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1. Introduction

Monte-Carlo simulations of SPECT images are useful for various applications such as designing imaging systems, 
investigating quantitative imaging or in targeted radionuclide therapy. However, they are notoriously slow to 
converge due in particular to the large ratio between the number of photons emitted, denoted ‘primaries’ in the 
following, and detected in the SPECT head (collimator  +  detector). Due to the solid angle of the detector and the 
loss of photons in the collimator, only one emitted photon in about 104 reaches the detector plane. This makes 
SPECT Monte-Carlo simulation a slow process, as every photon must be tracked and can generate secondary 
photons that should also be tracked through the detector. With ‘brute-force’ Monte-Carlo methods, this can 
lead to very long simulation times, up to a few days for the simulation of a complete Siemens Symbia T system 
(Descourt et al 2010).

In order to decrease the computation time, several variance reduction techniques (VRT) have been devel-
oped (Haynor et al 1991). The geometrical importance sampling (De Beenhouwer 2009) approach uses particle 
splitting and Russian roulette that consists in generating additional photons with a multiplicity value depending 
on the particle position, with the idea that the particles close to the detector have larger contributions than oth-
ers. The speedup compared to analog simulation was estimated to be between 5 and 15. The angular response 
function (ARF) (Song et al 2005, Descourt et al 2010) is another acceleration method that computes detector 
response tables according to photon angles and energies (θ, φ, E). Tables only need to be computed once, and 
are used during simulations to reduce tracking time into the SPECT head. The forced detection (FD) method 
(De Beenhouwer et al 2008) directs a particle towards the detector for every interaction. The particle is weighted 
according to the probability that a particle with such direction would exist. The acceleration compared to an 
analog simulation was estimated between 105 and 159. Multiple projection sampling (MPS) (De Beenhouwer 
et al 2008, Liu et al 2008) uses FD on several detectors at the same time and is up to 60 times faster than a regular 
FD Monte Carlo. Convolution based forced detection (CFD) (Liu et al 2008) uses FD with a Gaussian blurring 
kernel to spread the signal onto the image. It was recently used with SIMIND (Karamat and Farncombe 2017) for 
an estimated six orders of magnitude gain over analog GATE simulations. The main differences between the pub-
lished methods and the one proposed in this article are the detector responses (ARF versus convolution) and FD, 
which, in our case, is performed for all detector pixels and take into account phantom specific attenuation along 
all paths, not only the path perpendicular to the detector. Finally, fixed forced detection (FFD) was used for x-ray 
imaging (Colijn and Beekman 2004, Freud et al 2005, Poludniowski et al 2009). It uses FD onto a set of points (all 
detector pixels or a reduced number) then uses interpolation for the other pixels.
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Abstract
Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large 
ratio between the number of photons emitted and detected in the collimator. This work proposes 
a method to accelerate the simulations based on fixed forced detection (FFD) combined with 
an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the 
detection of a photon in each detector pixel weighted by the probability of emission (or scattering) 
and transmission to this pixel. The method was evaluated with numerical phantoms and on patient 
images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The 
overall computing time gain can reach up to five orders of magnitude. Source code and examples are 
available in the Gate V8.0 release.
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Multiple platforms are used to simulate PET/SPECT images (SimSET (Harrison et al 1993), SIMIND (Ljun-
gberg and Strand 1989), Geant4/GATE (Jan et al 2011)). Simulation system for emission tomography (SimSET) 
is a specialized package optimized for PET/SPECT simulations. It uses a photon history generator to simulate 
photon interactions and transport inside a voxelized phantom. It contains several variance reduction techniques. 
GATE is widely used for SPECT simulations (Konik et al 2012, Spirou et al 2015), with modules available to per-
form photon tracking in a voxelized medium (generally obtained from a CT image), to manage a voxelized source 
of photons or any radionuclides, and to model the complete chain of the detector digitizer. It allows the genera-
tion of different energy windows and takes into account the energy resolution and the dead-time, as well as the 
intrinsic spatial resolution of the detector. It has been shown to be accurate compared to experimental measures 
(Assie et al 2010, Lee 2013). Several VRT techniques described before (FD, MPS, CFD) were developed for GATE 
(De Beenhouwer et al 2004, 2008). However, these were mostly proofs of concept and are not available in GATE 
with the exception of ARFs. Monte-Carlo SPECT simulation of real SPECT imaging devices remains a complex 
and long computing process and its acceleration is still required. The purpose of this article is to investigate FFD 
for SPECT simulation, which, to the best of our knowledge, has never been investigated for this modality.

