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Purpose: The robustness of a recently introduced globally

convergent deconvolution algorithm with temporal and edge-
preserving spatial regularization for the deconvolution of

dynamic susceptibility contrast perfusion magnetic resonance
imaging is assessed in the context of ischemic stroke.
Theory and Methods: Ischemic tissues are not randomly dis-

tributed in the brain but form a spatially organized entity. The
addition of a spatial regularization term allows to take into

account this spatial organization contrarily to the sole temporal
regularization approach which processes each voxel indepen-
dently. The robustness of the spatial regularization in relation

to shape variability, hemodynamic variability in tissues, noise
in the magnetic resonance imaging apparatus, and uncertainty
on the arterial input function selected for the deconvolution is

addressed via an original in silico validation approach.
Results: The deconvolution algorithm proved robust to the dif-

ferent sources of variability, outperforming temporal Tikhonov
regularization in most realistic conditions considered. The limit-
ing factor is the proper estimation of the arterial input function.

Conclusion: This study quantified the robustness of a spatio-
temporal approach for dynamic susceptibility contrast-

magnetic resonance imaging deconvolution via a new simula-
tor. This simulator, now accessible online, is of wide applicabil-
ity for the validation of any deconvolution algorithm. Magn
Reson Med 000:000–000, 2016. VC 2016 International Society
for Magnetic Resonance in Medicine.
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INTRODUCTION

Dynamic susceptibility contrast (DSC) perfusion magnet-
ic resonance imaging (MRI) is an imaging modality,
mainly used in clinical routine for the evaluation of cere-
bral perfusion in stroke or brain cancer patients (1). In
the context of acute ischemic stroke, perfusion imaging
allows the estimation of hemodynamic parameters in the
brain and is used in diagnosis and patient management.
Its application is, for example, the evaluation of the

tissue at risk of infarction or the assessment of the risk

of intracranial hemorrhage. Although largely disseminat-
ed in clinic and clinical research for acute stroke, the
quantitative benefit of the use of DSC perfusion MRI is

still discussed because many issues remain to be over-
come (2) in the processing of the images. Among them,
we will focus here on the issue of data deconvolution.

Deconvolution is used in DSC-MRI analysis to assess the

hemodynamic parameters of clinical interest: it computes
a three dimensional and temporal (3Dþ t) image where
each voxel is associated to a temporal signal from which

the hemodynamic parameters can be extracted. This step
corresponds to the resolution of an ill-posed inverse prob-
lem. Consequently, in order to obtain a stable solution,
additional prior information on the desired solution needs

to be used. Generally, prior information enforces a con-
straint on the solution whose strength is determined by a
regularization parameter. Most deconvolution approaches

consider each voxel independently—imposing constraints
in the temporal dimension only—and ignore the spatial cor-
relation between neighboring voxels that is inherent to

the structured organization of the brain tissue. A common
approach consists in adding a temporal regularization con-
straint which imposes a certain smoothness over time. With

such a deconvolution approach, the hemodynamic parame-
ter maps extracted after deconvolution often contain isolated
voxels with abberant values. To address this problem,

deconvolution approaches with spatial and temporal regu-
larization constraints were recently introduced (3–7).

The deconvolution algorithm proposed by Frindel et al.
(6) contains an edge-preserving spatial regularization con-

straint and has the added advantage of being globally con-
vergent, which ensures that the algorithm systematically
provides optimum performance and does not run the risk

of being stuck in a local minimum. This robustness is very
important in the context of clinical image analysis where
fluctuations of a tool’s performance cannot be accepted. In

this original paper, the algorithm was tested on synthetic
and real data for large compact ischemic lesions. The qual-
ity of the hemodynamic parameter maps obtained after
deconvolution with the Frindel algorithm (6) was consid-

erably improved compared with maps obtained after
deconvolution with either the truncated singular value
decomposition (8) or the Tikhonov regularization (9)

methods, both methods which contain only a temporal
regularization constraint. These results showed the bene-
fit of taking into account the spatio-temporal nature of the

data. However, studies (10–14) focusing on the ischemic
lesion shapes and their potential interest in predicting the
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outcome of stroke, have brought to light the great variability
of lesion shapes. They showed that in acute stroke, ischemic
lesions do not necessarily present a compact shape but can
have a fragmented aspect. Since the Frindel algorithm (6)
imposes a spatial regularization constraint, it is possible that
the optimum strength of the constraint, controlled by the
value of its regularization parameter, will differ for compact
and fragmented tissue organizations. In the context of clini-
cal image analysis however, it is crucial that the deconvolu-
tion algorithm always gives results of good quality in spite of
individual patient biodiversity.

Given the promising results obtained with the Frindel

algorithm (6) on compact lesions, we propose to assess

here the performance and robustness of the algorithm

when confronted with lesion shape variability. Since

lesion shape variability is not the sole possible source of

variability, we will compare its relative impact on the per-

formance of the deconvolution algorithm with other sour-

ces of variability. First, we will look at the impact of

hemodynamic tissue variability. Then, since the signal to

noise ratio is rather small in DSC-MRI due to the necessity

of a fast MRI sequence in patient management in the acute

phase, we will look at the impact of noise in the MRI

acquisition system. Finally, the deconvolution process

requires an estimate of the arterial input function and we

will therefore look at the impact of errors on the estima-

tion. We propose to address this issue via an original in

silico validation approach with realistic lesion shapes.

