise statistical model for the estimation errors on the arterial input function in order to better quantify the limitations on the performance of the deconvolution algorithms due to these errors. These findings testify to the importance of working on methods for the AIF selection and also give rise to the question of whether one should use local arterial input functions rather than a global arterial input function for the deconvolution (24).

The simulation could be also enriched in other directions. Notably, it would be interesting to include, in addition to the core lesion tissue, other classes of tissues of biological significance in ischemic studies. Notably, it would be particularly interesting to complexity the ischemic tissue class to include both a “core lesion” region and a “tissue-at-risk” region, as well as to add a “large vessels” tissue class. Finally, it would be interesting to evaluate the effect of different types of artefacts on the performance of the deconvolution algorithms. For example, EPI-related artefact can cause spatial distortions in the vicinity of big vessels. However, such an improvement of the realism of the simulator would not be straightforward and another simulation approach consisting of simulating the whole MRI acquisition process using the Bloch equation would need to be used to simulate realistic EPI-related artefacts (26,36,37).

CONCLUSIONS

The first main contribution of this paper is the analysis, in the context of acute stroke, of the robustness of the deconvolution algorithm with spatio-temporal regularization proposed in (6). We used a new simulator to investigate the robustness of the deconvolution algorithm faced with different sources of variability encountered in the deconvolution of DSC-MRI acquired on acute stroke patients. The large variability of lesion shapes is found to have a negligible impact on the performance. The limiting factor for the performance of the algorithm is the proper estimation of the arterial input function. The recently introduced algorithm (6) outperformed deconvolution with a sole temporal Tikhonov regularization (9) in most realistic conditions tested with our numerical simulator. In the light of the recent proposition made in (17) for the unsupervised and automatic selection of the regularization parameters, these findings show that the deconvolution algorithm proposed in (6) is a promising solution.

The second main contribution of this paper is the introduction of a new numeric simulator for the validation of DSC-MRI perfusion deconvolution algorithms, notably those containing spatial regularization constraints. The simulator allows the robustness of deconvolution algorithms to be tested when faced with different sources of variability which can be encountered in DSC-MRI. It could be used for the benchmarking of any deconvolution algorithm, such as for example the truncated singular value decomposition deconvolution approach (8). The simulator is very flexible and allows the user an easy control over the degree of realism of the sources of variability. One should note that, although the present study was applied to acute stroke in human brain, the simulator in itself is generic and could be used for any DSC-MRI clinical application. Free online access to the simulator is given on the Virtual Imaging Platform (18) at www.creatis.insa-lyon.fr/vip.

ACKNOWLEDGMENTS

This work was performed within the framework of the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.