2. Materials and methods

The proposed method uses fixed FD for accelerating SPECT simulations. In SPECT imaging, photons are 
emitted by radionuclides inside the patient or the phantom. A fraction of the photons that escape the patient 
reach the SPECT head. The collimator intercepts most of the photons that are not perpendicular to the detector 
plane. The remaining photons are detected by a pixelated detector. Some scattered photons can still reach the 
detector plane and blur the image. Because photons lose energy during Compton scattering, detectors can be 
energy sensitive to separate the incoming photons into several energy windows: the primary window (around 
the radionuclide peak(s)) and the scatter window. The scatter window may be used to reduce the noise in the 
primary windows with double or triple energy window scatter correction methods (Buvat et al 1994, Hutton et al 
2011). In the following, we first describe the FFD technique, then the link with the ARF method. We investigate 
the production of a single projection view here. All developments were made within the GATE platform using 
Geant4 10.2 (Sarrut et al 2014).

2.1. Fixed forced detection
The FFD method was initially published in Colijn and Beekman (2004), Freud et al (2005) and 
Poludniowski et al (2009) for x-ray imaging. FFD is a variance reduction technique that forces 
photons towards each pixel of the detector for every Monte-Carlo interaction, which are of type 
t ∈ {decay, Rayleigh scattering, Compton scattering, fluorescence}. These photons are given a weight that 
depends on their probability to reach the SPECT head and can be separated into a scattering and a transmission 
probability. The scattering probability is the probability for the photon to be directed towards the pixel, 
according to the interaction type t of the photon. The transmission probability is the probability of the photon 
reaching the pixel according to the traversed medium (Beer–Lambert law). The final detector count value Sj for 
a pixel j is the product of these probabilities for each interaction i ∈ I . The probabilities are computed under the 
assumption that the attenuation and the differential cross section, which are computed at the center pj  of pixel j, 
are representative of all x-rays impinging the pixel surface. Sj is given by equation (1).

Sj =
∑

I

∆Ωj(xi)
1

σti(Ei, Zi)

dσti

dΩ
(Ei, Zi, θij)

︸ ︷︷ ︸
scattering

a(Eij, xi, pj)︸ ︷︷ ︸
transmission

 (1)

where xi is the 3D position at interaction i, σt  is the cross section of interaction type t, dσt/dΩ is the differential 
cross section that depends upon (1) the interaction type t, (2) the energy Ei of the photon before scattering, (3) 
the atomic number Zi of the material that triggered scattering and (4) the scattering angle θij. Eij is the energy 
after scattering. a is the absorption from the interaction point to the pixel given by the the Beer–Lambert law 
equation (2) where µ(E, x) is the 3D distribution of the energy-dependent linear attenuation coefficients.

a(E, x, p) = exp

(
−
∫ 1

0
µ (E, x + α(p − x)) dα

)
 (2)

∆Ωj(s) ≈ ∆S

(
s − pj

)
· n

‖s − pj‖3
. (3)

In equation (1), ∆Ωj(s) is the solid angle corresponding to pixel j observed from point xi and pj  the 3D spatial 
position of the center of the pixel j. We consider that the distance between xi and pj  is large enough to approxi-
mate the calculation of the solid angles using equation (3), with the pixel surface ∆S and n the unit detector nor-
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mal to the detector and oriented towards the source s. Note that for a clinical SPECT, the distance is larger than a 
few centimeters while the pixel spacing is a few millimeters.