THEORY

Principles of Perfusion DSC-MRI Deconvolution

A DSC-MRI perfusion image consists of a time series of

T2- or T�2- weighted MRI images, the acquisitions of

which are synchronized with the injection of a contrast-

agent. The contrast-agent tissular concentration over

time in each voxel is estimated from the perfusion

image. For each voxel, the profile of the contrast-agent

concentration signal gives insight into the state of the

micro-circulation in the tissues within the voxel and can

be used to estimate regional hemodynamic parameters of

clinical interest, such as the cerebral blood flow (CBF) or

the mean transit time. The profiles of the contrast-agent

concentration signals also depend on the volume and

dispersion of the so-called arterial input function (AIF),

which corresponds to the profile of the contrast-agent

bolus upon its arrival in the brain tissue. Based on the

indicator-dilution theory (15), the contrast-agent concen-

tration signal in voxel v, CvðtÞ (mM), can be modeled by

the convolution of the AIF, CaðtÞ (mM), and the tissue

impulse response function, fvðtÞ (mL. g�1. s�1), which

contains the hemodynamic information of interest:

CvðtÞ ¼ k:

Z t

0

CaðtÞfvðt � tÞdt with

fvðtÞ ¼ CBFv � Rvðt;MTTvÞ ;

[1]

where k (g. mL�1) depends on the brain tissue density

and on the hematocrit level in the capillaries and arterio-

les. Generally, its value cannot be measured and it is

common practice to suppose it constant (e.g., k ¼ 1 g.
mL�1). CBFv (mL. g�1. s�1) corresponds to the cerebral
blood flow in voxel v. RvðtÞ (no unit) is the residue func-
tion in voxel v. It describes the fraction of contrast-agent
still present in voxel v at time t (s). MTTv (s) corre-
sponds to the mean transit time in voxel v.

In order to eliminate the variability due to the AIF, the
deconvolution of the contrast-agent concentration image
by the AIF needs to be carried out (16). It consists in
computing the tissue impulse response function image f
from the contrast-agent concentration image C and the
arterial input function Ca.

Deconvolution Algorithm

The Frindel algorithm (6) addresses the deconvolution
problem as the minimization, over the impulse response
function image f , of a global cost function Xðf Þ com-
posed of a data-fidelity term Uðf Þ, a temporal regulariza-
tion constraint Wtðf Þ, and an edge-preserving spatial
regularization constraint Wsðf Þ:

Xðf Þ ¼ Uðf Þ þ ltWtðf Þ þ lsWsðf ; dÞ ; [2]

where lt, ls, and d are the parameters of the algorithm.
In this cost function, the data fidelity term penalizes
deviations from the observed data, the temporal regulari-
zation term penalizes solutions which are not smooth as
a function of time (i.e., with a large temporal gradient
norm) and the edge-preserving spatial regularization
term favors solutions which are smooth spatially (i.e.,
with a small spatial gradient norm) but which still pre-
serve the main spatial discontinuities in the image. The
temporal regularization term is the well-known Tikhonov
regularization (9) and is expressed as Wtðf Þ ¼ jjTf jj22
where T corresponds to a first-order difference operator.
More details on the cost function terms can be found in
(6) and (7).

The regularization parameters, lt and ls, control the
strength of the temporal and edge-preserving spatial reg-
ularization terms with respect to the data fidelity term,
while the scaling parameter, d, controls the value of the
spatial gradient above which edges should be preserved
by the algorithm. Parameters lt, ls, and d need to be
selected to optimize the performance of the algorithm.
An automatized and unsupervized solution to select
these parameters was proposed recently (17). In this
study, we address the question of the robustness of the
algorithm of Equation [2] when we depart, due to various
sources of variability, from the original set-up for which
the parameters were optimized.

METHODS

In order to evaluate the performance and robustness of
the Frindel deconvolution algorithm (6), we decided to
adopt a numerical simulation approach since it enables a
fine control of all the sources of variability, notably, as
stressed in the introduction, lesion shape variability. To
the best of our knowledge, none of the simulators avail-
able in the literature included realistic ischemic lesion
shapes. Consequently, we developed a new simulator for
the validation of deconvolution algorithms for DSC-MRI
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which uses the widespread simulation approach consist-

ing of simulating directly the contrast-agent concentra-

tion images using the principle of the indicator-dilution

theory formulated in Equation [1]. We then made full

use of the simulator in order to test the robustness of the

Frindel deconvolution algorithm (6). Please note that the

simulator as well as an implementation of this algorithm

was made accessible online via the Virtual Imaging Plat-

form at www.creatis.insa-lyon.fr/vip (18) (see Supporting

Information for a tutorial on the use of the online

simulator).

Numerical Simulator for the Validation of Deconvolution
Algorithms

Kudo et al. (19) proposed a digital phantom for the study

of the precision and reliability of perfusion DSC-MRI

analysis softwares. However, although their simulations

are extremely valuable for the evaluation of deconvolu-

tion algorithms with temporal regularization constraints,

they do not take into account any shape aspect. The only

digital phantoms in the literature with realistic shapes

were proposed for different imaging modality, such as

CT brain perfusion (20) or DCE-MRI (21). Amongst the

different articles on deconvolution algorithms with

spatio-temporal regularization constraints, Schmid et al.

(3) only used real patient data for the validation of their

algorithm, He et al. (4) and Frindel et al. (6) used some

synthetic data with simple and compact geometric

shapes, and Schmid (5) used some synthetic data with

geometric concentric shapes mimicking the myocardial

segments. In the end, to the best of our knowledge, no

simulations in DSC-MRI of brain contrast-agent concen-

tration images with realistic shapes and applied to stroke

pathology can be found in the literature. Also, when syn-

thetic data were used to test the deconvolution algorithm

of (6), piece-wise continuous tissues were considered

and no tissue variability was introduced. This perfectly

matched the spatial prior behind the edge-preserving

spatial regularization. However, there is in reality some

hemodynamic tissue variability and it can alter the

performance of deconvolution algorithms with spatio-

temporal regularization compared with the ideal case of

a piece-wise continuous image.
We, therefore, modified the simulator of (19) to pro-

pose a new simulator which allows the production of

digital phantoms with realistic brain and lesion shapes,

distinct classes of tissues and distinct realistic hemody-

namic tissue distributions as well as simulates errors on

the AIF. The complete simulation pipeline, illustrated in

Figure 1, is described below.

Step 1—Simulation of the Impulse Response Function
Image

We generate a 2Dþ t (or 3Dþ t) impulse response func-

tion image from a two-dimensional (2D) (or three-

dimensional (3D)) label mask representing the spatial

distribution of the different classes of tissues. The label

mask, which will be refered to as “shape model” from

now on, is an input of the simulator. Its choice is very

important since it determines the degree of realism of

the simulation in terms of number of tissue classes and

spatial organization.
Each voxel v in the 2D (or 3D) spatial domain is asso-

ciated to a one-dimensional signal fvðtÞ representing the

impulse response function of this voxel. Different mod-

els representing potential shapes for the tissue impulse

response function have been proposed in the literature

(8,9,22). In our simulator, the choice between a box-

shaped, triangular or single exponential first-order model

is given:

½fvðtÞ�box-shaped ¼
CBFv if t �MTTv

0 if t > MTTv

;

(
[3]

½fvðtÞ�triangular ¼
CBFv : 1� t

2:MTTv

� �
if t � 2:MTTv

0 if t > 2:MTTv

;

8><>:
[4]

FIG. 1. Pipeline for the DSC-MRI

concentration image simulator.

Robustness of Spatio-temporal deconvolution 3

http://www.creatis.insa-lyon.fr/vip


½fvðtÞ�exponential ¼ CBFv :exp � t

MTTv

� �
: [5]

The values of the hemodynamic parameters CBFv and
MTTv are drawn from a distribution specific to the tissue
class associated to the voxel v by the shape model. In
our simulator, we model independently the CBF and the
mean transit time distributions as truncated Gaussian
distributions. We therefore need four parameters: the
mean m, the standard deviation s, the lower bound lb
and the upper bound ub. The values of these parameters
ðm;s; lb;ubÞ for both the CBF and the mean transit time
and for each tissue class is an input of the simulator and
determine the level of intraclass tissue variability and
interclass tissue separability.

Step 2—Simulation of the Arterial Input Function

A global arterial input function CaðtÞ is generated. CaðtÞ
is modeled by a gamma-variate function, expressed with
the formulation proposed by Madsen (23):

CaðtÞ ¼
0 si t � d

ymax:ðt�d
tmax
Þa:exp að1� t � d

tmax
Þ

� �
si t > d

;

8><>: [6]

where ymax and tmax correspond respectively to the mag-
nitude and the location of the AIF maximum, d is the
tracer arrival time and a the shape parameter of the AIF.
ðymax; tmax;d;aÞ are input parameters of the simulator.

Also, a flawed version of the global arterial input func-
tion is generated in order to evaluate the impact of errors
in the AIF estimation on the performance of the decon-
volution. In the literature, several studies examined the
effect of specific AIF estimation errors on the quantifica-
tion of DSC-MRI (24–27) but, to the best of our knowl-
edge, none gave a statistical model for the errors on the
AIF estimation in their specific framework of study.
Meijs et al. (28) recently proposed a bivariate Gaussian
model on the ymax and tmax to describe the inter-patient
variability in the arterial input function. Similar to the
work of Calamante and Connelly (25), we propose here
to model AIF estimation errors as perturbations on the
ymax and tmax of the arterial input function and sample
the distorted values of ymax and tmax within the 95% con-
fidence ellipse of the model of Meijs et al. (28) rescaled
to and centered around the true ymax and tmax values.
These values serve as an upper bound for the intrapa-
tient estimation errors on the AIF.