The distribution of linear attenuation coefficients µ(E, x) depends on the material definition, the physics list 
and the used cuts. It was computed with Geant4 using the G4EmCalculator class for every material of the 
voxelized phantom. The differential cross sections dσt/dΩ used in equation (1) were also retrieved from Geant4 
using the G4CrossSectionHandler class. To implement equation (1), a ray-casting was performed from 
each interaction point towards all pixels of the detector. The ray-casting was discretized and performed using 
the reconstruction toolkit RTK (Rit et al 2014) with Joseph’s algorithm (Joseph 1982). The ray-casting is inde-
pendent for all pixels and was thus parallelized (multi-threaded CPU) for further computation gain. Note that 
all photons were forced with the FFD techniques, not only emitted primary photons but also all scattered ones, 
including multiple scattering.

2.2. Linking FFD with the ARF
The FFD method computes the probability for a photon to be directed towards a pixel and to reach it without 
further interaction. Two options were implemented to manage these photons upon reaching the detector. The 
first method passes photons outside of the volume back into the analog Monte-Carlo (AMC) simulation with 
their respective directions, energies and weights. They are then tracked by the Monte-Carlo engine. The second 
option links the output of the FFD directly to an ARF table (Descourt et al 2010). It eliminates the creation 
of thousands of photons and further reduces the computation time. In the following, we consider this second 
option.

The ARF method uses Monte-Carlo simulations to compute a tabulated response function of the SPECT 
detector. It computes the probability of detection for incident photons depending on their energy (E) and polar 
angles (θ, φ) with the detector plane. Every photon reaching the SPECT head is stopped and a detection prob-
ability is stored in the pixel in the trajectory of the photon. This function avoids photon tracking through the col-
limator and detector. Contrary to AMC where most photons will be absorbed in the collimator (only around 1 in 
103 or 104 emitted photons will be detected for standard SPECT systems), every incident photon will deposit with 
the ARF some weighted count and contribute to the image formation (Descourt et al 2010).

Computing the tabulated functions is a lengthy process: about 109 to 1010 emitted primary photons are 
required to obtain a good statistical uncertainty for an energy window. For example, figure 1 shows the case of 
a 99mTc source. The photon energy spectrum has a main γ-ray emission at 140.5 keV (88.5% of decays). In this 
case, the digitizer is composed of two energy windows, the primary window [126.45,154.55] keV and the scat-
ter window [114,126] keV, sampled with 6.6 keV steps, except for the 1 keV step of the 140.5 keV peak. Seven 
tables were computed for the 99mTc windows.

Once the tables are computed, they can be used for every simulation having the same conditions (same col-
limator/detector and radionuclide energy windows), independently of the source distribution and the medium, 
phantom or patient. ARF tables require little disk space, in this case, around 57 MB for seven tables. When using 
another radionuclide, such as 111In, more tables are needed to keep the same energy resolution (six for the 171 keV 
peak, eight for the 245 keV peak and four for the scatter). In the following, we used the implementation proposed 
in GATE by Descourt et al (2010).

3. Experiments

The proposed method was compared to AMC simulations, used as reference. The quality of the simulated images 
was assessed using the projection images and quantified using the root mean square distance (RMSD) defined as:

RMSD =

√√√√√
P∑

j=1

(
X̄j − X̄ref

j

)2

P

 (4)

with X̄j  the sample mean value at pixel j in the FFD image, X̄ref
j  the sample mean pixel value in the reference image 

obtained by analog Monte Carlo, and P the number of pixels. The sample mean values were obtained by the batch 
method (Walters et al 2002). N = 20 batches were used for all experiments. We used the normalized RMSD 

(NRMSD) defined as: RMSD/Xref, with Xref =
∑

j Xref
j . This criteria integrates both accuracy and precision 

and is limited by the relative statistical uncertainty s of the reference Monte Carlo. s is estimated by s = σ/Xref , 

with σ2 the variance averaged over the image 1n
∑

j σ
2(Xref

j ). If Xj in equation (4) were truly the unbiased mean, 
NRMSD would still be s. The variance σ2(Xref

j ) at pixel j was obtained using:
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σ2(Xj) =

N∑
b=1

(Xb
j − X̄j)

2

N(N − 1)
 (5)

where N  is the number of batches, Xb
j  is the value of X in batch b in pixel j, and X̄j  is the mean value of X in pixel j 

evaluated over all batches.
The computation time was assessed by computing the simulation efficiency εj in each pixel j:

εj =
[
t × σ2(Xj)

]−1
 (6)

where t is the total simulation time, σ2(Xj) the variance in pixel j. Hence, the efficiency is increased if the time 
taken to obtain a given variance on the quantity of interest is reduced. The gain Gj in a pixel j is defined as the 

efficiency ratio between the two methods m1 and m2: Gj = εm1
j /εm2

j .