Step 3—Simulation of the Contrast-Agent Concentration
Image

The contrast-agent concentration image is generated

using Equation [1]. Each noise free concentration time
curve CvðtÞ is simulated by convolving the arterial input

function CaðtÞ of step 2 with the tissue impulse response

function fvðtÞ of step 1. For the convolution, a trapezoi-

dal method is used to approximate the integral and, in

order to reduce discretization artifacts, CaðtÞ and fvðtÞ are

discretized with a sampling rate 10 times higher than dt,
the target temporal resolution of CvðtÞ. The signals are

then under-sampled to achieve the temporal resolution

dt. We have t 2 [0:T], with T the duration of the MRI

acquisition. Finally, a realistic noise is added to the

noise free concentration image by following the proce-
dure proposed by Smith et al. (29). Each noise free con-

centration time curve CvðtÞ is transferred into the signal

intensity domain giving SvðtÞ ¼ S0exp �kR�2
:TE:CvðtÞ

� �
,

where the baseline value S0 is 200 a.u., the echo time TE

is 50 � 10�3 s and the proportionality constant kR�2
is

determined such that the mean concentration time curve

in the brain tissue achieves a 40% peak signal decrease

in the signal intensity domain (19). A Gaussian noise of

mean zero and standard deviation sN is added to the

noise free signal intensity image to simulate noise in

the MRI acquisition system. The standard deviation val-
ue sN is computed in order to obtain a signal to noise

ratio of snr, where the SNR is defined in decibel

as 20log 10 S0=sNð Þ. The noisy concentration image is

then recovered with the inverse transform

½CvðtÞ�noisy ¼ � 1
kR�

2
:TE ln

½Sv ðtÞ�noisy

S0

� �
. (dt,T, snr) are input

parameters of the simulator.

Robustness Analysis

Dataset Simulation for the Robustness Analysis

We test the robustness of the deconvolution algorithm to

shape variability and evaluate its impact on the perfor-

mance of the algorithm in comparison with other sources

of variability (i.e., tissue variability, noise in the MRI

acquisition system, or errors in the arterial input func-

tion estimation). The impact of a given source of vari-
ability is studied while the other sources are kept

constant.
In order to simulate shape variability, we need to use

shape models representative of the shape variability

observed on clinical data. We studied the european I-

FIG. 2. Shape models chosen
for this study. In dark red, the

healthy white matter; in light red,
the healthy gray matter; in black,
the ischemic tissues.
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KNOW database (14) and constructed, from real patient

images, four shape models (R1, R2, R3, and R4) with

ischemic lesion shapes and tissue distributions represen-

tative of the variability observed in the database (see Fig.

2). Shape model R1 represents a large-sized fragmented

lesion, shape model R2 represents a medium-sized frag-

mented lesion, shape model R3 represents a small-sized

compact lesion and shape model R4 represents a large-

sized compact lesion. These shape models were selected

via an unsupervised clustering of the acute DWI lesion

shapes in the I-KNOW database (see Supporting Informa-

tion for more details). We chose to consider three classes

of tissues: healthy white matter, healthy gray matter and

core ischemic lesion. Information in the literature con-

cerning intrapatient and intraclass tissue variability is

relatively scarce. Moreover, the hemodynamic parame-

ters are age-dependent and vary, for the ischemic lesion,

with the severity of the stroke and the region under con-

sideration (DWI lesion, mismatch, penumbra. . .). Com-

bining different information found in the literature

(16,30–34) we chose the following simulation parame-

ters. For healthy gray tissue, healthy white tissue and

ischemic tissue, respectively: mCBF¼ (60, 25, 10),

sCBF¼ (9, 2.1, 4.3), lbCBF¼ (0, 0, 0) and ubCBF¼ (200, 200,

200) mL/100 g/min; mMTT¼ (4, 4.8, 10), sMTT¼ (2.2, 3.2,

5), lbMTT¼ (0, 0, 0) and ubMTT¼ (25, 25, 25) s. For back-

ground voxels, we simply set CvðtÞ¼0 at all time t. In

order to simulate noise in the MRI acquisition system,

we chose a SNR of 40 dB, a value found in the perfusion

images of the I-KNOW database. Finally, we use an expo-

nential model for the impulse response function and,

based on information found in the literature (8,34,35),

we set the other input parameters to the following val-

ues: ymax¼0.6124 mM, tmax¼4.5 s, d¼3 s, a¼3, dt¼ 1 s,

T¼ 56 s.

Performance Evaluation

The performance of the deconvolution algorithm is

assessed with two quality criteria, the mean absolute

error on the CBF and the root mean square error on the

impulse response function. For these two criteria, the

smaller the value, the better the quality of the decon-

volved image. The mean absolute error compares the

CBF map estimated after deconvolution (dCBF) to the

expected CBF map (CBF):

MAE ¼ 1

Nv

X
v2brain

j dCBFv � CBFv j : [7]

The root mean square error, contrarily to the mean

absolute error, is an overall quality criteria and com-

pares the entire impulse response image obtained after

deconvolution (bf ) to the expected impulse response

image (f ):

Table 1
Optimum set of Regularization Parameters KRi

¼ ðlt; lsÞ Selected for Shape Model Ri in the (ST) and (T) Contexts of the Frindel Algo-

rithm (6)

KR1
KR2

KR3
KR4

(ST) (3:65, 0:422) � 10�2 (3:65, 0:649) � 10�2 (3:16, 0:750) � 10�2 (1:00, 0:0750) � 10�2

(T) (7.50,0) � 10�3 (5.62,0) � 10�3 (4.87,0) � 10�3 (7.50,0) � 10�3

Table 2

Performance (Mean 6 SD) of the Frindel Algorithm (6) for the Deconvolution, with the True AIF, of n¼6 Contrast-Agent Concentration
Images Simulated with Each Shape Model Ri When We Use for the Deconvolution the Optimum Set of Regularization Parameters KRi

or

When We Use Another Set of Regularization Parameters KRj
, with j 6¼ i

Parameters used for deconvolution

Shape model KR1
KR2

KR3
KR4

NMAE (%) (ST) R1 7.68 6 0.05 8.26 6 0.08 8.61 6 0.08 7.99 6 0.06

R2 9.48 6 0.26 9.15 6 0.31 9.28 6 0.30 9.81 6 0.30
R3 9.23 6 0.17 8.41 6 0.20 8.29 6 0.20 9.20 6 0.20

R4 9.23 6 0.15 9.27 6 0.13 8.99 6 0.12 8.26 6 0.04
(T) R1 9.25 6 0.12 9.30 6 0.11 9.34 6 0.10 9.25 6 0.12

R2 11.05 6 0.27 10.96 6 0.28 10.97 6 0.27 11.05 6 0.27

R3 10.54 6 0.25 10.51 6 0.25 10.48 6 0.25 10.54 6 0.25
R4 9.85 6 0.12 9.92 6 0.12 9.94 6 0.12 9.85 6 0.12

NRMSE (%) (ST) R1 5.78 6 0.02 6.14 6 0.02 6.39 6 0.02 5.19 6 0.03
R2 6.83 6 0.02 7.38 6 0.02 7.64 6 0.02 5.96 6 0.04
R3 6.26 6 0.04 6.75 6 0.03 6.85 6 0.04 5.55 6 0.04

R4 5.12 6 0.02 5.54 6 0.02 5.80 6 0.02 4.70 6 0.02
(T) R1 8.08 6 0.05 8.89 6 0.05 9.17 6 0.05 8.08 6 0.05

R2 9.33 6 0.11 10.33 6 0.15 10.90 6 0.17 9.33 6 0.11
R3 9.03 6 0.03 9.94 6 0.04 10.49 6 0.04 9.03 6 0.03
R4 8.12 6 0.02 9.13 6 0.03 9.44 6 0.03 8.12 6 0.02

For each shape model, the worst result obtained in the (ST) context between the four set of regularization parameters is systematically
better than the best result obtained in the (T) context. This is illustrated in gray for patient R1 and quality criteria NMAE.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NtNv

X
v2brain

XNt

i¼1

bfv ðtiÞ � fvðtiÞ
� �2

vuut : [8]

For easier interpretation of these quality criteria

values, we will normalize these two quality criteria

by the mean CBF in the healthy gray matter to

obtain NMAE and NRMSE (here mCBFhealthyþgray
¼ 60 mL/

100 g/min).
Since using a temporal regularization constraint only

is still the reference for data deconvolution in clinical

applications, we look at the performance of the decon-

volution algorithm in both the spatio-temporal regulari-

zation context (ST) and the temporal regularization

context only (T). The temporal regularization context is

accessible with the algorithm of Equation [2] by fixing

ls ¼ 0 and corresponds to the well-known Tikhonov reg-

ularization (9). The deconvolution algorithm in the (T)

context is a pure voxel by voxel temporal regularization

approach, meaning that the fluctuations in its perfor-

mance are not due to shape variability but to noise.

Therefore, we want to know how results obtained with

the deconvolution algorithm in the (ST) context (6) com-

pare with results obtained with the algorithm in the (T)

context. The deconvolution algorithm with the spatio-

temporal regularization will be considered robust to a

source of variability if its performance, as measured by

the NMAE and NRMSE, stays better than the perfor-

mance in the purely (T) context. In order to compare the

performance in the (ST) and (T) contexts, we use a

paired t-test, the null hypothesis being that the true

mean difference between the performance in the two

contexts is zero.

Implementation and Optimization of the Deconvolution
Algorithm

The deconvolution algorithm proposed in (6) was imple-

mented and a preliminary step of normalization of the

data by the maximum value of the AIF was added to the

deconvolution pipeline. This step allows the use, for all

images, of a fixed value for the scaling parameter d

which controls the value of the spatial gradient above

which edges should be preserved by the deconvolution

algorithm (data not shown). After empirical testing, we

set d ¼ 10�7.
Here, we simulated six contrast-agent concentration

images for each shape model Ri, and deconvolved them

(with the true AIF) for a very wide range of regulariza-

tion parameters K ¼ ðlt;lsÞ. The optimum set of regulari-

zation parameters for each shape model Ri, KRi
, is then

set, once and for all, as the set of regularization parame-

ters minimizing the average NMAE after deconvolution

over the six images.