3.1. First experiment: simple phantoms
The first test T1 was the SPECT projection of an isotropic cubic source of 10 cm side of 99mTc inside a 20 cm 
cubic box. The box was either composed of air (T1a) or water (T1b and T1c). As we are interested in voxelized 
volumes, we considered the box as a matrix of 1003 voxels. The 99mTc source was modeled as a 140.5 keV gamma 
source. The simulated SPECT device was one head of a GE Discovery 670 with a NaI crystal (field of view of 
54 cm  ×  40 cm) equipped with a parallel-hole collimator. The low-energy high-resolution collimator, with holes 
diameter of 1.5 mm and holes height of 35 mm, was modeled. In GATE, the digitizer module describes the global 
detector response and the signal processing chain after the gamma interactions in the crystal, replacing the PMTs 
that are not explicitly simulated (Jan et al 2011). We chose a spatial blurring of 5 mm, and the two energy windows 

Figure 1. Top: schematic ARF table computation for a 99mTc source. The digitizer windows are divided into small energy ranges of 
7 keV with smaller ones for the photo-peaks (indicated by 5© here). Two energy windows, primary and scatter, are shown, with the 
corresponding bins. Bottom: ARF tables for 99mTc with angle φ = 0. There are five curves for the primary window (1 and 2 are below 
the range) and 7 for the secondary window. We used the notation of Descourt et al (2010): the cos θ index represents the binning of 
cos θ (from 0 to 1 with 2048 bins).

Phys. Med. Biol. 63 (2018) 055011(9pp)
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described above. The physics list used was emstandard_opt3 with production cuts for gamma equal to 
0.1 mm. The projections was defined with 100  ×  100 pixels of 4 mm side.

3.2. Second experiment: clinical data
The second test T2 was a complete SPECT simulation with both a CT image and a voxelized activity source 
obtained from real clinical data. The data were gathered from a clinical trial that studied a labeled monoclonal 
antibody (mAb), named 90Y-OTSA101, targeting synovial sarcoma. In this trial, the dosimetry planning was 
performed from SPECT images acquired at several time point after 111In-OTSA101 injection. We selected one 
patient and a time integrated activity map was computed and used as a voxelized activity source (Sarrut et al 
2017). The CT of the patient, resampled to 2 × 2 × 2 mm3, was used in the simulation. The 99mTc voxelized 
source was 4 × 4 × 4 mm3. Figure 2 illustrates the input data.

4. Results

4.1. Test 1
The accuracy of the FFD method was evaluated using NRMSD versus both AMC and ARF. Figure 3 shows 
transverse profiles of simulated projection images for T1a (in air, primary window), T1b (in water, primary 
window), T1c (in water, scatter window). The numbers of emitted primaries for AMC were 68 × 109 for T1a and 
T1b, and 165 × 109 for T1c. With FFD method, the numbers of emitted primaries were around 1 × 106. Those 
numbers were chosen for practical reasons, leading to manageable computation times on the cluster. The use of 
equation (6) allowed us to compare them even if they did not lead to the same variance or detected counts.

The shape of the profiles were very similar, with an NRMSD below 3.5% between analog and FFD  +  ARF 
methods. The efficiency of each method was computed with a batch method (20 simulations each) for T1a, T1b 
and T1c. The mean gains are given in table 1. Figure 4 shows the gains G pixel by pixel. The total detected counts 
in the simulated images with AMC were around 2, 4 and 8 million counts, respectively, for T1a, T1b and T1c, which 
correspond to sensitivity of around 3 × 10−3, 8 × 10−3 and 4 × 10−5. The approximate computing speed was 
around 1300–2000 tracked particles per seconds (PPS) for the AMC method while around only 35–50 PPS for 
FFD method (Intel Xeon CPU E5-1660 3.30 GHz), obviously much slower due to the ray casting.

4.2. Test 2
For T2, figure 5 shows the transverse and longitudinal profiles of the simulated projection image in figure 2 right. 
The numbers of emitted primaries were 4 × 1010 (analog), 1010 (ARF) and 2 × 106 (FFD  +  ARF). The total 
computation time was 389 d for the AMC, 87 d for the ARF and 13 h for the FFD  +  ARF. The computations were 
performed on a cluster and converted to a total time for a single core (Intel Xeon CPU E5-1660 3.30 GHz). The 
profiles follow similar shapes. For ten billion particles, the NRMSD on the central image region was 7.2%, which 
can be compared to the relative statistical uncertainty of 6.3% in the same region. We therefore did not observe 
any bias of FFD in comparison to the AMC within the statistical uncertainty. The gain by pixel ranges from 1.3 

Figure 2. Left: activity map superimposed on a coronal slice of the CT scan; the scale indicates the number of counts in the voxels. 
Right: FFD  +  ARF projection image obtained with 7 × 106 emitted primaries; the scale indicates the number of detected counts in 
the pixels.

Phys. Med. Biol. 63 (2018) 055011
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Figure 3. Comparison of the analog, ARF and FFD  +  ARF profiles for the 10 cm cubic source in a 20 cm phantom (test 1). Left: 
phantom is composed of vacuum, primary window. Right: phantom is composed of water, primary window. Bottom: water 
phantom, scatter window. Relative statistical uncertainty of the reference Monte Carlo and NRMSD between AMC and ARF or FFD 
are summarized in the table.

Table 1. Mean gain over the whole image for analog, ARF and FFD  +  ARF. Phantom filled with vacuum (T1a) or water (T1b,T1c), on the 
primary (T1a,T1b) or scatter window (T1c).

Test Analog versus ARF ARF versus FFD  +  ARF Analog versus FFD  +  ARF

T1a 1.7 × 102 3.5 × 103 5.2 × 105

T1b 4.2 × 102 1.5 × 103 2.1 × 105

T1c 2.8 × 102 6.3 × 102 2.1 × 105

Figure 4. Gain map per pixel, the scales indicate the obtained acceleration factor G between the two compared methods. Top: 
comparison between ARF and analog. Bottom: comparison between FFD  +  ARF and ARF. Left: T1a. Middle: T1b. Right: T1c.

Phys. Med. Biol. 63 (2018) 055011(9pp)
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to 11 × 103 . The mean gain between the ARF versus FFD  +  ARF methods for pixels with more than 20% of the 
maximum signal was 760.

4.3. Convergence study
As already mentioned in previous works combining stochastic and deterministic strategies (Smekens et al 2009, 
2014), ‘hot spots’ were observed when the statistic was not sufficient. Indeed, in a typical SPECT simulation, 
scattered particles are distributed in regions larger than the sources of emitting radionuclides. Therefore, the 
number of photons needed to get a representative sampling of the emitted particle’s spatial distribution was 
larger for scatter than for primary photons. Because FFD allows for fast convergence of rare events, it can lead 
to bright spots before convergence. To clarify this phenomenon, simulations of a 10 cm edge size cubic source 
in a 20 cm cubic water phantom for different numbers of emitted primaries were computed. Resulting images 
were compared with the reference image obtained with 107 emitted primaries. In order to illustrate the role of 
(i) the primaries, (ii) the source size relatively to the phantom and (iii) secondary photons, we performed the 
simulations with varying source sizes (0.4, 2, 4, 10, 15 and 20 cm) and observed the differences in convergence 
speeds.

Figure 6 shows projection and RMSD images obtained with FFD  +  ARF for 102, 104 and 106 particles. Sev-
eral ‘hot spots’ can be observed due to the spatial distribution of emitted primaries. In the last image, we can see 
brighter spots inside the source with a smaller RMSD (0.04) than for the second image (0.225).