RESULTS

Robustness to Shape Variability

Table 1 shows the regularization parameters that were

selected for the different shape models. The comparative

performance of the deconvolution algorithm in the (ST)

and (T) contexts is given in Table 2. The average perfor-

mance in the (ST) context (8.34% for the NMAE and

6.18% for the NRMSE, all shape models confounded) is

systematically better than in the (T) context (10.13% for

the NMAE and 9.25% for the NRMSE, all shape models

confounded). Moreover, the worst result obtained in the

Table 3
Quantification of the Impact of Tissue Variability—Performance (Mean 6 SD) of the Frindel Algorithm (6) for the Deconvolution, with the

True AIF, of n¼30 Contrast-Agent Concentration Images Simulated from Each Shape Model Ri

NMAE (%) NRMSE (%)

Shape Model (T) (ST) (T)-(ST) (T) (ST) (T)-(ST)

R1 9.08 6 0.17 7.53 6 0.22 1.55 6 0.17*** 7.70 6 0.07 5.77 6 0.03 1.92 6 0.06***

R2 11.07 6 0.24 9.07 6 0.24 2.00 6 0.16*** 10.06 6 0.11 7.36 6 0.04 2.70 6 0.10***
R3 10.38 6 0.21 8.21 6 0.22 2.17 6 0.15*** 10.27 6 0.06 6.85 6 0.03 3.42 6 0.06***

R4 9.76 6 0.15 8.17 6 0.13 1.59 6 0.13*** 7.9 6 0.04 4.77 6 0.03 3.13 6 0.04***

The contrast-agent concentration images are simulated by generating a new realization of the hemodynamic maps every time (see Fig-
ure 1, green frame in step 1) while keeping everything else in the simulation pipeline strictly identical. Significance codes for the paired

t-tests: *** for P-value �0.001, else ** for P-value �0.01, else * for P-value �0.05, else � for P-value �0.1, else y for P-value �1.

Table 4

Quantification of the Impact of Noise in the MRI Acquisition System—Performance (Mean 6 SD) of the Frindel Algorithm (6) for the
Deconvolution, with the True AIF, of n¼30 Contrast-Agent Concentration Images Simulated from Each Shape Model Ri

NMAE (%) NRMSE (%)

Shape Model (T) (ST) (T)-(ST) (T) (ST) (T)-(ST)

R1 9.33 6 0.09 7.77 6 0.05 1.56 6 0.11*** 7.59 6 0.04 5.81 6 0.01 1.78 6 0.04***
R2 11.17 6 0.14 9.56 6 0.06 1.61 6 0.14*** 9.93 6 0.06 7.38 6 0.02 2.55 6 0.05***

R3 10.25 6 0.10 8.15 6 0.04 2.11 6 0.10*** 10.34 6 0.03 6.83 6 0.01 3.52 6 0.03***
R4 9.29 6 0.09 7.88 6 0.06 1.41 6 0.10*** 7.93 6 0.03 4.70 6 0.03 3.23 6 0.03***

The contrast-agent concentration images are simulated by generating a new realization of the noise in the MRI acquisition system (see

Figure 1, magenta frame in step 3) while keeping everything else in the simulation pipeline strictly identical. Significance codes for the paired
t-tests: *** for P-value� 0.001, else ** for P-value � 0.01, else * for P-value � 0.05, else \bullet for P-value� 0.1, else y for P-value � 1
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(ST) context is always better than the best result

obtained in the (T) context.
This demonstrates the robustness of the deconvolution

algorithm with spatio-temporal regularization (6) when

confronted to a shape variability representative of the

diversity found in ischemic lesions.

Robustness to Tissue Variability

Table 3 shows the performance of the deconvolution algo-

rithm when confronted to tissue variability. The average

performance in the (ST) context (8.24% for the NMAE and

6.19% for the NRMSE, all shape models confounded) is

significantly better than in the (T) context (10.07% for the

NMAE and 8.98% for the NRMSE, all shape models con-

founded). The variability in the performance is of the

same order of magnitude in the (ST) and (T) contexts

(0.20% vs. 0.19% for the NMAE and 0.03% vs. 0.07% for

the NRMSE, all shape models confounded).
This demonstrates that, even when a realistic tissue

variability is introduced and the image departs from the

ideally piece-wise continuous image, there is a signifi-

cant added value of the spatial regularization constraint.

The deconvolution algorithm with spatio-temporal regu-

larization (6) is, therefore, robust to tissue variability.