Figures 7 (primaries only) and 8 (primaries and scattered photons) show precision and NRMSD according 
to the number of primaries (103–106): precision (right image) was quantified by the percentage of pixels with a 
relative statistical uncertainty below 2%. We choose 2% arbitrarily because this value this is a commonly chosen 
value in Monte Carlo papers, but other thresholds of interest may be used.

For primary photons, both the pixel convergence and the NRMSD decreases were correlated with the size of 
the source. For a 4 mm source, only 103 emitted primaries were needed to get less than 2% NRMSD and  >95% 
pixel convergence, while 105 were required to obtain similar results with a source as large as the phantom (20 cm). 
When taking scattered photons into account, voxels that are far from the source will have a low photon count, 
thus larger sources meant a quicker convergence.

5. Discussion

The FFD method reached very good agreement with analog simulations for simple cases (T1a, T1b, T1c) as well as 
for realistic cases (T2 patient data). NRMSD values were always of the order of the relative statistical uncertainty, 
which indicated that the bias was much smaller than the Monte-Carlo uncertainty. Regarding efficiency, the 
gains were up to 103 compared to ARF only and 105 compared to analog. Also, as already pointed out by Song 
et al original ARF paper (Song et al 2005), the detection probability of gamma with incident angle larger than 
15–20 degrees is close to zero (excepted for high energy gamma). Thus, additional time gain could be reached if 
gamma with a large incident angle is ignored during the FFD step. With other types of collimators, for example 
for high-energy radionuclide-like 131I, efficiency may change slightly, but it has not been investigated here. Both 
the NRMSD and the statistical uncertainty were dependent on the size of the source. For a 2 cm source, only 
3 × 103 emitted primaries were needed to obtain more than 95% of the pixels below 2% uncertainty and less than 
2% NRMSD error, while 5 × 104 emitted primaries were needed when the source was larger (20 cm). A point 
source needs only one emitted primary to generate the projection image of detected primaries. When scattered 
photons are considered, the results were reversed: for a 20 cm source, 105 emitted primaries are needed to reach 
a NRMSD below 2% for 95% of the pixels, while 106 were needed for a smaller 2 cm source. In total, scattered 
photons represent in the water phantom 26% (23.8% Compton, 2.5% Rayleigh) of the total signal. Also, note 

Figure 5. Transverse (left) and longitudinal (right) normalized profiles obtained on the simulated projected images of test 2 for the 
primary window. Profiles are shown for the AMC, ARF and FFD  +  ARF methods.

Phys. Med. Biol. 63 (2018) 055011
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that, because of the proposed variance reduction, the obtained image will not contain a noise similar to the AMC 
method. If the user wants to reproduce it, the data should be scaled to the correct number of counts and be 
corrupted with Poisson noise.

Finally, we did not investigate a practical criterion to determine convergence because it mostly depends of the 
application and will be very different if the user is interested in detecting the primary signal or the scattered one 
in a particular region of the image. In the proposed implementation, only one voxelized volume can be used in a 
simulation and no other volumes could be positioned between this volume and the ARF plane.

Figure 6. The top figures show SPECT projection images of a cubic source (10 cm) in a water phantom (20 cm) for different 
numbers of emitted primaries (102, 104, 106). The bottom figures show NRMSD between AMC and FFD in the same conditions.

Figure 7. Evolution of the NRMSD (left) and percentage of pixels with a relative uncertainty below 2% (right) according to the 
number of emitted primaries (103–106), for primary photons only (not scatter).

Figure 8. Evolution of the NRMSD (left) and percentage of pixels with a relative uncertainty below 2% (right) according to the 
number of emitted primaries (103–106), for both primary and scattered photons.

Phys. Med. Biol. 63 (2018) 055011(9pp)
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6. Conclusion

We proposed a method to reduce the variance of Monte-Carlo SPECT simulations using FFD in order to get 
a better computation time. This implementation was further improved by linking the FFD to ARF tables. The 
measured gain versus analog simulations was up to five orders of magnitude for realistic patient simulations. For 
a relative statistical uncertainty below 2%, this method can simulate a projection in less than 2 h on a single core 
instead of days. Only a few simulations cases have been tested, further studies are needed for further adoption. 
This method with examples and documentation is available in the last GATE V8.0 version.
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