Robustness to Noise in the MRI Acquisition System

Table 4 shows the performance of the deconvolution

algorithm when confronted to noise in the MRI acquisi-

tion system. The average performance in the (ST) context

(8.34% for the NMAE and 6.18% for the NRMSE, all

shape models confounded) is significantly better than in

the (T) context (10.01% for the NMAE and 8.95% for the

NRMSE, all shape models confounded). The variability

in the performance is of the same order of magnitude in

the (ST) and (T) contexts (0.05% vs. 0.10% for the

NMAE and 0.02% vs. 0.04% for the NRMSE, all shape

models confounded).
This demonstrates that the deconvolution algorithm

with spatio-temporal regularization (6) is robust to a MRI

acquisition noise at a signal-to-noise ratio level typical of

clinical stroke data.

Robustness to Errors in the AIF Estimation

Table 5 shows the impact on the performance of the

deconvolution algorithm of errors in the estimation of the

magnitude (ymax) and position (tmax) of the maximum of

the arterial input function. The impact of errors in the esti-

mation of ymax and tmax are also evaluated separately in

Tables 6 and 7, respectively, and illustrated on Figure 3.

The impact of errors on the performance of the algorithm

is more pronounced for the (ST) context than the (T) con-

text. This means that the spatio-temporal approach is

more sensitive to errors on the AIF than the temporal

approach. The gain in using the spatial regularization con-

straint always stays significantly positive when consider-

ing the NRMSE, whereas in certain situations the gain

vanishes or even becomes negative when considering the

NMAE (e.g., Table 5, shape model R3). This constitutes

the limits of the robustness of the deconvolution algo-

rithm with spatio-temporal regularization.

DISCUSSION

The deconvolution algorithm with spatio-temporal regu-

larization proved robust when confronted with realistic

shape variability, tissue variability or noise in the MRI

acquisition system. The algorithm performed better in

Table 5
Quantification of the Impact of Errors in the Estimation of the AIF—Performance (Mean 6 SD) of the Frindel Algorithm (6) for the Decon-

volution of One Contrast-Agent Concentration Image Simulated from Each Shape Model Ri with n¼30 Different Flawed AIF, where Per-
turbations are Introduced on Both ymax and tmax

Shape
NMAE (%) NRMSE (%)

Model (T) (ST) (T)-(ST) (T) (ST) (T)-(ST)

R1 30.92 6 26.43 31.37 6 24.33 �0.45 6 3.72 y 11.39 6 4.25 8.90 6 3.16 2.50 6 1.41***
R2 25.26 6 12.61 26.76 6 12.42 �1.51 6 3.10* 11.56 6 2.08 9.24 6 1.54 2.32 6 1.21***

R3 31.36 6 23.65 34.20 6 22.75 �2.84 6 3.26*** 12.94 6 3.67 9.78 6 2.78 3.16 6 1.59***
R4 25.99 6 20.26 25.68 6 20.05 0.31 6 1.68 y 10.72 6 3.29 8.17 6 3.04 2.54 6 0.90***

Significance codes for the paired t-tests: *** for P-value � 0.001, else ** for P-value � 0.01, else * for P-value � 0.05, else � for P-value
� 0.1, else y for P-value � 1.

Table 6

Quantification of the Impact of Errors in the Estimation of the AIF—Performance (Mean 6 SD) of the Frindel Algorithm (6) for the Decon-
volution of One Contrast-Agent Concentration Image Simulated from Each Shape Model Ri with n¼30 Different Flawed AIF, where Per-
turbations are Introduced on ymax Only

Shape
NMAE (%) NRMSE (%)

Model (T) (ST) (T)-(ST) (T) (ST) (T)-(ST)

R1 13.36 6 4.33 13.72 6 5.15 �0.36 6 2.58 y 8.54 6 1.51 6.46 6 0.68 2.08 6 1.12***

R2 15.46 6 4.62 16.59 6 6.13 �1.13 6 3.03* 11.22 6 1.94 8.02 6 0.71 3.20 6 1.45***
R3 14.88 6 4.5 14.73 6 5.91 0.15 6 2.33 y 10.81 6 1.84 7.41 6 0.69 3.40 6 1.45***
R4 14.91 6 3.23 13.48 6 2.85 1.43 6 1.60*** 8.45 6 1.49 5.65 6 0.65 2.80 6 1.08***

Significance codes for the paired t-tests: *** for P-value � 0.001, else ** for P-value � 0.01, else * for P-value � 0.05, else � for P-value
� 0.1, else y for P-value � 1.
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the spatio-temporal regularization context than in the
sole temporal regularization context when using Tikho-
nov regularization (9), and this when considering the
quality of both the entire impulse response function
image with the NRMSE or the CBF hemodynamic param-
eter map with the NMAE. This gain was obtained at the
expense of a 100-fold increase of the computational time
(4 min for the spatio-temporal approach vs. 3 s for the
temporal approach for a 66 � 77 � 57 2Dþ t concentra-
tion image) with an implementation without paralleliza-
tion on an Intel Core 7 CPU (2.10 GHz) computer.

The same robustness for the deconvolution algorithm
was not found while investigating the impact of errors on
the AIF estimation. The limiting factor of the performance

of the deconvolution algorithm with spatio-temporal regu-
larization appears to be errors on the AIF. The deconvolu-
tion algorithm is more sensitive to AIF errors in the
spatio-temporal context than in the temporal regulariza-
tion context. The performance of the algorithm in the
spatio-temporal context is still systematically better than
in the temporal context when considering the quality of
the entire image after deconvolution (NRMSE), but, when
considering only the quality of the CBF after deconvolu-
tion (NMAE), mixed results are obtained and the perfor-
mance of the algorithm is not better in the spatio-temporal
context than in the temporal context anymore.

This can in part be due to the fact that we used, as a
model for the errors on the AIF, an existing interpatient

Table 7
Quantification of the Impact of Errors in the Estimation of the AIF—Performance (Mean 6 SD) of the Frindel Algorithm (6) for the Decon-

volution of One Contrast-Agent Concentration Image Simulated from Each Shape Model Ri with n¼30 Different Flawed AIF, where Per-
turbations are Introduced on tmax Only

Shape
NMAE (%) NRMSE (%)

Model (T) (ST) (T)-(ST) (T) (ST) (T)-(ST)

R1 16.20 6 6.99 17.38 6 7.68 �1.18 6 1.97** 9.07 6 1.14 7.21 6 1.17 1.86 6 0.13***
R2 16.51 6 4.96 18.65 6 5.84 �2.14 6 2.24*** 11.41 6 1.44 8.92 6 1.53 2.49 6 0.13***

R3 21.62 6 9.62 23.78 6 9.60 �2.16 6 1.88*** 11.84 6 1.15 8.68 6 1.22 3.16 6 0.14***
R4 16.58 6 7.56 16.48 6 7.49 0.11 6 1.13 y 9.08 6 1.12 6.35 6 1.48 2.74 6 0.43***

Significance codes for the paired t-tests: *** for P-value � 0.001, else ** for P-value � 0.01, else * for P-value � 0.05, else � for P-value

� 0.1, else y for P-value � 1.

FIG. 3. Impact of errors in the estimation of ymax (top) or tmax (bottom) on the performance of the Frindel deconvolution algorithm (6), as

quantified by the NMAE (left) or the NRMSE (right). In total, the results of the deconvolution of 120 simulations, 30 per shape model, are
displayed here.
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model of AIF variability (28) instead of an intrapatient
AIF error model, which can result in an over estimation
of the error. We believe it would be very useful in future
research to develop a more precise statistical model for
the estimation errors on the arterial input function in
order to better quantify the limitations on the perfor-
mance of the deconvolution algorithms due to these
errors. These findings testify to the importance of work-
ing on methods for the AIF selection and also give rise
to the question of whether one should use local arterial
input functions rather than a global arterial input func-
tion for the deconvolution (24).

The simulation could be also enriched in other direc-
tions. Notably, it would be interesting to include, in
addition to the core lesion tissue, other classes of tissues
of biological significance in ischemic studies. Notably, it
would be particularly interesting to complexify the
ischemic tissue class to include both a “core lesion”
region and a “tissue-at-risk” region, as well as to add a
“large vessels” tissue class. Finally, it would be interest-
ing to evaluate the effect of different types of artefacts on
the performance of the deconvolution algorithms. For
example, EPI-related artefact can cause spatial distor-
tions in the vicinity of big vessels. However, such an
improvement of the realism of the simulator would not
be straightforward and another simulation approach con-
sisting of simulating the whole MRI acquisition process
using the Bloch equation would need to be used to simu-
late realistic EPI-related artefacts (26,36,37).

CONCLUSIONS

The first main contribution of this paper is the analysis,
in the context of acute stroke, of the robustness of the
deconvolution algorithm with spatio-temporal regulariza-
tion proposed in (6). We used a new simulator to investi-
gate the robustness of the deconvolution algorithm faced
with different sources of variability encountered in the
deconvolution of DSC-MRI acquired on acute stroke
patients. The large variability of lesion shapes is found
to have a negligible impact on the performance. The lim-
iting factor for the performance of the algorithm is the
proper estimation of the arterial input function. The
recently introduced algorithm (6) outperformed deconvo-
lution with a sole temporal Tikhonov regularization (9)
in most realistic conditions tested with our numerical
simulator. In the light of the recent proposition made in
(17) for the unsupervised and automatic selection of the
regularization parameters, these findings show that the
deconvolution algorithm proposed in (6) is a promising
solution.

The second main contribution of this paper is the
introduction of a new numeric simulator for the valida-
tion of DSC-MRI perfusion deconvolution algorithms,
notably those containing spatial regularization con-
straints. The simulator allows the robustness of deconvo-
lution algorithms to be tested when faced with different
sources of variability which can be encountered in DSC-
MRI. It could be used for the benchmarking of any
deconvolution algorithm, such as for example the trun-
cated singular value decomposition deconvolution
approach (8). The simulator is very flexible and allows

the user an easy control over the degree of realism of the

sources of variability. One should note that, although the

present study was applied to acute stroke in human

brain, the simulator in itself is generic and could be

used for any DSC-MRI clinical application. Free online

access to the simulator is given on the Virtual Imaging

Platform (18) at www.creatis.insa-lyon.fr/vip.
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